Skip to main content
Log in

Modeling Quality Changes in Brined Bream (Megalobrama amblycephala) Fillets During Storage: Comparison of the Arrhenius Model, BP, and RBF Neural Network

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

To evaluate and predict the freshness of brined bream (Megalobrama amblycephala) fillets stored at different temperatures, changes in quality [nucleotide degradation products (IMP, HxR, Hx), K value, sensory assessment (SA), total aerobic counts (TAC), thiobarbituric acid reactive substances (TBARS), and total volatile base nitrogen (TVB-N)] were investigated. The Arrhenius model, back-propagation neural network (BP-NN), and radial basis function neural network (RBF-NN) were established and compared. The RBF-NN predicted changes of SA, TAC, K value, TVB-N, TBARS, and HxR of brined fillets during storage with relative errors all within ±5 %, while the BP-NN values were all within ±10 % (except for the values at day 2 for K value, day 2 and day 4 for HxR). For the Arrhenius model, the relative errors of TVB-N were all within ±10 %, and those of SA, TAC, K value, TBARS, and HxR ranged from 0.58 to 44.37 %. Thus, RBF-NN is a promising method for predicting the changes in the quality of bream during storage at 270–282 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alak, G., Hisar, S. A., Hisar, O., & Genççelep, H. (2010). Biogenic amines formation in Atlantic bonito (Sarda sarda) fillets packaged with modified atmosphere and vacuum, wrapped in chitosan and cling film at 4 °C. European Food Research and Technology, 232(1), 23–28.

    Article  Google Scholar 

  • Alasalvar, C., Taylor, K., Öksüz, A., Shahidi, F., & Alexis, M. (2002). Comparison of freshness quality of cultured and wild sea bass (Dicentrarchus labrax). Journal of Food Science, 67(9), 3220–3226.

    Article  CAS  Google Scholar 

  • Bao, Y., Zhou, Z., Lu, H., Luo, Y., & Shen, H. (2013). Modelling quality changes in Songpu mirror carp (Cyprinus carpio) fillets stored at chilled temperatures: comparison between Arrhenius model and log-logistic model. International Journal of Food Science & Technology, 48(2), 387–393.

    Article  CAS  Google Scholar 

  • Boekel, M. (1996). Statistical aspects of kinetic modeling for food science problems. Journal of Food Science, 61(3), 477–486.

    Article  Google Scholar 

  • Corradini, M. G., & Peleg, M. (2006). Prediction of vitamins loss during non-isothermal heat processes and storage with non-linear kinetic models. Trends in Food Science & Technology., 17(1), 24–34.

    Article  CAS  Google Scholar 

  • Corradini, M. G., & Peleg, M. (2007). Shelf-life estimation from accelerated storage data. Trends in Food Science & Technology., 18(1), 37–47.

    Article  CAS  Google Scholar 

  • Ehira, S. (1976). A biochemical study on the freshness of fish. Bulletin of Tokai Regional Fisheries Research Laboratory, 88, 130–132.

    Google Scholar 

  • Erikson, U., Beyer, A., & Sigholt, T. (1997). Muscle high-energy phosphates and stress affect K-values during ice storage of Atlantic salmon (Salmo salar). Journal of Food Science, 62(1), 43–47.

    Article  CAS  Google Scholar 

  • Erkan, N., & Özden, Ö. (2008). Quality assessment of whole and gutted sardines (Sardina pilchardus) stored in ice. International Journal of Food Science & Technology, 43(9), 1549–1559.

    Article  CAS  Google Scholar 

  • Eskandari, S., Hosseini, H., Gholamzadeh, M., Mousavi, K. A., & Hosseini, E. (2015). The effects of black cumin, black caraway extracts and their combination on shelf life extension of silver carp (Hypophthalmichthys molitrix) during refrigerated storage. Journal of Food Safety., 35(2), 154–160.

    Article  CAS  Google Scholar 

  • Fan, H., Luo, Y., Yin, X., Bao, Y., & Feng, L. (2014). Biogenic amine and quality changes in lightly salt- and sugar-salted black carp (Mylopharyngodon piceus) fillets stored at 4 degrees C. Food Chemistry, 159, 20–28.

    Article  CAS  Google Scholar 

  • FAO (2014). FAO yearbook fishery and aquaculture statistics, 2012 (p. 30). Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Feldsine, P., Abeyta, C., & Andrews, W. H. (2002). AOAC international methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis. Journal of AOAC International, 85(5), 1187–1200.

    CAS  Google Scholar 

  • García, M. R., Vilas, C., Herrera, J. R., Bernárdez, M., Balsa-Canto, E., & Alonso, A. A. (2015). Quality and shelf-life prediction for retail fresh hake (Merluccius merluccius). International Journal of Food Microbiology., 208, 65–74.

    Article  Google Scholar 

  • Gosukonda, R., Mahapatra, A. K., Liu, X., & Kannan, G. (2015). Application of artificial neural network to predict Escherichia coli O157:H7 inactivation on beef surfaces. Food Control, 47, 606–614.

    Article  Google Scholar 

  • Hong, H., Regenstein, J. M., & Luo, Y. (2015). The importance of ATP-related compounds for the freshness and flavor of post-mortem fish and shellfish muscle: a review Critical Reviews in Food Science and Nutrition, doi:10.1080/10408398.2014.1001489.

  • ICMSF. (1986). International commission on microbiological specifications for foods. Sampling plans for fish and shellfish. Microorganisms in foods. Sampling for microbiological analysis: principles and scientific applications (2nd ed., Vol. 2., pp. 181–196). Toronto, Canada: University of Toronto Press.

  • Karim, N. U., Kennedy, T., Linton, M., Watson, S., Gault, N., & Patterson, M. F. (2011). Effect of high pressure processing on the quality of herring (Clupea harengus) and haddock (Melanogrammus aeglefinus) stored on ice. Food Control, 22(3–4), 476–484.

    Article  Google Scholar 

  • Kashaninejad, M., Dehghani, A. A., & Kashiri, M. (2009). Modeling of wheat soaking using two artificial neural networks (MLP and RBF). Journal of Food Engineering, 91(4), 602–607.

    Article  Google Scholar 

  • Kaymak-Ertekin, F., & Gedik, A. (2005). Kinetic modelling of quality deterioration in onions during drying and storage. Journal of Food Engineering, 68(4), 443–453.

    Article  Google Scholar 

  • Kerdpiboon, S., Kerr, W. L., & Devahastin, S. (2006). Neural network prediction of physical property changes of dried carrot as a function of fractal dimension and moisture content. Food Research International, 39(10), 1110–1118.

    Article  Google Scholar 

  • Liu, X., Jiang, Y., Shen, S., Luo, Y., & Gao, L. (2015). Comparison of Arrhenius model and artificial neuronal network for the quality prediction of rainbow trout (Oncorhynchus mykiss) fillets during storage at different temperatures. LWT - Food Science and Technology, 60(1), 142–147.

    Article  CAS  Google Scholar 

  • Lu, H., Luo, Y., Zhou, Z., Bao, Y., & Feng, L. (2014). The quality changes of songpu mirror carp (Cyprinus carpio) during partial freezing and chilled storage. Journal of Food Processing and Preservation., 38(3), 948–954.

    Article  CAS  Google Scholar 

  • Marini, F. (2009). Artificial neural networks in foodstuff analyses: trends and perspectives a review. Analytica Chimica Acta, 635(2), 121–131.

    Article  CAS  Google Scholar 

  • Mbarki, R., Sadok, S., & Barkallah, I. (2009). Quality changes of the Mediterranean horse mackerel (Trachurus mediterraneus) during chilled storage: the effect of low-dose gamma irradiation. Radiation Physics and Chemistry, 78(4), 288–292.

    Article  CAS  Google Scholar 

  • Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1), 193–198.

    Article  CAS  Google Scholar 

  • Olafsdottir, G., Martinsdóttir, E., Oehlenschläger, J., Dalgaard, P., Jensen, B., Undeland, I., et al. (1997). Methods to evaluate fish freshness in research and industry. Trends in Food Science & Technology, 8(8), 258–265.

    Article  CAS  Google Scholar 

  • Özoğul, F., & Özoğul, Y. (2000). Comparision of methods used for determination of total volatile basic nitrogen (TVB-N) in rainbow trout (Oncorhynchus mykiss). Turkish Journal of Zoology, 24(1), 113–120.

    Google Scholar 

  • Panagou, E. Z., & Kodogiannis, V. S. (2009). Application of neural networks as a non-linear modelling technique in food mycology. Expert Systems with Applications, 36(1), 121–131.

    Article  Google Scholar 

  • Phimolsiripol, Y., Siripatrawan, U., & Cleland, D. J. (2011). Weight loss of frozen bread dough under isothermal and fluctuating temperature storage conditions. Journal of Food Engineering, 106(2), 134–143.

    Article  Google Scholar 

  • Ratkowsky, D., Olley, J., McMeekin, T., & Ball, A. (1982). Relationship between temperature and growth rate of bacterial cultures. Journal of Bacteriology, 149(1), 1–5.

    CAS  Google Scholar 

  • Ryder, J. M. (1985). Determination of adenosine triphosphate and its breakdown products in fish muscle by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 33(4), 678–680.

    Article  CAS  Google Scholar 

  • Saito, T., Arai, K. I., & Matsuyoshi, M. (1959). A new method for estimating the freshness of fish. Bulletin of the Japanese Society of Scientific Fisheries, 24(9), 749–750.

    Article  CAS  Google Scholar 

  • Shi, C., Cui, J., Yin, X., Luo, Y., & Zhou, Z. (2014). Grape seed and clove bud extracts as natural antioxidants in silver carp (Hypophthalmichthys molitrix) fillets during chilled storage: effect on lipid and protein oxidation. Food Control, 40, 134–139.

    Article  CAS  Google Scholar 

  • Serment-Moreno, V., Fuentes, C., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2015). Evaluation of high pressure processing kinetic models for microbial inactivation using standard statistical tools and information theory criteria, and the development of generic time-pressure functions for process design. Food and Bioprocess Technology, 8(6), 1244–1257.

    Article  CAS  Google Scholar 

  • Song, Y., Liu, L., Shen, H., You, J., & Luo, Y. (2011). Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, 22(3–4), 608–615.

    Article  CAS  Google Scholar 

  • Taoukis, P. S., Koutsoumanis, K., & Nychas, G. J. E. (1999). Use of time-temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. International Journal of Food Microbiology, 53(1), 21–31.

    Article  CAS  Google Scholar 

  • Thorarinsdottir, K. A., Arason, S., Geirsdottir, M., Bogason, S. G., & Kristbergsson, K. (2002). Changes in myofibrillar proteins during processing of salted cod (Gadus morhua) as determined by electrophoresis and differential scanning calorimetry. Food Chemistry, 77(3), 377–385.

    Article  CAS  Google Scholar 

  • Tsironi, T., Dermesonlouoglou, E., Giannakourou, M., & Taoukis, P. (2009a). Shelf life modelling of frozen shrimp at variable temperature conditions. LWT - Food Science and Technology, 42(2), 664–671.

    Article  CAS  Google Scholar 

  • Tsironi, T., Salapa, I., & Taoukis, P. (2009b). Shelf life modelling of osmotically treated chilled gilthead seabream fillets. Innovative Food Science and Emerging Technologies, 10(1), 23–31.

    Article  CAS  Google Scholar 

  • Tsironi, T. N., & Taoukis, P. S. (2010). Modeling microbial spoilage and quality of gilthead seabream fillets: combined effect of osmotic pretreatment, modified atmosphere packaging, and nisin on shelf life. Journal of Food Science, 75(4), M243–M251.

    Article  CAS  Google Scholar 

  • Wang, H., Liceaga-Gesualdo, A., & Li-Chan, E. (2003). Biochemical and physicochemical characteristics of muscle and natural actomyosin isolated from young Atlantic salmon (Salmo salar) fillets stored at 0 and 4 °C. Journal of Food Science, 68(3), 784–789.

    Article  CAS  Google Scholar 

  • Wu, H., Wang, Z., Luo, Y., Hong, H., & Shen, H. (2014). Quality changes and establishment of predictive models for bighead carp (Aristichthys nobilis) fillets during frozen storage. Food and Bioprocess Technology, 7(12), 3381–3389.

    Article  CAS  Google Scholar 

  • Yanar, Y., Çelik, M., & Akamca, E. (2006). Effects of brine concentration on shelf-life of hot-smoked tilapia (Oreochromis niloticus) stored at 4 °C. Food Chemistry, 97(2), 244–247.

    Article  CAS  Google Scholar 

  • Yao, L., Luo, Y., Sun, Y., & Shen, H. (2011). Establishment of kinetic models based on electrical conductivity and freshness indictors for the forecasting of crucian carp (Carassius carassius) freshness. Journal of Food Engineering, 107(2), 147–151.

    Article  Google Scholar 

  • Zhang, L., Li, X., Lu, W., Shen, H., & Luo, Y. (2011). Quality predictive models of grass carp (Ctenopharyngodon idellus) at different temperatures during storage. Food Control, 22(8), 1197–1202.

    Article  Google Scholar 

  • Zheng, H., Jiang, L., Lou, H., Hu, Y., Kong, X., & Lu, H. (2011). Application of artificial neural network (ANN) and partial least-squares regression (PLSR) to predict the changes of anthocyanins, ascorbic acid, total phenols, flavonoids, and antioxidant activity during storage of red bayberry juice based on fractal analysis and red, green, and blue (RGB) intensity values. Journal of Agricultural Food Chemistry, 59(2), 592–600.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (award nr 31471683) and the earmarked fund for China Agriculture Research System (CARS-46). I would like to thank Thomas A. Gavin, Professor Emeritus, Cornell University, for the help with editing the English in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkang Luo.

Appendices

Appendix A

BP-NN: one hidden layer, 11 hidden neurons.

Input layer:

\( {X}_1=\frac{\mathrm{Temperature}-276}{6} \) (270 K < Temperature < 282 K)

\( {X}_2=\frac{\mathrm{Time}-11.75}{11.25} \) (Time >0 day)

Hidden layer:

$$ {X}_{p\left(p=3,4\dots 13\right)}=\frac{1}{\left[1+ \exp \left[-\sum {w}_{kj}{X}_j+{w}_{j0}\right]\right]} $$
$$ {W}_{ji}=\left[\begin{array}{c}-3.31\\ {}9.92\end{array}\right.\ \begin{array}{c}3.78\\ {}9.40\end{array}\ \begin{array}{c}-6.58\\ {}8.01\end{array}\begin{array}{c}0.79\\ {}-6.52\end{array}\begin{array}{c}-2.40\\ {}-21.19\end{array}\ \begin{array}{c}9.75\\ {}-8.14\end{array}\begin{array}{c}-3.71\\ {}-4.86\end{array}\begin{array}{c}-9.34\\ {}\ 1.73\end{array}\begin{array}{c}-4.58\\ {}-7.61\end{array}\begin{array}{c}-2.24\\ {}-7.12\end{array}{\left.\begin{array}{c}-9.53\\ {}-5.37\end{array}\right]}^T $$
$$ {w}_{j0}={\left[\ 11.59-7.00\ 11.82-0.86-13.49\ 6.43-0.66-0.03\ 2.99-5.95-7.04\right]}^T $$

Output layer:

$$ {X}_{q\left(q=14,15,\dots 19\right)}=\sum {w}_{kj}{X}_j+{\mathrm{w}}_{k0} $$
$$ {w}_{kj}=\left[\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}0.81\\ {}-1.84\end{array}\\ {}-1.85\\ {}-2.05\end{array}\\ {}0.10\end{array}\\ {}1.65\end{array}\right.\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}0.67\\ {}0.95\end{array}\\ {}-0.27\\ {}0.07\end{array}\\ {}1.65\end{array}\\ {}2.03\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-1.87\\ {}2.41\end{array}\\ {}2.92\\ {}2.86\end{array}\\ {}0.26\end{array}\\ {}-0.88\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-1.00\\ {}0.86\end{array}\\ {}3.10\\ {}1.29\end{array}\\ {}-0.41\end{array}\\ {}-1.41\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}0.05\\ {}-0.41\end{array}\\ {}0.31\\ {}0.22\end{array}\\ {}-0.11\end{array}\\ {}-1.20\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}0.03\\ {}-0.09\end{array}\\ {}-2.27\\ {}-1.94\end{array}\\ {}-0.40\end{array}\\ {}4.56\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}2.92\\ {}-3.01\end{array}\\ {}-3.85\\ {}-3.56\end{array}\\ {}-0.60\end{array}\\ {}-0.18\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-1.22\\ {}1.36\end{array}\\ {}2.93\\ {}2.12\end{array}\\ {}0.30\end{array}\\ {}-1.60\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}1.33\\ {}-0.98\end{array}\\ {}-0.94\\ {}0.18\end{array}\\ {}0.58\end{array}\\ {}-3.42\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}2.54\\ {}-2.66\end{array}\\ {}-3.62\\ {}-3.60\end{array}\\ {}0.35\end{array}\\ {}0.97\end{array}{\left.\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}1.08\\ {}-1.06\end{array}\\ {}-2.65\\ {}-1.83\end{array}\\ {}-0.35\end{array}\\ {}1.60\end{array}\right]}^T $$
$$ {w}_{k0}={\left[-1.39\ 1.75\ 1.23\ 1.86-0.23\ 0.28\right]}^T $$
$$ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\triangle SA=13.50*\mathrm{X}14-14.50\ \\ {}\triangle TAC=2.35*\mathrm{X}15+2.52\ \end{array}\\ {}\triangle K\ value=36.61*\mathrm{X}16+38.98\\ {}\triangle TVB-\mathrm{N}=5.42*\mathrm{X}17+6.54\ \end{array}\\ {}\triangle \mathrm{TBARS}=1.36*\mathrm{X}18+1.55\ \end{array}\\ {}\triangle HxR=1.64*\mathrm{X}19+1.84\end{array} $$

Appendix B

RBF-NN: one hidden layer, 47 hidden neurons.

Input:

\( {X}_1=\frac{\mathrm{Temperature}-276}{6} \) (270 K < Temperature < 282 K)

\( {X}_2=\frac{\mathrm{Time}-11.75}{11.25} \) (Time >0 day)

Radial basis layer:

$$ {X}_{p\left(p=3,4\dots 49\right)}= \exp \left[-{\left[\sqrt{{\sum \left[{w}_{ji}-{x}_i\right]}^2}\times {w}_{j0}\right]}^2\right]= \exp \left[-{0.8326}^2\times {\left[\frac{\parallel {w}_{ji}-{x}_i\parallel }{1.67}\right]}^2\right] $$
$$ wji=\left[\ \begin{array}{c}-0.50\\ {}-0.91\end{array}\right.\ \begin{array}{c}1.00\\ {}-1.00\end{array}\ \begin{array}{c}1.00\\ {}-0.54\end{array}\ \begin{array}{c}0.00\\ {}-0.05\end{array}\ \begin{array}{c}0.50\\ {}-0.85\end{array}\ \begin{array}{c}-1.00\\ {}-0.48\end{array}\ \begin{array}{c}-1.00\\ {}1.00\end{array}\begin{array}{c}-0.50\\ {}-0.05\end{array}\ \begin{array}{c}-1.00\ \\ {}0.45\end{array}\ \begin{array}{c}0.00\\ {}-0.78\end{array}\ \begin{array}{c}1.00\\ {}-0.60\end{array} $$
$$ \begin{array}{c}-0.50\ \\ {}0.08\end{array}\ \begin{array}{c}-0.50\\ {}-0.66\end{array}\ \begin{array}{c}-1.00\\ {}-0.66\end{array}\begin{array}{c}\ 1.00\\ {}-0.97\end{array}\ \begin{array}{c}\ 0.50\\ {}-0.42\end{array}\ \begin{array}{c}\ 0.50\\ {}-0.97\end{array}\ \begin{array}{c}-1.00\\ {}\ 0.82\end{array}\ \begin{array}{c}-0.50\\ {}-0.17\end{array}\ \begin{array}{c}\ 0.00\\ {}-0.17\end{array}\ \begin{array}{c}\ 1.00\\ {}-0.66\end{array}\ \begin{array}{c}-0.50\\ {}-0.29\end{array}\ \begin{array}{c}\ 0.50\\ {}-0.48\end{array} $$
$$ \begin{array}{c}-1.00\\ {}\ 0.63\end{array}\ \begin{array}{c}1.00\\ {}-0.94\end{array}\ \begin{array}{c}0.50\\ {}-0.54\end{array}\ \begin{array}{c}1.00\\ {}-0.72\end{array}\ \begin{array}{c}0.00\\ {}-0.91\end{array}\begin{array}{c}\ 1.00\\ {}-0.78\end{array}\ \begin{array}{c}0.50\\ {}-0.60\end{array}\ \begin{array}{c}0.50\\ {}-0.91\end{array}\ \begin{array}{c}0.00\\ {}-0.66\end{array}\ \begin{array}{c}-0.50\\ {}-0.78\end{array}\ \begin{array}{c}-0.50\\ {}-0.54\end{array}\ \begin{array}{c}-1.00\\ {}-0.85\end{array} $$
$$ \begin{array}{c}\ 1.00\ \\ {}-0.91\end{array}\ \begin{array}{c}\ 1.00\\ {}-0.88\end{array}\ \begin{array}{c}\ 1.00\\ {}-0.85\end{array}\ \begin{array}{c}\ 0.50\\ {}-0.78\end{array}\ \begin{array}{c}-1.00\\ {}\ 0.26\end{array}\ \begin{array}{c}-1.00\\ {}-0.29\end{array}\ \begin{array}{c}\ 0.50\\ {}-0.66\end{array}\ \begin{array}{c}\ 0.00\\ {}-0.42\end{array}\ \begin{array}{c}-0.50\\ {}-0.42\end{array}\ \begin{array}{c}\ 0.00\\ {}-0.29\end{array}\ {\left.\begin{array}{c}-1.00\\ {}\ 0.08\end{array}\ \begin{array}{c}-1.00\\ {}-0.11\end{array}\right]}^T $$

Output layer:

$$ {X}_{q\left(q=50,51\dots 55\right)}=\sum {w}_{kj}{X}_j+{w}_{k0} $$
$$ {w}_{kj}=\left[\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-5.03\mathrm{E}+06\\ {}\ 1.74\mathrm{E}+07\end{array}\\ {}\ 1.28\mathrm{E}+06\\ {}\ 3.90\mathrm{E}+06\end{array}\\ {}\ 2.05\mathrm{E}+06\end{array}\\ {}\ 6.04\mathrm{E}+06\end{array}\right.\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 2.58\mathrm{E}+10\\ {}\ 4.31\mathrm{E}+10\end{array}\\ {}-1.95\mathrm{E}+10\\ {}\ 1.17\mathrm{E}+10\end{array}\\ {}-2.40\mathrm{E}+09\end{array}\\ {}-1.24\mathrm{E}+11\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 5.59\mathrm{E}+09\\ {}\ 1.01\mathrm{E}+10\end{array}\\ {}-4.35\mathrm{E}+09\\ {}\ 3.16\mathrm{E}+09\end{array}\\ {}-5.15\mathrm{E}+08\end{array}\\ {}-2.76\mathrm{E}+10\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 2.29\mathrm{E}+06\\ {}\ 4.52\mathrm{E}+06\end{array}\\ {}-1.64\mathrm{E}+06\\ {}\ 2.31\mathrm{E}+06\end{array}\\ {}-9.06\mathrm{E}+04\end{array}\\ {}-1.12\mathrm{E}+07\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-2.35\mathrm{E}+10\\ {}\ 2.07\mathrm{E}+10\end{array}\\ {}\ 1.18\mathrm{E}+10\\ {}-1.10\mathrm{E}+09\end{array}\\ {}\ 5.58\mathrm{E}+09\end{array}\\ {}\ 7.47\mathrm{E}+10\end{array} $$
$$ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-4.59\mathrm{E}+06\\ {}\ 1.88\mathrm{E}+07\end{array}\\ {}\ 1.06\mathrm{E}+06\\ {}\ 4.59\mathrm{E}+06\end{array}\\ {}\ 2.14\mathrm{E}+06\end{array}\\ {}\ 4.09\mathrm{E}+06\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-4.95\mathrm{E}+05\\ {}\ 2.09\mathrm{E}+06\end{array}\\ {}\ 1.14\mathrm{E}+05\\ {}\ 5.16\mathrm{E}+05\end{array}\\ {}\ 2.33\mathrm{E}+05\end{array}\\ {}\ 4.38\mathrm{E}+05\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 2.73\mathrm{E}+07\\ {}-1.02\mathrm{E}+08\end{array}\\ {}-6.22\mathrm{E}+06\\ {}-2.36\mathrm{E}+07\end{array}\\ {}-1.18\mathrm{E}+07\end{array}\\ {}-2.67\mathrm{E}+07\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 7.34\mathrm{E}+06\\ {}-3.16\mathrm{E}+07\end{array}\\ {}-1.60\mathrm{E}+06\\ {}-7.87\mathrm{E}+06\end{array}\\ {}-3.53\mathrm{E}+06\end{array}\\ {}-5.71\mathrm{E}+06\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-1.76\mathrm{E}+06\\ {}-9.63\mathrm{E}+06\end{array}\\ {}\ 1.69\mathrm{E}+06\\ {}-3.78\mathrm{E}+06\end{array}\\ {}-4.13\mathrm{E}+05\end{array}\\ {}\ 1.25\mathrm{E}+07\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-4.21\mathrm{E}+10\\ {}-7.48\mathrm{E}+10\end{array}\\ {}\ 3.26\mathrm{E}+10\\ {}-2.31\mathrm{E}+10\end{array}\\ {}\ 3.91\mathrm{E}+09\end{array}\\ {}\ 2.07\mathrm{E}+11\end{array} $$
$$ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-8.03\mathrm{E}+07\\ {}\ 2.87\mathrm{E}+08\end{array}\\ {}\ 1.93\mathrm{E}+07\\ {}\ 6.55\mathrm{E}+07\end{array}\\ {}\ 3.35\mathrm{E}+07\end{array}\\ {}\ 8.78\mathrm{E}+07\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 1.98\mathrm{E}+06\\ {}-8.01\mathrm{E}+06\end{array}\\ {}-4.71\mathrm{E}+05\\ {}-1.94\mathrm{E}+06\end{array}\\ {}-9.14\mathrm{E}+05\end{array}\\ {}-1.87\mathrm{E}+06\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-7.83\mathrm{E}+10\\ {}-1.31\mathrm{E}+11\end{array}\\ {}\ 5.93\mathrm{E}+10\\ {}-3.60\mathrm{E}+10\end{array}\\ {}\ 7.33\mathrm{E}+09\end{array}\\ {}\ 3.78\mathrm{E}+11\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-2.32\mathrm{E}+09\\ {}\ 1.04\mathrm{E}+09\end{array}\\ {}\ 1.24\mathrm{E}+09\\ {}-4.24\mathrm{E}+08\end{array}\\ {}\ 4.88\mathrm{E}+08\end{array}\\ {}\ 7.89\mathrm{E}+09\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-1.44\mathrm{E}+09\\ {}\ 1.48\mathrm{E}+09\end{array}\\ {}\ 7.06\mathrm{E}+08\\ {}-1.21\mathrm{E}+06\end{array}\\ {}\ 3.55\mathrm{E}+08\end{array}\\ {}\ 4.46\mathrm{E}+09\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 1.91\mathrm{E}+06\\ {}-8.13\mathrm{E}+06\end{array}\\ {}-4.32\mathrm{E}+05\\ {}-2.01\mathrm{E}+06\end{array}\\ {}-9.07\mathrm{E}+05\end{array}\\ {}-1.62\mathrm{E}+06\end{array} $$
$$ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-7.52\mathrm{E}+07\\ {}\ 2.87\mathrm{E}+08\end{array}\\ {}\ 1.64\mathrm{E}+07\\ {}\ 6.73\mathrm{E}+07\end{array}\\ {}\ 3.28\mathrm{E}+07\end{array}\\ {}\ 6.81\mathrm{E}+07\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-8.22\mathrm{E}+06\\ {}-1.62\mathrm{E}+07\end{array}\\ {}\ 5.85\mathrm{E}+06\\ {}-8.24\mathrm{E}+06\end{array}\\ {}\ 2.98\mathrm{E}+05\end{array}\\ {}\ 4.00\mathrm{E}+07\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 1.42\mathrm{E}+11\\ {}\ 2.49\mathrm{E}+11\end{array}\\ {}-1.09\mathrm{E}+11\\ {}\ 7.54\mathrm{E}+10\end{array}\\ {}-1.33\mathrm{E}+10\end{array}\\ {}-6.96\mathrm{E}+11\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 1.32\mathrm{E}+08\\ {}-5.04\mathrm{E}+08\end{array}\\ {}-2.89\mathrm{E}+07\\ {}-1.18\mathrm{E}+08\end{array}\\ {}\ 5.77\mathrm{E}+07\end{array}\\ {}-1.20\mathrm{E}+08\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 1.49\mathrm{E}+10\\ {}-7.47\mathrm{E}+09\end{array}\\ {}-7.92\mathrm{E}+09\\ {}\ 2.47\mathrm{E}+09\end{array}\\ {}-3.18\mathrm{E}+09\end{array}\\ {}-5.03\mathrm{E}+10\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-4.38\mathrm{E}+06\\ {}\ 1.88\mathrm{E}+07\end{array}\\ {}\ 9.72\mathrm{E}+05\\ {}\ 4.66\mathrm{E}+06\end{array}\\ {}\ 2.10\mathrm{E}+06\end{array}\\ {}\ 3.57\mathrm{E}+06\end{array} $$
$$ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}0.00\mathrm{E}+00\\ {}0.00\mathrm{E}+00\end{array}\\ {}0.00\mathrm{E}+00\\ {}0.00\mathrm{E}+00\end{array}\\ {}0.00\mathrm{E}+00\end{array}\\ {}0.00\mathrm{E}+00\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-4.07\mathrm{E}+10\\ {}\ 2.27\mathrm{E}+10\end{array}\\ {}\ 2.15\mathrm{E}+10\\ {}-6.02\mathrm{E}+09\end{array}\\ {}\ 8.83\mathrm{E}+09\end{array}\\ {}\ 1.36\mathrm{E}+11\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-2.81\mathrm{E}+11\\ {}-4.86\mathrm{E}+11\end{array}\\ {}\ 2.16\mathrm{E}+11\\ {}-1.45\mathrm{E}+11\end{array}\\ {}\ 2.64\mathrm{E}+10\end{array}\\ {}\ 1.37\mathrm{E}+12\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 2.65\mathrm{E}+05\\ {}\ 2.95\mathrm{E}+06\end{array}\\ {}-3.63\mathrm{E}+05\\ {}\ 1.06\mathrm{E}+06\end{array}\\ {}\ 1.73\mathrm{E}+05\end{array}\\ {}-2.84\mathrm{E}+06\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 3.58\mathrm{E}+11\\ {}\ 6.12\mathrm{E}+11\end{array}\\ {}-2.73\mathrm{E}+11\\ {}\ 1.79\mathrm{E}+11\end{array}\\ {}-3.36\mathrm{E}+10\end{array}\\ {}-1.74\mathrm{E}+12\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 5.90\mathrm{E}+10\\ {}-3.63\mathrm{E}+10\end{array}\\ {}-3.08\mathrm{E}+10\\ {}\ 7.61\mathrm{E}+09\end{array}\\ {}-1.30\mathrm{E}+10\end{array}\\ {}-1.95\mathrm{E}+11\end{array} $$
$$ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 9.15\mathrm{E}+09\\ {}-8.72\mathrm{E}+09\end{array}\\ {}-4.55\mathrm{E}+09\\ {}\ 2.22\mathrm{E}+08\end{array}\\ {}-2.21\mathrm{E}+09\end{array}\\ {}-2.87\mathrm{E}+10\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 3.14\mathrm{E}+06\\ {}\ 1.17\mathrm{E}+07\end{array}\\ {}-2.61\mathrm{E}+06\\ {}\ 4.94\mathrm{E}+06\end{array}\\ {}\ 3.26\mathrm{E}+05\end{array}\\ {}-1.88\mathrm{E}+07\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 2.91\mathrm{E}+07\\ {}-1.02\mathrm{E}+08\end{array}\\ {}-7.22\mathrm{E}+06\\ {}-2.31\mathrm{E}+07\end{array}\\ {}-1.20\mathrm{E}+07\end{array}\\ {}-3.36\mathrm{E}+07\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 1.38\mathrm{E}+08\\ {}-5.04\mathrm{E}+08\end{array}\\ {}-3.20\mathrm{E}+07\\ {}-1.16\mathrm{E}+08\end{array}\\ {}-5.84\mathrm{E}+07\end{array}\\ {}-1.41\mathrm{E}+08\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-4.96\mathrm{E}+05\\ {}\ 1.99\mathrm{E}+06\end{array}\\ {}\ 1.20\mathrm{E}+05\\ {}\ 4.82\mathrm{E}+05\end{array}\\ {}\ 2.27\mathrm{E}+05\end{array}\\ {}\ 4.85\mathrm{E}+05\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 1.74\mathrm{E}+11\\ {}\ 2.93\mathrm{E}+11\end{array}\\ {}-1.32\mathrm{E}+11\\ {}\ 8.22\mathrm{E}+10\end{array}\\ {}-1.63\mathrm{E}+10\end{array}\\ {}-8.41\mathrm{E}+11\end{array} $$
$$ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}0.00\mathrm{E}+00\\ {}0.00\mathrm{E}+00\end{array}\\ {}0.00\mathrm{E}+00\\ {}0.00\mathrm{E}+00\end{array}\\ {}0.00\mathrm{E}+00\end{array}\\ {}0.00\mathrm{E}+00\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-3.04\mathrm{E}+11\\ {}-5.15\mathrm{E}+11\end{array}\\ {}\ 2.31\mathrm{E}+11\\ {}-1.48\mathrm{E}+11\end{array}\\ {}\ 2.86\mathrm{E}+10\end{array}\\ {}\ 1.47\mathrm{E}+12\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 2.71\mathrm{E}+10\\ {}-2.19\mathrm{E}+10\end{array}\\ {}-1.37\mathrm{E}+10\\ {}\ 1.85\mathrm{E}+09\end{array}\\ {}-6.29\mathrm{E}+09\end{array}\\ {}-8.69\mathrm{E}+10\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-9.79\mathrm{E}+06\\ {}\ 4.25\mathrm{E}+07\end{array}\\ {}\ 2.08\mathrm{E}+06\\ {}\ 1.06\mathrm{E}+07\end{array}\\ {}\ 4.74\mathrm{E}+06\end{array}\\ {}\ 7.25\mathrm{E}+06\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 7.59\mathrm{E}+06\\ {}-3.18\mathrm{E}+07\end{array}\\ {}-1.70\mathrm{E}+06\\ {}-7.82\mathrm{E}+06\end{array}\\ {}-3.59\mathrm{E}+06\end{array}\\ {}-6.29\mathrm{E}+06\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-4.21\mathrm{E}+10\\ {}\ 2.85\mathrm{E}+10\end{array}\\ {}\ 2.18\mathrm{E}+10\\ {}-4.61\mathrm{E}+09\end{array}\\ {}\ 9.43\mathrm{E}+09\end{array}\\ {}\ 1.38\mathrm{E}+11\end{array} $$
$$ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-7.65\mathrm{E}+06\\ {}-1.81\mathrm{E}+07\end{array}\\ {}\ 5.62\mathrm{E}+06\\ {}-8.65\mathrm{E}+06\end{array}\\ {}\ 3.24\mathrm{E}+03\end{array}\\ {}\ 3.91\mathrm{E}+07\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-1.61\mathrm{E}+08\\ {}\ 6.04\mathrm{E}+08\end{array}\\ {}\ 3.61\mathrm{E}+07\\ {}\ 1.40\mathrm{E}+08\end{array}\\ {}\ 6.94\mathrm{E}+07\end{array}\\ {}\ 1.54\mathrm{E}+08\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 1.19\mathrm{E}+07\\ {}\ 2.51\mathrm{E}+07\end{array}\\ {}-8.55\mathrm{E}+06\\ {}\ 1.25\mathrm{E}+07\end{array}\\ {}-2.72\mathrm{E}+05\end{array}\\ {}-5.89\mathrm{E}+07\end{array}\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 1.08\mathrm{E}+07\\ {}-4.67\mathrm{E}+07\end{array}\\ {}-2.28\mathrm{E}+06\\ {}-1.16\mathrm{E}+07\end{array}\\ {}-5.22\mathrm{E}+06\end{array}\\ {}-7.92\mathrm{E}+06\end{array}\ \left.\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}-9.96\mathrm{E}+06\\ {}\ 4.26\mathrm{E}+07\end{array}\\ {}\ 2.15\mathrm{E}+06\\ {}\ 1.06\mathrm{E}+07\end{array}\\ {}\ 4.78\mathrm{E}+06\end{array}\\ {}\ 7.68\mathrm{E}+06\end{array}\right] $$
$$ {w}_{k0}=\left[\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\ 4.57\mathrm{E}+04\\ {}-1.89\mathrm{E}+05\end{array}\\ {}-1.10\mathrm{E}+04\\ {}-4.62\mathrm{E}+04\end{array}\\ {}-2.10\mathrm{E}+04\end{array}\\ {}-4.43\mathrm{E}+04\end{array}\right]\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\triangle SA=\mathrm{X}50\ \\ {}\triangle TAC=\mathrm{X}51\ \end{array}\\ {}\triangle K\ value=X52\ \\ {}\triangle TVB-\mathrm{N}=X53\ \end{array}\\ {}\triangle \mathrm{TBARS}=0.98*\mathrm{X}54+0.02\ \end{array}\\ {}\triangle HxR=1.01*\mathrm{X}55\end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Kong, C., Li, D. et al. Modeling Quality Changes in Brined Bream (Megalobrama amblycephala) Fillets During Storage: Comparison of the Arrhenius Model, BP, and RBF Neural Network. Food Bioprocess Technol 8, 2429–2443 (2015). https://doi.org/10.1007/s11947-015-1595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1595-8

Keywords

Navigation