Skip to main content
Log in

Nuclear Magnetic Resonance, Thermogravimetric and Differential Scanning Calorimetry for Monitoring Changes of Sponge Cakes During Storage at 20 °C and 65 % Relative Humidity

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This paper presents a study on sponge cakes produced at the pilot scale and monitored during ageing (i.e. 1, 3, 6, 9, 16 and 20 day(s)) by different analytical techniques: nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Results from NMR showed that the spin–lattice relaxation time (T 1), measured on the crumb part, decreased from day 1 to day 16 while the spin–spin relaxation time (T 2) increased throughout the whole storage time (i.e. 1 to 20 day(s)). Based on the analysis of the state of water, TGA allowed to establishing a kinetic profile of retrogradation degree of starch contained in sponge cakes. This approach evidenced that the evolution of the sponge cakes freshness and staling closely depends on the dynamic of the water in the crumb during ageing. These results were supported by DSC thermograms exhibiting a variation of three main endotherms detected in sponge cakes at −15, +5 and +45 °C throughout ageing. The enthalpy changes of these endotherms reflected the evolution of chemical and physical reactions occurring in the sponge cakes during storage. The analysis of the endotherm enthalpy change at 45 °C allowed to determine the time τ (i.e. τ ≈ 9 days) corresponding to the apparition of amylopectin crystallites that could be considered as a reference time to separate fresh sponge cakes from the aged ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Assifaoui, A., Champion, D., Chiotelli, E., & Verel, A. (2006). Characterization of water mobility in biscuit dough using a low-field 1H NMR technique. Carbohydrate Polymers, 64, 197–204.

    Article  CAS  Google Scholar 

  • Baik, M., & Chinachoti, P. (2000). Moisture redistribution and phase transitions during bread staling. Cereal Chemistry, 77, 484–488.

    Article  CAS  Google Scholar 

  • Botosoa, E. P., Chèné, C., & Karoui, R. (2013a). Monitoring changes in sponge cakes during aging by front face fluorescence spectroscopy and instrumental techniques. Journal of Agricultural and Food Chemistry, 61, 2686–2695.

    Article  Google Scholar 

  • Botosoa, E. P., Chèné, C., & Karoui, R. (2013b). Use of front face fluorescence for monitoring lipid oxidation during ageing of cakes. Food Chemistry, 141, 1130–1139.

    Article  CAS  Google Scholar 

  • Breaden, P. W., & Willhoft, M. A. (1971). Bread staling. III. Measurement of the redistribution of moisture in bread by gravimetry. Journal of the Science of Food and Agriculture, 22, 647–649.

    Article  Google Scholar 

  • Bullerman, L. B., & Bianchini, A. (2009). Food safety issues and the microbiology of cereals and cereal products. In N. Heredia, I. Wesley, & S. García (Eds.), Microbiologically safe foods (pp. 315–335). Hoboken: Wiley.

    Chapter  Google Scholar 

  • Champenois, Y., Colonna, P., Buléon, A., Della Valle, G., & Renault, A. (1995). Gélatinisation et rétrogradation de l'amidon dans le pain de mie. Sciences des Aliments, 15, 593–614.

    CAS  Google Scholar 

  • Chen, P. L., Long, Z., Ruan, R., & Labuza, T. P. (1997). Nuclear magnetic resonance studies of water mobility in bread during storage. Lebensmittel-Wissenschaft und-Technologie, 30, 178–183.

    Article  CAS  Google Scholar 

  • Curti, E., Bubici, S., Carinia, E., Baroni, S., & Vittadini, E. (2011). Water molecular dynamics during bread staling by nuclear magnetic resonance. LWT - Food Science and Technology, 44, 854–859.

    Article  CAS  Google Scholar 

  • Czuchajowska, Z., & Pomeranz, Y. (1989). Differential scanning calorimetry, water activity, and moisture contents in crumb center and near-crust zones of bread during storage. Cereal Chemistry, 66, 305–309.

    Google Scholar 

  • Eliasson, A. C. (1994). Interactions between starch and lipids studied by DSC. Thermochimica Acta, 246, 343–356.

    Article  CAS  Google Scholar 

  • Gray, J. A., & Bemiller, J. N. (2003). Bread staling: molecular basis and control. Comprehensive Reviews in Food Science and Food Safety, 2, 1–21.

    Article  CAS  Google Scholar 

  • Hoseney, R. C. (1984). Chemical changes in carbohydrates produced by thermal processing. Journal of Chemical Education, 61, 308.

    Article  CAS  Google Scholar 

  • Kim-Shin, M. S., Mari, F., Rao, P. A., Stengle, T. R., & Chinachoti, P. (1991). 17O nuclear magnetic resonance studies of water mobility during bread staling. Journal of Agricultural and Food Chemistry, 39, 1915–1920.

    Article  CAS  Google Scholar 

  • Le Bail, A., Agrane, S., & Queveau, D. (2012). Impact of the baking duration on bread staling kinetics. Food and Bioprocess Technology, 5, 2323–2330.

    Article  Google Scholar 

  • Le Botlan, D., & Desbois, P. (1995). Starch retrogradation study in presence of sucrose by low-resolution nuclear magnetic resonance. Cereal Chemistry, 72, 191–193.

    Google Scholar 

  • Le Grand, F., Cambert, M., & Mariette, F. (2007). NMR signal analysis to characterize solid, aqueous, and lipid phases in baked cakes. Journal of Agricultural and Food Chemistry, 55, 10947–10952.

    Article  Google Scholar 

  • Leung, H. K., Magnuson, J. A., & Bruinsma, B. L. (1983). Water binding of wheat flour doughs and breads as studied by deuteron relaxation. Journal of Food Science, 48, 95–99.

    Article  CAS  Google Scholar 

  • Luyts, A., Wilderjans, E., Van Haesendonck, I., Brijs, K., Courtin, C. M., & Delcour, J. A. (2013a). Relative importance of moisture migration and amylopectin retrogradation for pound cake crumb firming. Food Chemistry, 141, 3960–3966.

    Article  CAS  Google Scholar 

  • Luyts, A., Wilderjans, E., Waterschoot, J., Van Haesendonck, I., Brijs, K., Courtin, C. M., et al. (2013b). Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients. Food Chemistry, 139, 120–128.

    Article  CAS  Google Scholar 

  • Mariette, F. (2009). Investigations of food colloids by NMR and MRI. Current Opinion in Colloid & Interface Science, 14, 203–211.

    Article  CAS  Google Scholar 

  • Martin, M. L., & Hoseney, R. C. (1991). A mechanism of bread firming. II. Role of starch hydrolyzing enzymes. Cereal Chemistry, 68, 503–507.

    CAS  Google Scholar 

  • Martin, M. L., Zeleznak, K. J., & Hoseney, R. C. (1991). A mechanism of bread firming. I. Role of starch swelling. Cereal Chemistry, 68, 498–503.

    CAS  Google Scholar 

  • Miles, M. J., Morris, V. J., Orford, P. D., & Ring, S. G. (1985). The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Research, 135, 271–281.

    Article  CAS  Google Scholar 

  • Ottenhof, M.-A., & Farhat, I. A. (2004). The effect of gluten on the retrogradation of wheat starch. Journal of Cereal Science, 40, 269–274.

    Article  CAS  Google Scholar 

  • Piazza, L., & Masi, P. (1995). Moisture redistribution throughout the bread loaf during staling and its effect on mechanical properties. Cereal Chemistry, 72, 320–325.

    CAS  Google Scholar 

  • Ribotta, P. D., & Le Bail, A. (2007). Thermo-physical assessment of bread during staling. LWT - Food Science and Technology, 40, 879–884.

    Article  CAS  Google Scholar 

  • Roca, E., Broyart, B., Guillard, V., Guilbert, S., & Gontard, N. (2007). Controlling moisture transport in a cereal porous product by modification of structural or formulation parameters. Food Research International, 40, 461–469.

    Article  CAS  Google Scholar 

  • Roudaut, G., van Dusschoten, D., Van As, H., Hemminga, M. A., & Le Meste, M. (1998). Mobility of lipids in low moisture bread as studied by NMR. Journal of Cereal Science, 28, 147–155.

    Article  CAS  Google Scholar 

  • Ruan, R., Almaer, S., Huang, V. T., Perkins, P., Chen, P., & Fulcher, R. G. (1996). Relationship between firming and water mobility in starch-based food systems during storage. Cereal Chemistry, 73, 328–332.

    CAS  Google Scholar 

  • Schiraldi, A., Piazza, L., & Riva, M. (1996). Bread staling: a calorimetric approach. Cereal Chemistry, 73(1), 32–39.

    CAS  Google Scholar 

  • Slade, L., & Levine, H. (1991). Beyond water activity: recent advances based on an alternative approach to assessment of food quality and safety. CRC Critical Reviews in Food Science and Nutrition, 30, 115–362.

    Article  CAS  Google Scholar 

  • Stawski, D. (2008). New determination method of amylose content in potato starch. Food Chemistry, 110, 777–781.

    Article  CAS  Google Scholar 

  • Teo, C. H., & Seow, C. C. (1992). A pulsed NMR method for the study of starch retrogradation. Starch, 44, 288–292.

    Article  CAS  Google Scholar 

  • Teramoto, N., Motoyama, T., Yosomiya, R., & Shibata, M. (2003). Synthesis, thermal properties, and biodegradability of propyl-etherified starch. European Polymer Journal, 39, 255–261.

    Article  CAS  Google Scholar 

  • Tian, Y., Li, Y., Xua, X., & Jin, Z. (2011). Starch retrogradation studied by thermogravimetric analysis (TGA). Carbohydrate Polymers, 84, 1165–1168.

    Article  CAS  Google Scholar 

  • Tomassetti, M., Campanella, L., & Aureli, T. (1989). Thermogravimetric analysis of some spices and commercial food products. Comparison with other analytical methods for moisture content determination (part 3). Thermochimica Acta, 143, 15–26.

    Article  CAS  Google Scholar 

  • Van Nieuwenhuijzen, N. H., Tromp, R. H., Mitchell, J. R., Primo-Martín, C., Hamer, R. J., & Van Vliet, T. (2010). Relations between sensorial crispness and molecular mobility of model bread crust and its main components as measured by PTA, DSC and NMR. Food Research International, 43, 342–349.

    Article  Google Scholar 

  • Wilderjans, E., Luyts, A., Goesaert, H., Brijs, K., & Delcour, J. A. (2010). A model approach to starch and protein functionality in a pound cake system. Food Chemistry, 120, 44–51.

    Article  CAS  Google Scholar 

  • Wynne-Jones, S., & Blanshard, J. M. V. (1986). Hydration studies of wheat starch amylopectin, amylose gels and bread by proton magnetic resonance. Carbohydrate Polymers, 6, 289–293.

    Article  CAS  Google Scholar 

  • Ye, S., Qiu-hua, W., Xue-Chun, X., Wen-yong, J., Shu-Cai, G., & Hai-Feng, Z. (2011). Oxidation of cornstarch using oxygen as oxidant without catalyst. LWT - Food Science and Technology, 44, 139–144.

    Article  Google Scholar 

  • Zeleznak, K. J., & Hoseney, R. C. (1986). The role of water in the retrogradation of wheat starch gels and bread crumb. Cereal Chemistry, 63(5), 407–411.

    CAS  Google Scholar 

  • Zhiqiang, L., Xiao-Su, Y., & Yi, F. (1999). Effect of bound water on thermal behaviors of native starch, amylose and amylopectin. Starch, 51, 406–410.

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to L. Doran for her helpful technical support in DSC analysis and TGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romdhane Karoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botosoa, E.P., Chèné, C., Blecker, C. et al. Nuclear Magnetic Resonance, Thermogravimetric and Differential Scanning Calorimetry for Monitoring Changes of Sponge Cakes During Storage at 20 °C and 65 % Relative Humidity. Food Bioprocess Technol 8, 1020–1031 (2015). https://doi.org/10.1007/s11947-014-1467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1467-7

Keywords

Navigation