Skip to main content
Log in

Study on Nonlinear Multivariate Methods Combined with the Visible Near-Infrared Spectroscopy (Vis/NIRS) Technique for Detecting the Protein Content of Cheese

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The protein content is an important parameter for the estimation of the quality of cheese products. Nonlinear multivariate methods including kernel partial least squares (KPLS), support vector machine (SVM) and back propagation artificial neural network (BP-ANN) combing with the visible and near-infrared spectroscopy (Vis/NIRS) techniques are introduced for predicting the protein content of cheese. Method of augmented partial residual plot (APaRP) is performed to diagnose the nonlinearity of the raw spectral data. Multiplicative signal correction (MSC), standard normal variate (SNV) with detrending, Savitzky-Golay second-derivative and direct orthogonal signal correction (DOSC) are used to preprocess the spectral data and compared. DOSC algorithm obtains the optimal prediction performance and was chosen as the preprocess method for the following prediction models. Multivariate models including PLS, KPLS, SVM and BP-ANN are trained on the preprocessed cheese data for predicting the protein content. The square of correlation coefficient (R 2), root mean squares error (RMSE) and ratio performance deviation (RPD) are used to evaluate the performance of models. DOSC-KPLS model obtains the highest scores of R 2 and RPD of 0.974 and 5.587, respectively, which indicates better prediction performance than other models. Therefore, DOSC-KPLS model combined with the Vis/NIRS technique is the most promising method for accurately detecting the protein content of cheese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adrian, B., Chang, Y. M., Yong, S., & Turner, T. (2013). Residual diagnostics for covariate effects in spatial point process models. Journal of Computational and Graphical Statistics, 22(4), 886–905.

    Article  Google Scholar 

  • Agelet, L. E., Ellis, D. D., Duvick, S., Goggi, A. S., Hurburgh, C. R., & Gardner, C. A. (2012). Feasibility of near infrared spectroscopy for analyzing corn kernel damage and viability of soybean and corn kernels. Journal of Cereal Science, 55, 160–165.

    Article  Google Scholar 

  • Akhlaghi, Y., & Kompany, M. (2005). Comparing radial basis function and feed-forward neural networks assisted by linear discriminant or principal component analysis for simultaneous spectrophotometric quantification of mercury and copper. Analytica Chimica Acta, 537, 331–338.

    Article  CAS  Google Scholar 

  • Bao, Y. D., Liu, F., Kong, W. W., Sun, D. W., He, Y., & Qiu, Z. J. (2013). Measurement of soluble solid contents and pH of white vinegars using vis/nir spectroscopy and least squares support vector machine. Food and Bioprocess Technology. doi:10.1007/s11947-013-1065-0.

    Google Scholar 

  • Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43, 772–777.

    Article  CAS  Google Scholar 

  • Belousov, A. I., Verzakov, S. A., & Frese, J. V. (2002). Applicational aspects of support vector machines. Journal of Chemometrics, 16, 482–489.

    Article  CAS  Google Scholar 

  • Cai, D. K., Neyer, A., Kuckuk, R., & Heise, H. M. (2010). Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. Journal of Molecular Structure, 976, 274–281.

    Article  CAS  Google Scholar 

  • Centner, V., de Noordb, O. E., & Massart, D. L. (1998). Detection of nonlinearity in multivariate calibration. Analytica Chimica Acta, 376, 153–168.

    Article  CAS  Google Scholar 

  • Centner, V., Verdu-Andres, J., Walczak, B., Jouan-Rimbaud, D., Despagne, F., Pasti, L., et al. (2000). Comparison of multivariate calibration techniques applied to experimental NIR data sets. Applied Spectroscopy, 54, 608–623.

    Article  CAS  Google Scholar 

  • Chen, Q. S., Zhao, J. W., Fang, C. H., & Wang, D. M. (2007). Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Spectrochimica Acta Part A, 66, 568–574.

    Article  Google Scholar 

  • Chen, Q. S., Guo, Z. M., Zhao, J. W., & Qin, O. Y. (2012). Comparisons of different regressions tools in measurement of antioxidant activity in green tea using near infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 60, 92–97.

    Article  CAS  Google Scholar 

  • Cristianini, N., & Taylor, J. S. (2000). An introduction to support vector machines and other kernel-based learning methods. UK: Cambridge University Press.

    Book  Google Scholar 

  • Delia, L., Nuria, A., Juan, G. S., Sergio, C., & Jose, B. (2013). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology, 6, 530–541.

    Article  Google Scholar 

  • Drapper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). New York: Wiley.

    Book  Google Scholar 

  • González-Martίn, I., González-Pérez, C., Hernández-Hierro, J. M., & González-Cabrera, J. M. (2008). Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in cheese. Talanta, 75, 351–355.

    Article  Google Scholar 

  • Guo, H., Liu, H. P., & Wang, L. (2006). Method for selecting parameters of least squares support vector machines and application. Journal of System Simulation, 18, 2033–2036.

    Google Scholar 

  • Karoui, R., Mouazen, A. M., Dufour, E., Pillonel, L., Schaller, E., De Baerdemaeker, J., et al. (2006). Chemical characterisation of European Emmental cheeses by near infrared spectroscopy using chemometric tools. International Dairy Journal, 16, 1211–1217.

    Article  CAS  Google Scholar 

  • Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage, 56(2), 455–475.

    Article  Google Scholar 

  • Kyungpil, K., Jong-Min, L., & In-Beum, L. (2005). A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems, 79, 22–30.

    Article  Google Scholar 

  • Labbé, N., Lee, S. H., Cho, H. W., Jeong, M. K., & André, N. (2008). Enhanced discrimination and calibration of biomass NIR spectral data using non-linear kernel methods. Bioresource Technology, 99, 8445–8452.

    Article  Google Scholar 

  • Liu, F., & He, Y. (2011). Discrimination of producing areas of auricularia auricula using visible/near infrared spectroscopy. Food and Bioprocess Technology, 4, 387–394.

    Article  Google Scholar 

  • Liu, F., Ye, X. Y., He, Y., & Wang, L. (2009). Application of visible/near infrared spectroscopy and chemometric calibrations for variety discrimination of instant milk teas. Journal of Food Engineering, 93, 127–133.

    Article  Google Scholar 

  • Luypaert, J., Heuerding, S., Jong, S. D., & Massart, D. L. (2002). An evaluation of direct orthogonal signal correction and other preprocessing methods for the classification of clinical study lots of a dermatological cream. Journal of Pharmaceutical and Biomedical Analysis, 30, 453–466.

    Article  CAS  Google Scholar 

  • Luypaert, J., Heuerding, S., Massart, D. L., & Vander Heyden, Y. (2007). Direct orthogonal signal correction as data pretreatment in the classification of clinical lots of creams from near infrared spectroscopy data. Analytica Chimica Acta, 582, 181–189.

    Article  CAS  Google Scholar 

  • Marzena, J. (2012). Application of the near-infrared spectroscopy in the pharmaceutical technology review article. Journal of Pharmaceutical and Biomedical Analysis, 66, 1–10.

    Google Scholar 

  • Miller, C. E. (1993). Sources of non-linearity in near infrared methods. NIR News, 4, 3–5.

    Article  Google Scholar 

  • Pizarro, C., Esteban-Dίez, I., Nistal, A. J., & Gonzalez-Sáiz, J. M. (2004). Influence of data pre-processing on the quantitative determination of the ash content and lipids in roasted coffee by near infrared spectroscopy. Analytica Chimica Acta, 509, 217–227.

    Article  CAS  Google Scholar 

  • Ribeiro, J. S., Augusto, F., Salva, T. J. G., Thomaziello, R. A., & Ferreira, M. M. C. (2009). Prediction of sensory properties of Brazilian Arabica roasted coffees by headspace solid phase microextraction-gas chromatography and partial least squares. Analytica Chimica Acta, 634, 172–179.

    Article  CAS  Google Scholar 

  • Rosipal, R. (2003). Kernel partial least squares for nonlinear regression and discrimination. Neural Network World, 13, 291–300.

    Google Scholar 

  • Rosipal, R., & Trejo, L. J. (2002). Kernel partial least squares regression in reproducing kernel hilbert space. Journal of Machine Learning Research, 2, 97–123.

    Google Scholar 

  • Simon, A. H., Stewart, F. G., Emmanuelle, C., & Christopher, T. E. (2013). The application of near-infrared reflectance spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. Food Chemistry, 136, 1557–1561.

    Article  Google Scholar 

  • Wang, W. J., Xu, Z. B., Lu, W. Z., & Zhang, X. Y. (2003). Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 55, 643–663.

    Article  Google Scholar 

  • Westerhuis, J. A., De Jong, S., & Smilde, A. K. (2001). Direct orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems, 56, 13–25.

    Article  CAS  Google Scholar 

  • Williams, P. C., & Sobering, D. C. (1993). Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy, 1, 25–32.

    Article  CAS  Google Scholar 

  • Wold, S., Antti, H., Lindgren, F., & öhman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 44, 175–185.

    Article  CAS  Google Scholar 

  • Woodcock, T., Fagan, C. C., O’Donnell, C. P., & Downey, G. (2008). Application of near and mid-infrared spectroscopy to determine cheese quality and authenticity. Food and Bioprocess Technology, 1, 117–129.

    Article  Google Scholar 

  • Yu, H. Y., Ying, B., Sun, T., Niu, X. Y., & Pan, X. X. (2007). Vintage year determination of bottled Chinese rice wine by VIS-NIR spectroscopy. Journal of Food Science, 72, 125–129.

    Article  Google Scholar 

  • Zhang, X., Yan, W. W., & Shao, H. H. (2008). Nonlinear multivariate quality estimation and prediction based on kernel partial least squares. Industrial & Engineering Chemistry Research, 47, 1120–1131.

    Article  CAS  Google Scholar 

  • Zhu, D. Z., Ji, B. P., Meng, C. Y., Shi, B. L., Tu, Z. H., & Qing, Z. S. (2008). The application of direct orthogonal signal correction for linear and non-linear multivariate calibration. Chemometrics and Intelligent Laboratory Systems, 90, 108–115.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Research Project of Higher Education of Jiangsu Province (Project No. 13KJB210006), Yancheng Institute of Technology breeding programs (Project No. XKY2013013) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, P., Chen, Y.M., He, Y. et al. Study on Nonlinear Multivariate Methods Combined with the Visible Near-Infrared Spectroscopy (Vis/NIRS) Technique for Detecting the Protein Content of Cheese. Food Bioprocess Technol 7, 3359–3369 (2014). https://doi.org/10.1007/s11947-014-1341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1341-7

Keywords

Navigation