Skip to main content
Log in

Synbiotic Microencapsulation from Slow Digestible Colored Rice and Its Effect on Yoghurt Quality

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum was encapsulated by slowly digestible hydrolyzed heat-moisture-treated (hydrolyzed-HMT) black waxy rice and applied in yoghurt. Incorporating these microcapsules in yoghurt resulted in higher viability of Lactobacillus bulgaricus C49 and Streptococcus thermophilus C44, especially in prolonged storage. The viability of L. bulgaricus and S. thermophilus (7.98 and 8.28 Log CFU/g) in synbiotic yoghurt was higher than in the control (7.81 and 7.96 Log CFU/g). Thirty-two aromatic compounds were detected and classified into 4 groups: alcohols, carbonyls, organic acids, and sulfur. Synbiotic yoghurt produced higher carbonyl compounds, particularly acetaldehyde and diacetyl. On the other hand, higher organic acid especially hexanoic, dodecanoic, acetic, butanoic, and pentanoic acids was observed at the end of fermentation but did not differ from control after storage. Ethanol was also higher in the synbiotic yoghurt due to the breakdown of glucose from starch and acetaldehyde by lactic acid bacteria. Weak correlation was found concerning sulfur compounds. Rice starch granules were aggregated and still retained its hexagonal shape, indicating high resistance to acid fermentation during 28 days of storage. The resistant starch coating from rice could provide a good prebiotic ingredient and allow the design of synbiotic yoghurt with enhanced aroma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Attabi, Z., D’Arcy, B. R., & Deeth, H. C. (2014). Volatile sulfur compounds in pasteurised and UHT milk during storage. Dairy Science & Technology, 94(3), 241–253. https://doi.org/10.1007/s13594-013-0157-y.

    Article  CAS  Google Scholar 

  • Avila-Reyes, S. V., Garcia-Suarez, F. J., Jiménez, M. T., Martín-Gonzalez, M. F. S., & Bello-Perez, L. A. (2014). Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability. Carbohydrate Polymers, 102, 423–430. https://doi.org/10.1016/j.carbpol.2013.11.033.

    Article  CAS  Google Scholar 

  • Ardö, Y. (2006). Flavour formation by amino acid catabolism. Biotechnology Advances, 24(2), 238–242. https://doi.org/10.1016/j.biotechadv.2005.11.005.

    Article  Google Scholar 

  • Aryana, k. J., & McGrew, P. (2007). Quality attributes of yogurt with Lactobacillus casei and various prebiotics. LWT - Food Science and Technology, 40(10), 1808–1814. https://doi.org/10.1016/j.lwt.2007.01.008.

    Article  CAS  Google Scholar 

  • Beards, E., Tuohy, K., & Gibson, G. (2010). Bacterial, SCFA and gas profiles of a range of food ingredients following in vitro fermentation by human colonic microbiota. Anaerobe, 16(4), 420–425. https://doi.org/10.1016/j.anaerobe.2010.05.006.

    Article  CAS  Google Scholar 

  • Beshkova, D., Simova, E., Frengova, G., & Simov, Z. (1998). Production of flavour compounds by yogurt starter cultures. Journal of Industrial Microbiology & Biotechnology, 20(3-4), 180–186. https://doi.org/10.1038/sj.jim.2900504.

    Article  CAS  Google Scholar 

  • Chaves, A. C. S. D., Fernandez, M., Lerayer, A. L. S., Mierau, I., Kleerebezem, M., & Hugenholtz, J. (2002). Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Applied and Environmental Microbiology, 68(11), 5656–5662. https://doi.org/10.1128/AEM.68.11.5656-5662.2002.

    Article  CAS  Google Scholar 

  • Cheng, H. (2010). Volatile flavor compounds in yoghurt: a review. Critical Reviews in Food Science and Nutrition, 50(10), 938–950. https://doi.org/10.1080/10408390903044081.

    Article  CAS  Google Scholar 

  • Coghetto, C. C., Brinques, G. B., & Ayub, M. A. Z. (2016). Probiotics production and alternative encapsulation methodologies to improve their viabilities under adverse environmental conditions. International Journal of Food Sciences and Nutrition, 67(8), 929–943. https://doi.org/10.1080/09637486.2016.1211995.

    Article  CAS  Google Scholar 

  • Cogan, T. M., Fitzgerald, R. J., & Doonan, S. (1984). Acetolactate synthase of Leuconostoc lactis and its regulation of acetoin production. Journal of Dairy Research, 51(04), 597–604. https://doi.org/10.1017/S002202990003291X.

    Article  CAS  Google Scholar 

  • Costabile, A., Walton, G. E., Tzortzis, G., Vulevic, J., Charalampopoulos, D., & Gibson, G. R. (2015). Effects of orange juice formulation on prebiotic functionality using an in vitro colonic model system. PLoS One, 10(3), e0121955. https://doi.org/10.1371/journal.pone.0121955.

    Article  Google Scholar 

  • Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerström, R., Mättö, J., Saarela, M., Sandholm, T. M., & Poutanen, K. (2002). In vitro fermentation of cereal dietary fiber carbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food and Agriculture, 82(8), 781–789. https://doi.org/10.1002/jsfa.1095.

    Article  CAS  Google Scholar 

  • Cummings, J. H., Macfarlane, G. T., & Englyst, H. N. (2001). Prebiotic digestion and fermentation. American Journal of Clinical Nutrition, 73(2 Suppl), 415S–420S.

    Article  CAS  Google Scholar 

  • Curic, M., Lauridsen, B. S., Renaulp, P., & Nilsson, D. (1999). A general method for selection of α-acetolactate decarboxylase-deficient Lactococcus lactis mutants to improve diacetyl formation. Applied and Environmental Microbiology, 65(3), 1202–1206.

    CAS  Google Scholar 

  • Curioni, P. M. G., & Bosset, J. O. (2002). Key odorants in various cheese types as determined by gas chromatography-olfactometry. International Dairy Journal, 12(12), 959–984. https://doi.org/10.1016/S0958-6946(02)00124-3.

    Article  CAS  Google Scholar 

  • Damin, M. R., Minowa, E., Alcantara, M. R., & Oliveira, M. N. (2008). Effect of cold storage on culture viability and some rheological properties of fermented milk prepared with yoghurt probiotic bacteria. Journal of Texture Studies, 39(1), 40–55. https://doi.org/10.1111/j.1745-4603.2007.00129.x.

    Article  Google Scholar 

  • Daims, H., Brühl, A., Amann, R., Schleifer, K. H., & Wagner, M. (1999). The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology, 22(3), 434–444. https://doi.org/10.1016/S0723-2020(99)80053-8.

    Article  CAS  Google Scholar 

  • Dave, R. I., & Shah, N. P. (1997). Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. International Dairy Journal, 7(1), 31–41. https://doi.org/10.1016/S0958-6946(96)00046-5.

    Article  Google Scholar 

  • De Araújo Etchepare, M., Raddatz, G. C., de Moraes Flores, E. M., Zepka, L. Q., Jacob-Lopes, E., Barin, J. S., Grosso, C. R. F., & de Menezes, C. R. (2016). Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT - Food Science and Technology, 65, 511–517. https://doi.org/10.1016/j.lwt.2015.08.039.

    Article  Google Scholar 

  • Desai, A. R., Powell, I. B., & Shah, N. P. (2004). Survival and activity of probiotic Lactobacilli in skim milk containing prebiotics. Journal of Food Science, 69, 57–60.

    Google Scholar 

  • Dongowski, E., Jacobasch, G., & Schmiedl, D. (2005). Structural stability and prebiotic properties of resistant starch type 3 increase bile acid turnover and lower secondary bile acid formation. Journal of Agricultural and Food Chemistry, 53(23), 9257–9267. https://doi.org/10.1021/jf0507792.

    Article  CAS  Google Scholar 

  • Fakhravar, S., Najafpour, G., Heris, S. Z., Izadi, M., & Fakhravar, A. (2012). Fermentative lactic acid from deproteinized whey using Lactobacillus bulgaricus in batch culture. World Applied Sciences Journal, 17(9), 1083–1086.

    CAS  Google Scholar 

  • Franks, A. H., Harmsen, H. J., Raangs, G. C., Jansen, G. J., Schut, F., & Welling, G. W. (1998). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group specific 16S RNAtargeted oligonucleotide probes. Applied and Environmental Microbiology, 64(9), 3336–3345.

    CAS  Google Scholar 

  • Fritzen-Freire, C. B., Prudêncio, E. S., Pinto, S. S., Muñoz, I. B., & Amboni, R. D. M. C. (2013). Effect of microencapsulation on survival of Bifidobacterium BB-12 exposed to simulated gastrointestinal conditions and heat treatments. LWT - Food Science and Technology, 50(1), 39–44. https://doi.org/10.1016/j.lwt.2012.07.037.

    Article  CAS  Google Scholar 

  • Gaggia, F., Mattarelli, P., & Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141(Suppl 1), S15–S28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031.

    Article  Google Scholar 

  • Gibson, G. R., & Roberfroid, M. D. (1995). Dietary modulation of the human colonic microbiota – Introducing the concept of prebiotics. Journal of Nutrition, 125(6), 1401–1412.

    CAS  Google Scholar 

  • Grimaldi, R., Swann, J. R., Vulevic, J., Gibson, G. R., & Costabile, A. (2016). Fermentation properties and potential prebiotic activity of Bimuno® galacto-oligosaccharide (65% galacto-oligosaccharide content) on in vitro gut microbiota parameters. British Journal of Nutrition, 116(3), 480–486. https://doi.org/10.1017/S0007114516002269.

    Article  CAS  Google Scholar 

  • Gustaw, W., Kordowska-Wiater, M., & Kozioł, J. (2011). The influence of selected prebiotics on the growth of lactic acid bacteria for bio-yoghurt production. Acta Scientiarum Polonorum Technologia Alimentaria, 10(4), 455–466.

    Google Scholar 

  • Hidalgo, M., Oruna-Concha, M. J., Kolida, S., Walton, G. E., Kallithraka, S., Spencer, J. P., & de Pascual-Teresa, S. (2012). Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry, 60, 3882−3890.

    Article  Google Scholar 

  • ISO/IDF (2009). ISO-PDTS11869/IDF-DRM150 Fermented Milks: Determination of titratable acidity—potentiometric method. International standard; ISO 14673–2International Organization for Standardization, Geneva.

  • Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT - Food Science and Technology, 39(10), 1221–1227. https://doi.org/10.1016/j.lwt.2005.07.013.

    Article  CAS  Google Scholar 

  • Kailasapathy, K., & Supriadi, D. (1996). Effect of whey protein concentrate on the survival of Lactobacillus acidophilus in lactose hydrolyzed yoghurt during. Milchwissenschaft, 51, 566–569.

    Google Scholar 

  • Le Leu, R. K., Brown, I. L., Hu, Y., Bird, A. R., Jackson, M., Esterman, A., & Young, G. P. (2005). A Synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen-damaged cells in rat colon. Journal of Nutrition, 135(5), 996–1001. https://doi.org/10.1093/jn/135.5.996.

    Article  Google Scholar 

  • Macfarlane, G. T., Steed, H., & Macfarlane, S. (2008). Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology, 104(2), 305–344. https://doi.org/10.1111/j.1365-2672.2007.03520.x.

    CAS  Google Scholar 

  • Maconi, E., Griffini, A., Cavazzoni, V., & Aragozzini, F. (1988). Reduction of acetaldehyde to ethanol by some micro-organisms and its stereospecificity. Biochemical Journal, 250(3), 929–932. https://doi.org/10.1042/bj2500929.

    Article  CAS  Google Scholar 

  • Mani-López, E., Palou, E., & López-malo, A. (2014). Probiotic viability and storage stability of yoghurts and fermented milks prepared with several mixtures of lactic acid bacteria. Journal of Dairy Science, 97(5), 2578–2590. https://doi.org/10.3168/jds.2013-7551.

    Article  Google Scholar 

  • Massot-Cladera, M., Costabile, A., Childs, C. E., Yaqoob, P., Franch, A., Castell, M., & Pérez-Cano, F. J. (2015). Prebiotic effects of cocoa fibre on rats. Journal of Functional Foods, 19, 341–352. https://doi.org/10.1016/j.jff.2015.09.021.

    Article  CAS  Google Scholar 

  • Miao, M., Jiang, B., & Zhang, T. (2009). Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch. Carbohydrate Polymers, 76(2), 214–221. https://doi.org/10.1016/j.carbpol.2008.10.007.

    Article  CAS  Google Scholar 

  • Mutungi, C., Onyango, C., Doert, T., Paasch, S., Thiele, S., Machill, S., Jaros, D., & Rohm, H. (2011). Long- and short-range structural changes of recrystallised cassava starch subjected to in vitro digestion. Food Hydrocolloids, 25(3), 477–485. https://doi.org/10.1016/j.foodhyd.2010.07.023.

    Article  CAS  Google Scholar 

  • Oliveira, R. P. S., Perego, P., Oliveira, M. N., & Converti, A. (2011). Effect of inulin as prebiotic and synbiotic interactions between probiotics to improve fermented milk firmness. Journal of Food Engineering, 107(1), 36–40. https://doi.org/10.1016/j.jfoodeng.2011.06.005.

    Article  CAS  Google Scholar 

  • Özer, D., Akin, S., & Özar, B. (2005). Effect of inulin and lactulose on survival of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-02 in acidophilus yoghurt. Food Science and Technology International, 11(1), 19–24. https://doi.org/10.1177/1082013205051275.

    Article  Google Scholar 

  • Picot, A., & Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal, 14(6), 505–515. https://doi.org/10.1016/j.idairyj.2003.10.008.

    Article  CAS  Google Scholar 

  • Paseephol, T., & Sherkat, F. (2009). Probiotic stability of yoghurts containing Jerusalem artichoke inulins during refrigerated storage. Journal of Functional Foods, 1(3), 311–318. https://doi.org/10.1016/j.jff.2009.07.001.

    Article  CAS  Google Scholar 

  • Pitiphunpong, S., & Suwannaporn, P. (2009). Physicochemical properties of KDML 105 rice cultivar from different cultivated locations in Thailand. Journal of the Science of Food and Agriculture, 89(13), 2186–2190. https://doi.org/10.1002/jsfa.3701.

    Article  CAS  Google Scholar 

  • Rodríguez-Cabezas, M. E., Camuesco, D., Arribas, B., Mesa, N. G., Comalada, M., Bailón, E., Sola, M. C., Utrilla, P., Hernández, E. G., Roca, C. P., Gálvez, J., & Zarzuelo, A. (2010). The combination of fructooligosaccharides and resistant starch shows prebiotic additive effects in rats. Clinical Nutrition, 29(6), 832–839. https://doi.org/10.1016/j.clnu.2010.05.005.

    Article  Google Scholar 

  • Rychlik, M., Sax, M., & Schieberle, P. (2006). On the role of short-chain free fatty acids for the development of a cheese-like off-note in pasteurized yogurt. LWT - Food Science and Technology, 39(5), 521–527. https://doi.org/10.1016/j.lwt.2005.03.014.

    Article  CAS  Google Scholar 

  • Saint-Eve, A., Levy, C., Le Moigne, M., Ducruet, V., & Souchon, I. (2008). Quality changes in yogurt during storage in different packaging materials. Food Chemistry, 110(2), 285–293. https://doi.org/10.1016/j.foodchem.2008.01.070.

    Article  CAS  Google Scholar 

  • Saulnier, D. M. A., Molenaar, D., de Vos, W. M., Gibson, G. R., & Kolida, S. (2007). Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Applied and Environment Microbiology, 73(6), 1753–1765. https://doi.org/10.1128/AEM.01151-06.

    Article  CAS  Google Scholar 

  • Suskovic, J., Kos, B., Goreta, J., & Matosic, S. (2001). Role of lactic acid bacteria and Bifidobacteria in synbiotic effect. Food Technology and Biotechnology, 39(3), 227–235.

    CAS  Google Scholar 

  • Scott, K. P., Duncan, S. H., & Flint, H. J. (2008). Dietary fibre and the gut microbiota. Nutrition Foundation Nutrition Bulletin, 33(3), 201–211. https://doi.org/10.1111/j.1467-3010.2008.00706.x.

    Article  Google Scholar 

  • Settachaimongkon, S., Nout, M. J. R., Antunes Fernandes, E. C., Hettinga, K. A., Vervoort, J. M., van Hooijdonk, T. C. M., Zwietering, M. H., Smid, E. J., & van Valenberg, H. J. F. (2014). Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. International Journal of Food Microbiology, 177, 29–36. https://doi.org/10.1016/j.ijfoodmicro.2014.02.008.

    Article  Google Scholar 

  • Settachaimongkon, S., van Valenberg, H. J. F., Gazi, I., Nout, M. J. R., van Hooijdonk, T. C. M., Zwietering, M. H., & Smid, E. J. (2016). Influence of Lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt. Food Microbiology, 59, 14–22. https://doi.org/10.1016/j.fm.2016.04.008.

    Article  CAS  Google Scholar 

  • Sidira, M., Santarmaki, V., Kiourtzidis, K., Argyri, A. A., Papadopoulou, O. S., Chorianopoulos, N., Tassou, C., Kaloutsas, S., Galanis, A., & Kourkoutas, Y. (2017). Evaluation of immobilized Lactobacillus plantarum 2035 on whey protein as adjunct probiotic culture in yoghurt production. LWT - Food Science and Technology, 75, 137–146. https://doi.org/10.1016/j.lwt.2016.08.026.

    Article  CAS  Google Scholar 

  • Smid, E. J., & Lacroix, C. (2013). Microbe–microbe interactions in mixed culture food fermentations. Current Opinion in Biotechnology, 24(2), 148–154. https://doi.org/10.1016/j.copbio.2012.11.007.

    Article  CAS  Google Scholar 

  • Subhasree, R. S., Bhakyaraj, R., & Dinesh, B. P. (2013). Evaluation of brown rice and germinated brown rice as an alternative substrate for probiotic food formulation using Lactobacillus spp. isolated from goat milk. International Food Research Journal, 20(5), 2967–2971.

    CAS  Google Scholar 

  • Talwalkar, A., Miller, C. W., Kailasapathy, K., & Nguyen, M. H. (2004). Effect of packaging materials and dissolved oxygen on the survival of probiotic bacteria in yoghurt. International Journal of Food Science and Technology, 39(6), 605–611. https://doi.org/10.1111/j.1365-2621.2004.00820.x.

    Article  CAS  Google Scholar 

  • Walker, A. W., Duncan, S. H., McWilliam Leitch, E. C., Child, M. W., & Flint, H. J. (2005). pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Applied and Environmental Microbiology, 71(7), 3692–3700. https://doi.org/10.1128/AEM.71.7.3692-3700.2005.

    Article  CAS  Google Scholar 

  • Wattananapakasem, I., Costabile, A., & Suwannaporn, P. (2018). Slow digestible colored rice flour as wall material for microencapsulation: Its impacts on gut bacterial population and metabolic activities. Food Research International, 103, 182–191. https://doi.org/10.1016/j.foodres.2017.10.027.

    Article  CAS  Google Scholar 

  • Yüksel, A. K., & Bakırcı, I. (2015). An investigation of the volatile compound profiles of probiotic yoghurts produced using different inulin and demineralised whey powder combinations. Food Science and Biotechnology, 24(3), 807–816. https://doi.org/10.1007/s10068-015-0105-0.

    Article  Google Scholar 

  • Zhao, R., Sun, J., Torley, P., Wang, D., & Niu, S. (2008). Measurement of particle diameter of lactobacillus acidophilus microcapsule by spray drying and analysis on its microstructure. World Journal of Microbiology and Biotechnology, 24(8), 1349–1354. https://doi.org/10.1007/s11274-007-9615-0.

    Article  Google Scholar 

  • Zhang, G., & Hamaker, B. R. (2009). Slowly digestible starch: concept, mechanism, and proposed extended glycemic index. Critical Reviews in Food Science and Nutrition, 49(10), 852–867. https://doi.org/10.1080/10408390903372466.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by Thailand Research Fund (TRF) through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0107/2552) and the Royal Golden Jubilee PhD programme (one-year PhD placement in the UK) co-funded with Newton Fund 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prisana Suwannaporn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wattananapakasem, I., van Valenberg, H.J.F., Fogliano, V. et al. Synbiotic Microencapsulation from Slow Digestible Colored Rice and Its Effect on Yoghurt Quality. Food Bioprocess Technol 11, 1111–1124 (2018). https://doi.org/10.1007/s11947-018-2068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2068-7

Keywords

Navigation