Skip to main content

Advertisement

Log in

Effects of High-Pressure Processing on the Cooking Loss and Gel Strength of Chicken Breast Actomyosin Containing Sodium Alginate

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effects of high-pressure processing (HPP) (0–400 MPa for 10 min) on the cooking loss (CL), gel strength, and thermal gelling mechanism of chicken breast actomyosin solution containing 0.5 % (w/v) sodium alginate (AS-SA) were investigated. The results showed that HPP could significantly increase (P < 0.05) the reactive sulfhydryl contents, surface hydrophobicity, and turbidity of the pressurized sample under 200–400 MPa and gradually decrease its thermal gelling ability with an elevating pressure from 100 to 400 MPa. The HPP under 300 MPa for 10 min could enhance the thermal stability of AS-SA and promote the formation of AS-SA gel structure with large pores and thick strands. Those resulted in the increased gel strength and the increased CL of pressurized AS-SA, which were relative to hydrophobic interaction and disulfide bonding. The information could offer certain theoretical foundation to apply HPP technology for developing meat-SA gels with various properties via combinational use of different HPP levels and SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahhmed, A. M., Nasu, T., Huy, D. Q., Tomisaka, Y., Kawahara, S., & Muguruma, M. (2009). Effect of microbial transglutaminase on the natural actomyosin cross-linking in chicken and beef. Meat Science, 82(2), 170–178.

    Article  CAS  Google Scholar 

  • Cao, Y., Xia, T., Zhou, G., & Xu, X. (2012). The mechanism of high pressure-induced gels of rabbit myosin. Innovative Food Science & Emerging Technologies, 16, 41–46.

    Article  CAS  Google Scholar 

  • Chan, J. T., Omana, D. A., & Betti, M. (2011). Application of high pressure processing to improve the functional properties of pale, soft, and exudative (PSE)-like turkey meat. Innovative Food Science & Emerging Technologies, 12(3), 216–225.

    Article  CAS  Google Scholar 

  • Chattong, U., Apichartsrangkoon, A., & Bell, A. E. (2007). Effects of hydrocolloid addition and high pressure processing on the rheological properties and microstructure of a commercial ostrich meat product “Yor” (Thai sausage). Meat Science, 76(3), 548–554.

    Article  CAS  Google Scholar 

  • Chen, C. G., Gerelt, B., Jiang, S. T., Nishiumi, T., & Suzuki, A. (2006). Effects of high pressure on pH, water-binding capacity and textural properties of pork muscle gels containing various levels of sodium alginate. Asian Australasian Journal of Animal Sciences, 19(11), 1658–1664.

    Article  CAS  Google Scholar 

  • Chen, H. H., Xu, S. Y., & Wang, Z. (2007). Interaction between flaxseed gum and meat protein. Journal of Food Engineering, 80(4), 1051–1059.

    Article  CAS  Google Scholar 

  • Chen, C. G., Wang, R., Sun, G. J., Fang, H. M., Ma, D. R., & Yi, S. L. (2010). Effects of high pressure level and holding time on properties of duck muscle gels containing 1 % curdlan. Innovative Food Science & Emerging Technologies, 11(4), 538–542.

  • Galazka, V., Smith, D., Ledward, D., & Dickinson, E. (1999). Complexes of bovine serum albumin with sulphated polysaccharides: effects of pH, ionic strength and high pressure treatment. Food Chemistry, 64(3), 303–310.

    Article  CAS  Google Scholar 

  • Gilleland, G., Lanier, T., & Hamann, D. (1997). Covalent bonding in pressure-induced fish protein gels. Journal of Food Science, 62(4), 713–733.

    Article  CAS  Google Scholar 

  • Hayakawa, T., Yoshida, Y., Yasui, M., Ito, T., Iwasaki, T., Wakamatsu, J., et al. (2012). Heat-induced gelation of myosin in a low ionic strength solution containing L-histidine. Meat Science, 90(1), 77–80.

    Article  CAS  Google Scholar 

  • Hermansson, A. M. (1979). Aggregation and denaturation involved in gel formation. In Pour-Ela (Ed.), Functionality and protein structure (pp. 81–103). Washington , DC: American Chemical Society.

    Chapter  Google Scholar 

  • Hong, G. P., & Chin, K. B. (2010). Evaluation of sodium alginate and glucono-δ-lactone levels on the cold-set gelation of porcine myofibrillar proteins at different salt concentrations. Meat Science, 85(2), 201–209.

    Article  CAS  Google Scholar 

  • Hopkins, D., & Thompson, J. (2001). The relationship between tenderness, proteolysis, muscle contraction and dissociation of actomyosin. Meat Science, 57(1), 1–12.

    Article  CAS  Google Scholar 

  • Hsu, K. C., Hwang, J. S., Yu, C. C., & Jao, C. L. (2007). Changes in conformation and in sulfhydryl groups of actomyosin of tilapia (Orechromis niloticus) on hydrostatic pressure treatment. Food Chemistry, 103(2), 560–564.

    Article  CAS  Google Scholar 

  • Hwang, J. S., Lai, K. M., & Hsu, K. C. (2007). Changes in textural and rheological properties of gels from tilapia muscle proteins induced by high pressure and setting. Food Chemistry, 104(2), 746–753.

    Article  CAS  Google Scholar 

  • Ikeuchi, Y., Tanji, H., Kim, K., & Suzuki, A. (1992a). Mechanism of heat-induced gelation of pressurized actomyosin: pressure-induced changes in actin and myosin in actomyosin. Journal of Agricultural and Food Chemistry, 40(10), 1756–1761.

    Article  CAS  Google Scholar 

  • Ikeuchi, Y., Tanji, H., Kim, K., & Suzuki, A. (1992b). Dynamic rheological measurements on heat-induced pressurized actomyosin gels. Journal of Agricultural and Food Chemistry, 40(10), 1751–1755.

    Article  CAS  Google Scholar 

  • Iwasaki, T., & Yamamoto, K. (2003). Changes in rabbit skeletal myosin and its subfragments under high hydrostatic pressure. International Journal of Biological Macromolecules, 33(4), 215–220.

    Article  CAS  Google Scholar 

  • Jiménez-Colmenero, F., Cofrades, S., Herrero, A. M., Fernández-Martín, F., Rodríguez-Salas, L., & Ruiz-Capillas, C. (2012). Konjac gel fat analogue for use in meat products: comparison with pork fats. Food Hydrocolloids, 26(1), 63–72.

    Article  Google Scholar 

  • Kim, Y. J., Nishiumi, T., Fujimura, S., Ogoshi, H., & Suzuki, A. (2013). Combined effects of high pressure and sodium hydrogen carbonate treatment on pork ham: improvement of texture and palatability. High Pressure Research, 33(2), 354–361.

    Article  CAS  Google Scholar 

  • Ko, W., Jao, C., & Hsu, K. (2003). Effect of hydrostatic pressure on molecular conformation of tilapia (Orechromis niloticus) myosin. Journal of Food Science, 68(4), 1192–1195.

    Article  CAS  Google Scholar 

  • Li, X. K., & Xia, W. S. (2010). Effects of chitosan on the gel properties of salt-soluble meat proteins from silver carp. Carbohydrate Polymers, 82(3), 958–964.

    Article  CAS  Google Scholar 

  • Liu, R., Zhao, S. M., Yang, H., Li, D. D., Xiong, S. B., & Xie, B. J. (2011). Comparative study on the stability of fish actomyosin and pork actomyosin. Meat Science, 88(2), 234–240.

    Article  CAS  Google Scholar 

  • Ma, F., Chen, C. G., Zheng, L., Zhou, C. L., Cai, K. Z., & Han, Z. (2013). Effect of high pressure processing on the gel properties of salt-soluble meat protein containing CaCl2 and κ-carrageenan. Meat Science, 95(1), 22–26.

    Article  CAS  Google Scholar 

  • Messens, W., Van Camp, J., & Huyghebaert, A. (1997). The use of high pressure to modify the functionality of food proteins. Trends in Food Science & Technology, 8(4), 107–112.

    Article  CAS  Google Scholar 

  • Montero, P., Hurtado, J., & Pérez-Mateos, M. (2000). Microstructural behaviour and gelling characteristics of myosystem protein gels interacting with hydrocolloids. Food Hydrocolloids, 14(5), 455–461.

    Article  CAS  Google Scholar 

  • Montero, P., Solas, T., & Pérez-Mateos, M. (2001). Pressure-induced gel properties of fish mince with ionic and non-ionic gums added. Food Hydrocolloids, 15(2), 185–194.

    Article  CAS  Google Scholar 

  • Ogawa, M., Nakamura, S., Horimoto, Y., An, H. J., Tsuchiya, T., & Nakai, S. (1999). Raman spectroscopic study of changes in fish actomyosin during setting. Journal of Agricultural and Food Chemistry, 47(8), 3309–3318.

    Article  CAS  Google Scholar 

  • Pérez-Mateos, M., & Montero, P. (2000). Contribution of hydrocolloids to gelling properties of blue whiting muscle. European Food Research and Technology, 210(6), 383–390.

    Article  Google Scholar 

  • Pérez-Mateos, M., Lourenço, H., Montero, P., & Borderias, A. (1997). Rheological and biochemical characteristics of high-pressure-and heat-induced gels from blue whiting (Micromesistius poutassou) muscle proteins. Journal of Agricultural and Food Chemistry, 45(1), 44–49.

    Article  Google Scholar 

  • Samejima, K., Ishioroshi, M., & Yasui, T. (1981). Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin. Journal of Food Science, 46(5), 1412–1418.

    Article  CAS  Google Scholar 

  • Sikes, A. L., Tobin, A. B., & Tume, R. K. (2009). Use of high pressure to reduce cook loss and improve texture of low-salt beef sausage batters. Innovative Food Science & Emerging Technologies, 10(4), 405–412.

    Article  CAS  Google Scholar 

  • Sun, X. D., & Arntfield, S. D. (2012). Molecular forces involved in heat-induced pea protein gelation: effects of various reagents on the rheological properties of salt-extracted pea protein gels. Food Hydrocolloids, 28(2), 325–332.

    Article  CAS  Google Scholar 

  • Sun, X. D., & Holley, R. A. (2011). Factors influencing gel formation by myofibrillar proteins in muscle foods. Comprehensive Reviews in Food Science and Food Safety, 10(1), 33–51.

    Article  CAS  Google Scholar 

  • Supavititpatana, T., & Apichartsrangkoon, A. (2007). Combination effects of ultra-high pressure and temperature on the physical and thermal properties of ostrich meat sausage (yor). Meat Science, 76(3), 555–560.

    Article  Google Scholar 

  • Tanaka, N., Ikeda, C., Kanaori, K., Hiraga, K., Konno, T., & Kunugi, S. (2000). Pressure effect on the conformational fluctuation of apomyoglobin in the native state. Biochemistry, 39(39), 12063–12068.

    Article  CAS  Google Scholar 

  • Ustunol, Z., Xiong, Y. L., Means, W. J., & Decker, E. A. (1992). Forces involved in mixed pork myofibrillar protein and calcium alginate gels. Journal of Agricultural and Food Chemistry, 40(4), 577–580.

    Article  CAS  Google Scholar 

  • Xiong, Y. L., & Blanchard, S. P. (1993). Viscoelastic properties of myofibrillar protein-polysaccharide composite gels. Journal of Food Science, 58(1), 164–167.

    Article  CAS  Google Scholar 

  • Yarnpakdee, S., Benjakul, S., Visessanguan, W., & Kijroongrojana, K. (2009). Thermal properties and heat-induced aggregation of natural actomyosin extracted from goatfish (Mulloidichthys martinicus) muscle as influenced by iced storage. Food Hydrocolloids, 23(7), 1779–1784.

    Article  CAS  Google Scholar 

  • Yongsawatdigul, J., & Park, J. (2003). Thermal denaturation and aggregation of threadfin bream actomyosin. Food Chemistry, 83(3), 409–416.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 31271893) and the poultry industry technology system of Anhui (No. 10). We thank the kind members of Laboratory of Animal Food Science in Niigata University (Japan) for their help during this experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei-jun Li or Cong-gui Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, Pj., Nishiumi, T. et al. Effects of High-Pressure Processing on the Cooking Loss and Gel Strength of Chicken Breast Actomyosin Containing Sodium Alginate. Food Bioprocess Technol 7, 3608–3617 (2014). https://doi.org/10.1007/s11947-014-1368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1368-9

Keywords

Navigation