Skip to main content
Log in

Microwave-Intensified Enzymatic Deproteinization of Australian Rock Lobster Shells (Jasus edwardsii) for the Efficient Recovery of Protein Hydrolysate as Food Functional Nutrients

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Enzymatic deproteinization of lobster shells is an important step in developing a novel biorefinery process for the recovery of both protein and chitin. This study aimed to develop an efficient enzymatic deproteinization of lobster shells for protein recovery while providing the residual fraction suitable for further chitin recovery. In comparison with conventional incubation, the microwave-intensified enzymatic deproteinization (MIED) of Australian rock lobster shells significantly improved the deproteinization degree from 58 to 85.8 % and reduced the residual protein content from 96.4 to 65.4 mg/g, respectively. The protein hydrolysate produced by MIED had excellent functionality (solubility 91.7 %, water absorption 32 %, oil absorption 2.3 mL/g, foaming 51.3 %, emulsification 91.3 %) and high nutritional quality (34 % essential amino acids, 45.4 mg/g arginine, lysine/arginine ratio 0.69) with potential applications for food industry. With the considerably low residual protein, the MIEDs are suitable for further chitin recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AOAC. (2000). Official methods of analysis. Association of Official Analytical.

  • Beuchat, L. B. (1977). Functional and electro phonetic characteristics of succinylated peanut flour proteins. Journal of Agricultural and Food Chemistry, 25, 258–261.

    Article  CAS  Google Scholar 

  • Cao, W., Zhang, C., Hong, P., & Ji, H. (2008). Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis. Food Chemistry, 109(1), 176–183.

    Article  CAS  Google Scholar 

  • Coffman, C. W., & Garcia, V. V. (1977). Functional properties and amino acid content of protein isolate from Mung bean flour. J Food Technology, 12, 473–484.

    Article  Google Scholar 

  • Cremades, O., Ponce, E., Corpas, R., Gutierrez, J., Jover, M., Alvarez-Ossorio, M., et al. (2001). Processing of crawfish (Procambarus clarkii) for the preparation of carotenoproteins and chitin. Journal of Agricultural and Food Chemistry, 49(11), 5468–5472.

    Article  CAS  Google Scholar 

  • Cudennec, B., Ravallec-Ple, R., Courois, E., & Fouchereau-Peron, M. (2008). Peptides from fish and crustacean by-products hydrolysates stimulate cholecystokinin release in STC-1 cells. Food Chemistry, 111(970–975), 48–55.

    Google Scholar 

  • De La Hoz, A., Diaz-Ortiz, A., & Moreno, A. (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects. [10.1039/B411438H]. Chemical Society Reviews, 34(2), 164–178. doi:10.1039/B411438H.

    Article  Google Scholar 

  • Dionisi, F., Hug, B., Aeschlimann, J., & Houllemar, A. (1999). Supercritical CO2 extraction for total fat analysis of food products. Journal of Food Science, 64(4), 612–615.

    Article  CAS  Google Scholar 

  • El-Beltagy, A. E., & El-Sayed, S. M. (2012). Functional and nutritional characteristics of protein recovered during isolation of chitin from shrimp waste. Food and Bioproducts Processing, 90, 633–638.

    Article  CAS  Google Scholar 

  • FAO/WHO. (1990). Protein quality evaluation: report of a joint FAO/WHO expert consultation: Organizacion de las Naciones Unidas para la Agricultura y la Alimentacion.

  • Gagné, N., & Simpson, B. K. (1993). Use of proteolytic enzymes to facilitate the recovery of chitin from shrimp waste. Food Biotechnology, 7, 253–563.

    Article  Google Scholar 

  • Geirsdottir, M., Sigurgisladottir, S., Hamaguchi, P. Y., Thorkelsson, G., Johannsson, R., Kristinsson, H. G., et al. (2011). Enzymatic hydrolysis of blue whiting (Micromesistius poutassou); functional and bioactive properties. Journal of Food Science, 76(1), C14–C20.

    Article  CAS  Google Scholar 

  • Hayes, M. (2012). Chitin, chitosan and their derivatives from marine rest raw materials: potential food and pharmaceutical applications. In Marine bioactive compounds (pp. 115–128). Springer.

  • Higuera-Ciapara, I., Felix-Valenzuela, L., & Goycoolea, F. M. (2006). Astaxanthin: a review of its chemistry and applications. Critical Reviews in Food Science and Nutrition, 46, 185–196.

    Article  CAS  Google Scholar 

  • Horikoshi, S., Nakamura, T., Kawaguchi, M., & Serpone, N. (2015). Enzymatic proteolysis of peptide bonds by a metallo-endoproteinase under precise temperature control with 5.8-GHz microwave radiation. Journal of Molecular Catalysis B: Enzymatic, 116, 52–59. doi:10.1016/j.molcatb.2015.03.007.

    Article  CAS  Google Scholar 

  • Juan, C. C.-E., Maria-Josse, V.-M., Adriana, S.-B., Oscar, F. V.-V., Humberto, G.-M., Rosabel, V.-d.-l.-R., et al. (2014). Gluconic acid as a new green solvent for recovery of polysaccharides by clean technologies. In F. Chemat, & M. A. Vian (Eds.), Alternative solvents for natural products extraction. Springer.

  • Kinsella, J. E., & Melachouris, N. (1976). Functional properties of proteins in foods: a survey. Critical Reviews in Food Science and Nutrition, 7(3), 219–280.

    Article  CAS  Google Scholar 

  • Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102(4), 1317–1327.

    Article  CAS  Google Scholar 

  • Kristinsson, H. G. (1998). Reaction kinetics, biochemical and functional properties of salmon muscle proteins hydrolyzed by different alkaline proteases. University of Washington.

  • Kristinsson, H. G., & Rasco, B. A. (2000a). Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural and Food Chemistry, 48(3), 657–666.

    Article  CAS  Google Scholar 

  • Kristinsson, H. G., & Rasco, B. A. (2000b). Fish protein hydrolysates: production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40, 43–81.

    Article  CAS  Google Scholar 

  • Lawal, O. S. (2005). Functionality of native and succinylated Lablab bean (Lablab purpureus) protein concentrate. Food Hydrocolloids, 19(1), 63–72.

    Article  CAS  Google Scholar 

  • Lin, Y.-J., Le, G.-W., Wang, J.-Y., Li, Y.-X., Shi, Y.-H., & Sun, J. (2010). Antioxidative peptides derived from enzyme hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. International Journal of Molecular Sciences, 11, 4297–4308.

    Article  CAS  Google Scholar 

  • Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs, 9(6), 1056–1100.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  • Lukasiewicz, M., Marciniak, M., & Osowiec, A. (2009). Microwave-assisted enzymatic hydrolysis of starch. Chemistry, ECSOC-13, 1(30).

    Google Scholar 

  • Mutilangi, W., Panyam, D., & Kilara, A. (1996). Functional properties of hydrolysates from proteolysis of heat‐denatured whey protein isolate. Journal of Food Science, 61(2), 270–275.

    Article  CAS  Google Scholar 

  • Niittynen, L., Nurminen, M.-L., Korpela, R., & Vapaatalo, H. (1999). Role of arginine, taurine 4 and homocysteine in cardiovascular diseases. Annals of Medicine, 31(5), 318–326.

    Article  CAS  Google Scholar 

  • Oomah, B., & Mazza, G. (2000). Functional foods. In F. Francis (Ed.), The Wiley Encyclopedia of Science and Technology (2nd ed., Vol. 2, pp. 1176–1182). New York: Wiley.

    Google Scholar 

  • Ovissipour, M., Benjakul, S., Safari, R., & Motamedzadegan, A. (2010). Fish protein hydrolysates production from yellowfin tuna (Thunnus albacares) head using alcalase and protamex. International Aquatic Research, 2, 87–95.

    Google Scholar 

  • Roy, I., Mondal, K., & Gupta, M. N. (2003). Accelerating enzymatic hydrolysis of chitin by microwave pretreatment. Biotechnology Progress, 19(6), 1648–1653.

    Article  CAS  Google Scholar 

  • SAS, S., & Guide, S. U. s. (2003). Version 9.1. SAS Institute Inc., Cary, NC.

  • Sharp, R. G. (2013). A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interaction and improve crop yields. Agronomy, 3, 757–793.

    Article  Google Scholar 

  • Sidransky, H. (1990). Possible role of dietary proteins and amino acids in Atherosclerosisa. Annals of the New York Academic of Sciences, 598(1), 464–481.

    Article  CAS  Google Scholar 

  • Sila, A., Sayari, N., Balti, R., Martinez-Alvarez, O., Nedjar-Arroume, N., Nasri, M., et al. (2014). Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chemistry, 148, 445–452.

    Article  CAS  Google Scholar 

  • Simpson, B., & Haard, N. (1985). The use of proteolytic enzymes to extract carotenoproteins from shrimp wastes. Journal of Applied Biochemistry, 7(3), 212–222.

    CAS  Google Scholar 

  • Synowiecki, J., & Al-Khateeb, N. A. A. Q. (2000). The recovery of protein hydrolysate during enzymatic isolation of chitin from shrimp Crangon crangon processing discards. Food Chemistry, 68(2), 147–152.

    Article  CAS  Google Scholar 

  • Tu, Y. (1991). Recovery, drying and characterization of carotenoproteins from industrial lobster waste. McGill University.

  • Tu, Y., Simpson, B. K., Ramaswamy, H., Yaylayan, V., Smith, J. P., & Hudon, C. (1991). Carotenoproteins from lobster waste as a potential feed supplement for cultured salmonids. Food Biotechnology, 5(2), 87–93.

    Article  Google Scholar 

  • Valdez-Pena, A. U., Espinoza-Perez, J. D., Sandoval-Fabian, G. C., Balagurusamy, N., Hernandez-Rivera, A., De-la-Garza-Rodriguez, I. M., et al. (2010). Screening of industrial enzymes for deproteinisation of shrimp head for chitin recovery. Food Science and Biotechnology, 19(2), 553–557.

    Article  CAS  Google Scholar 

  • Vieira, G. H., Martin, A. M., Saker‐Sampaiao, S., Omar, S., & Goncalves, R. C. (1995). Studies on the enzymatic hydrolysis of Brazilian lobster (Panulirus spp) processing wastes. Journal of the Science of Food and Agriculture, 69(1), 61–65.

    Article  CAS  Google Scholar 

  • Wilding, P., Lillford, P. J., & Regenstein, J. M. (1984). Functional properties of proteins in foods. Journal of Chemical Technology and Biotechnology, 34(3), 182–189.

    Article  Google Scholar 

  • Xiao, W., Han, L., & Shi, B. (2008). Microwave-assisted extraction of flavonoids from Radix Astragali. Separation and Purification Technology, 62(3), 614–618. doi:10.1016/j.seppur.2008.03.025.

    Article  CAS  Google Scholar 

  • Xu, Y., Gallert, C., & Winter, J. (2008). Chitin purification from shrimp waste by microbial deproteinisation and decalsification. Appl Microbiology and Biotechnology, 79, 687–697.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Australian government for offering Trung T. Nguyen a PhD scholarship, the South Australian Government and Ferguson Australia Pty Ltd for the IVP funding support from the Premier’s Research and Industry Fund, as well as the Centre for Marine Bio-products Development, Flinders University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Zhang, W., Barber, A.R. et al. Microwave-Intensified Enzymatic Deproteinization of Australian Rock Lobster Shells (Jasus edwardsii) for the Efficient Recovery of Protein Hydrolysate as Food Functional Nutrients. Food Bioprocess Technol 9, 628–636 (2016). https://doi.org/10.1007/s11947-015-1657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1657-y

Keywords

Navigation