Skip to main content
Log in

Effect of Microwave Power Coupled with Hot Air Drying on Sorption Isotherms and Microstructure of Orange Peel

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Drying is one of the most cost-effective methods of worthwhile by-product valorisation. This study had two main objectives. The first was to determine the effect of hot air drying (HAD) combined with microwave (MW) irradiation on the treatment kinetics and the macrostructural and microstructural properties of the dried product. The second aim was to develop engineering tools to predict the extent of dehydration. Drying was performed using hot air at 55 °C and the combined (HAD + MW) treatment at different power intensities (2, 4, and 6 W/g). After 5, 15, 40, 60, and 120 min, the mass, surface, volume, water activity and moisture were measured in fresh and dried samples. Sorption isotherms were obtained and fitted to the GAB model, with high correlation coefficients. The macroscopic and microscopic analyses showed shrinkage and swelling in the peel tissue caused by the MW treatment. The HAD + MW methods not only resulted in increased moisture reduction but also induced microstructural changes that generated higher sorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2002). Moisture sorption isotherm characteristics of food products: a review. Food and Bioproducts Processing, 80(2), 118–128. https://doi.org/10.1205/09603080252938753.

    Article  CAS  Google Scholar 

  • Andrade, R. D., Lemus, R., & Pérez, C. E. (2011). Models of sorption isotherms for food: uses and limitations. Vitae, 18(3), 325–334.

    Google Scholar 

  • Bejar, A. K., Ghanem, N., Mihoubi, D., Kechaou, N., & Mihoubi, N. B. (2011). Effect of infrared drying on drying kinetics, color, total phenols and water and oil holding capacities of orange (Citrus sinensis) peel and leaves. International Journal of Food Engineering, 7(5). https://doi.org/10.2202/1556-3758.2222.

  • Bergese, P. (2006). Specific heat, polarization and heat conduction in microwave heating systems: a nonequilibrium thermodynamic point of view. Acta Materialia, 54(7), 1843–1849. https://doi.org/10.1016/j.actamat.2005.11.042.

    Article  CAS  Google Scholar 

  • Castro-Giráldez, M., Fito, P. J., Chenoll, C., & Fito, P. (2010). Development of a dielectric spectroscopy technique for the determination of apple (Granny Smith) maturity. Innovative Food Science & Emerging Technologies, 11(4), 749–754. https://doi.org/10.1016/j.ifset.2010.08.002.

    Article  Google Scholar 

  • Castro-Giráldez, M., Fito, P. J., Dalla Rosa, M., & Fito, P. (2011a). Application of microwaves dielectric spectroscopy for controlling osmotic dehydration of kiwifruit (Actinidia deliciosa cv Hayward). Innovative Food Science & Emerging Technologies, 12(4), 623–627. https://doi.org/10.1016/j.ifset.2011.06.013.

    Article  Google Scholar 

  • Castro-Giráldez, M., Fito, P. J., & Fito, P. (2011b). Application of microwaves dielectric spectroscopy for controlling long time osmotic dehydration of parenchymatic apple tissue. Journal of Food Engineering, 104(2), 227–233. https://doi.org/10.1016/j.jfoodeng.2010.10.034.

    Article  Google Scholar 

  • Demirel, Y., & Sandler, S. I. (2001). Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport. International Journal of Heat and Mass Transfer, 44(13), 2439–2451. https://doi.org/10.1016/S0017-9310(00)00291-X.

    Article  CAS  Google Scholar 

  • Edrisi Sormoli, M., & Langrish, T. A. G. (2015). Moisture sorption isotherms and net isosteric heat of sorption for spray-dried pure orange juice powder. LWT—Food Science and Technology, 62(1, part 2), 875–882. https://doi.org/10.1016/j.lwt.2014.09.064.

    CAS  Google Scholar 

  • Fava, F., Zanaroli, G., Vannini, L., Guerzoni, E., Bordoni, A., Viaggi, D., Robertson, J., Waldron, K., Bald, C., Esturo, A., Talens, C., Tueros, I., Cebrián, M., Sebők, A., Kuti, T., Broeze, J., Macias, M., & Brendle, H. G. (2013). New advances in the integrated management of food processing by-products in Europe: sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU). New Biotechnology, 30(6), 647–655. https://doi.org/10.1016/j.nbt.2013.05.001.

    Article  CAS  Google Scholar 

  • Fernández-López, J., Sendra-Nadal, E., Navarro, C., Sayas, E., Viuda-Martos, M., & Alvarez, J. A. P. (2009). Storage stability of a high dietary fibre powder from orange by-products. International Journal of Food Science and Technology, 44(4), 748–756. https://doi.org/10.1111/j.1365-2621.2008.01892.x.

    Article  Google Scholar 

  • Ghanem, N., Mihoubi, D., Kechaou, N., & Mihoubi, N. B. (2012). Microwave dehydration of three citrus peel cultivars: effect on water and oil retention capacities, color, shrinkage and total phenols content. Industrial Crops and Products, 40, 167–177. https://doi.org/10.1016/j.indcrop.2012.03.009.

    Article  CAS  Google Scholar 

  • Gómez, A., López, R., Esturo, A., Bald, C., Tueros, I., Talens, C., & Raynaud, C. (2015). From waste products to raw materials for the development of new foods. Proceedings of the Institution of Civil Engineers: Waste and Resource Management, 168(2), 55–62. https://doi.org/10.1680/warm.13.00038.

    Google Scholar 

  • Hossain, M. D., Bala, B. K., Hossain, M. A., & Mondol, M. R. A. (2001). Sorption isotherms and heat of sorption of pineapple. Journal of Food Engineering, 48(2), 103–107. https://doi.org/10.1016/s0260-8774(00)00132-1.

    Article  Google Scholar 

  • Igual, M., Contreras, C., & Martinez-Navarrete, N. (2010). Non-conventional techniques to obtain grapefruit jam. Innovative Food Science & Emerging Technologies, 11(2), 335–341. https://doi.org/10.1016/j.ifset.2010.01.009.

    Article  CAS  Google Scholar 

  • Kowalski, S. J., Rajewska, K., & Rybicki, A. (2005). Stresses generated during convective and microwave drying. Drying Technology, 23(9–11), 1875–1893. https://doi.org/10.1080/07373930500210226.

    Article  CAS  Google Scholar 

  • Labuza, T. P., & Altunakar, B. (2007). Water activity prediction and moisture sorption isotherms. In G. V. Barbosa-Cánovas, A. J. Fontana, S. J. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods: Fundamentals and Applications (Vol. 109–154). Iowa: IFT Press and Blackwell Publishing. https://doi.org/10.1002/9780470376454.ch5.

    Google Scholar 

  • Larrauri, J. A. (1999). New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends in Food Science & Technology, 10(1), 3–8. https://doi.org/10.1016/S0924-2244(99)00016-3.

    Article  CAS  Google Scholar 

  • Martín, M. E., Martínez-Navarrete, N., Chiralt, A., & Fito, P. (2003). Diseño y construcción de una instalación experimental para el estudio de la cinética de secado combinado por aire caliente y microondas. Alimentación Equipos y Tecnología, 22(181), 101–107.

    Google Scholar 

  • Quirijns, E. J., van Boxtel, A. J. B., van Loon, W. K. P., & van Straten, G. (2005). Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85(11), 1805–1814. https://doi.org/10.1002/jsfa.2140.

    Article  CAS  Google Scholar 

  • Rizvi, S. S. H., & Benado, A. L. (1984). Thermodynamic properties of dehydrated foods. Food Technology, 38(3), 83–92.

    CAS  Google Scholar 

  • Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J.-F. (2000). Hydration properties of dietary fibre and resistant starch: a European collaborative study. Lebensmittel-Wissenschaft und -Technologie, 33(2), 72–79. https://doi.org/10.1006/fstl.1999.0595.

    Article  CAS  Google Scholar 

  • Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Science & Technology, 12(11), 401−+.

    Article  Google Scholar 

  • Schiffmann, R. (2001). Microwave processes for the food industry. In A. Datta & R. Anantheswaran (Eds.), Handbook of microwave Technology for Food Applications (pp. 299–352). New York: Marcel Dekker.

    Google Scholar 

  • Talens, C., Castro-Giráldez, M., & Fito, P. J. (2016a). A thermodynamic model for hot-air microwave drying of orange peel. Journal of Food Engineering, 175, 33–42. https://doi.org/10.1016/j.jfoodeng.2015.12.001.

    Article  CAS  Google Scholar 

  • Talens, C., Castro-Giráldez, M., & Fito, P. J. (2016b). Study of the effect of microwave power coupled with hot air drying on orange peel by dielectric spectroscopy. LWT - Food Science and Technology, 66, 622–628. https://doi.org/10.1016/j.lwt.2015.11.015.

    Article  CAS  Google Scholar 

  • Talens, C., Arboleya, J. C., Castro-Giraldez, M., & Fito, P. J. (2017). Effect of microwave power coupled with hot air drying on process efficiency and physico-chemical properties of a new dietary fibre ingredient obtained from orange peel. LWT - Food Science and Technology, 77, 110–118. https://doi.org/10.1016/j.lwt.2016.11.036.

    Article  CAS  Google Scholar 

  • Traffano-Schiffo, M. V., Castro-Giráldez, M., Fito, P. J., & Balaguer, N. (2014). Thermodynamic model of meat drying by infrared thermography. Journal of Food Engineering, 128, 103–110. https://doi.org/10.1016/j.jfoodeng.2013.12.024.

    Article  Google Scholar 

  • Traffano-Schiffo, M. V., Castro-Giráldez, M., Colom, R. J., & Fito, P. J. (2015). Study of the application of dielectric spectroscopy to predict the water activity of meat during drying process. Journal of Food Engineering, 166, 285–290. https://doi.org/10.1016/j.jfoodeng.2015.06.030.

    Article  Google Scholar 

  • van den Berg, C., & Bruin, S. (1981). Water activity and its estimation in food systems—theoretical aspects. In L. B. Rockland & G. F. Stewart (Eds.), Water Activity: Influences on Food Quality (pp. 1–61). New York: Academic Press. https://doi.org/10.1016/B978-0-12-591350-8.50007-3.

    Google Scholar 

  • Waldron, K. W. (2009). Part III exploitation of co-products as food and feed ingredients. In K. W. Waldron (Ed.), Handbook of waste management and co-product recovery in food processing (pp. 255–265). UK: Elsevier Science. https://doi.org/10.1533/9781845697051.

    Chapter  Google Scholar 

  • Yan, Z., Sousa-Gallagher, M. J., & Oliveira, F. A. R. (2008). Sorption isotherms and moisture sorption hysteresis of intermediate moisture content banana. Journal of Food Engineering, 86(3), 342–348. https://doi.org/10.1016/j.jfoodeng.2007.10.009.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Basque Government for the financial support of the project (LasaiFood). They also acknowledge the financial support from the Spanish Ministerio de Economía, Industria y Competitividad, Programa Estatal de I+D+i orientada a los Retos de la Sociedad AGL2016-80643-R. This paper is contribution no. 777 from AZTI (Food Research Division). The authors would like to thank the Electronic Microscopy Service of the Universidad Politécnica de Valencia for its assistance in the use of Cryo-SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Castro-Giraldez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talens, C., Castro-Giraldez, M. & Fito, P.J. Effect of Microwave Power Coupled with Hot Air Drying on Sorption Isotherms and Microstructure of Orange Peel. Food Bioprocess Technol 11, 723–734 (2018). https://doi.org/10.1007/s11947-017-2041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-2041-x

Keywords

Navigation