Skip to main content

Advertisement

Log in

Parkinson Disease Dementia Management: an Update of Current Evidence and Future Directions

  • Dementia (J Pillai, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of Review

Parkinson disease dementia (PDD) is a multisystem disorder involving motor and nonmotor symptoms. Therapeutic options for management of cognitive and neuropsychiatric symptoms are relatively limited when compared to motor symptoms and have been an active area of study. We present the reader with a critical appraisal of evidence for approved and recently investigated therapies in the management of PDD, particularly highlighting recent findings in the management of cognitive impairment and psychotic symptoms.

Recent Findings.

Several disappointing trials for treatment of cognitive impairment in PDD leave rivastigmine as the only on-label treatment option; evidence supporting possible benefit of other therapies is reviewed. Several clinical trials are currently ongoing and studying novel treatment options for cognitive impairment in PDD. Pimavanserin has demonstrated efficacy for management of Parkinson disease psychosis. In a randomized clinical trial, integrated outpatient palliative care, in addition to standard care, improved multiple aspects of care in this patient population compared to standard care alone.

Summary

Rivastigmine, in particular transdermal administration due to greater tolerability, has the best evidence for treatment of cognitive impairment in PDD. Evidence for other acetylcholinesterase inhibitors and memantine is mostly supportive but less conclusive. Research is ongoing to overcome this unmet need for treatment options for cognitive symptoms of PDD. Psychotic symptoms of PDD are best managed with pimavanserin, which was recently investigated and approved in the USA. Caution is needed in prescribing practices, including treatment of motor symptoms, to avoid iatrogenic worsening of nonmotor symptoms.Palliative care should be integrated into the management of PDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318(1):121–34. https://doi.org/10.1007/s00441-004-0956-9.

    Article  PubMed  Google Scholar 

  2. Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29(13):1583–90. https://doi.org/10.1002/mds.25945.

    Article  PubMed  Google Scholar 

  3. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Constantine GM, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol. 2006;253(2):242–7. https://doi.org/10.1007/s00415-005-0971-0.

    Article  CAS  PubMed  Google Scholar 

  4. Braak H, Rüb U, Jansen Steur EN, Del Tredici K, de Vos RA. Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology. 2005;64(8):1404–10. https://doi.org/10.1212/01.Wnl.0000158422.41380.82.

    Article  CAS  PubMed  Google Scholar 

  5. Irwin DJ, White MT, Toledo JB, Xie SX, Robinson JL, Van Deerlin V, et al. Neuropathologic substrates of Parkinson disease dementia. Ann Neurol. 2012;72(4):587–98. https://doi.org/10.1002/ana.23659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siderowf A, Xie SX, Hurtig H, Weintraub D, Duda J, Chen-Plotkin A, et al. CSF amyloid beta 1–42 predicts cognitive decline in Parkinson disease. Neurology. 2010;75(12):1055–61. https://doi.org/10.1212/WNL.0b013e3181f39a78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alves G, Lange J, Blennow K, Zetterberg H, Andreasson U, Førland MG, et al. CSF Aβ42 predicts early-onset dementia in Parkinson disease. Neurology. 2014;82(20):1784–90. https://doi.org/10.1212/wnl.0000000000000425.

    Article  CAS  PubMed  Google Scholar 

  8. Leroi I, McDonald K, Pantula H, Harbishettar V. Cognitive impairment in Parkinson disease: impact on quality of life, disability, and caregiver burden. J Geriatr Psychiatry Neurol. 2012;25(4):208–14. https://doi.org/10.1177/0891988712464823.

    Article  PubMed  Google Scholar 

  9. Irwin DJ, Grossman M, Weintraub D, Hurtig HI, Duda JE, Xie SX, et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol. 2017;16(1):55–65. https://doi.org/10.1016/s1474-4422(16)30291-5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jellinger KA. Are there morphological differences between Parkinson’s disease-dementia and dementia with Lewy bodies? Parkinsonism Relat Disord. 2022;100:24–32. https://doi.org/10.1016/j.parkreldis.2022.05.024.

    Article  CAS  PubMed  Google Scholar 

  11. Friedman JH. Dementia with Lewy bodies and Parkinson disease dementia: it is the same disease! Parkinsonism Relat Disord. 2018;46(Suppl 1):S6–9. https://doi.org/10.1016/j.parkreldis.2017.07.013.

    Article  PubMed  Google Scholar 

  12. Jellinger KA. Dementia with Lewy bodies and Parkinson’s disease-dementia: current concepts and controversies. J Neural Transm (Vienna). 2018;125(4):615–50. https://doi.org/10.1007/s00702-017-1821-9.

    Article  CAS  PubMed  Google Scholar 

  13. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100. https://doi.org/10.1212/wnl.0000000000004058.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aarsland D, Zaccai J, Brayne C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord. 2005;20(10):1255–63. https://doi.org/10.1002/mds.20527.

    Article  PubMed  Google Scholar 

  15. Muslimovic D, Post B, Speelman JD, Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005;65(8):1239–45. https://doi.org/10.1212/01.wnl.0000180516.69442.95.

    Article  PubMed  Google Scholar 

  16. Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson disease. J Neurol Sci. 2010;289(1–2):18–22. https://doi.org/10.1016/j.jns.2009.08.034.

    Article  PubMed  Google Scholar 

  17. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22(12):1689–707. https://doi.org/10.1002/mds.21507.

  18. Guo Y, Liu FT, Hou XH, Li JQ, Cao XP, Tan L, et al. Predictors of cognitive impairment in Parkinson’s disease: a systematic review and meta-analysis of prospective cohort studies. J Neurol. 2021;268(8):2713–22. https://doi.org/10.1007/s00415-020-09757-9.

    Article  CAS  PubMed  Google Scholar 

  19. Guo Y, Xu W, Liu FT, Li JQ, Cao XP, Tan L, et al. Modifiable risk factors for cognitive impairment in Parkinson’s disease: a systematic review and meta-analysis of prospective cohort studies. Mov Disord. 2019;34(6):876–83. https://doi.org/10.1002/mds.27665.

    Article  PubMed  Google Scholar 

  20. Pigott K, Rick J, Xie SX, Hurtig H, Chen-Plotkin A, Duda JE, et al. Longitudinal study of normal cognition in Parkinson disease. Neurology. 2015;85(15):1276–82. https://doi.org/10.1212/wnl.0000000000002001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Phongpreecha T, Cholerton B, Mata IF, Zabetian CP, Poston KL, Aghaeepour N, et al. Multivariate prediction of dementia in Parkinson’s disease. NPJ Parkinsons Dis. 2020;6:20. https://doi.org/10.1038/s41531-020-00121-2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Parsons TD, Rogers SA, Braaten AJ, Woods SP, Tröster AI. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol. 2006;5(7):578–88. https://doi.org/10.1016/s1474-4422(06)70475-6.

    Article  PubMed  Google Scholar 

  23. Wyman-Chick KA. Verbal Fluency in Parkinson’s patients with and without bilateral deep brain stimulation of the subthalamic nucleus: a meta-analysis. J Int Neuropsychol Soc. 2016;22(4):478–85. https://doi.org/10.1017/s1355617716000035.

    Article  PubMed  Google Scholar 

  24. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362(22):2077–91. https://doi.org/10.1056/NEJMoa0907083.

    Article  CAS  PubMed  Google Scholar 

  25. Weaver FM, Follett KA, Stern M, Luo P, Harris CL, Hur K, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79(1):55–65. https://doi.org/10.1212/WNL.0b013e31825dcdc1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Massano J, Garrett C. Deep brain stimulation and cognitive decline in Parkinson’s disease: a clinical review. Front Neurol. 2012;3:66. https://doi.org/10.3389/fneur.2012.00066.

    Article  PubMed  PubMed Central  Google Scholar 

  27. • Bove F, Fraix V, Cavallieri F, Schmitt E, Lhommée E, Bichon A, et al. Dementia and subthalamic deep brain stimulation in Parkinson disease: a long-term overview. Neurology. 2020;95(4):e384–92. https://doi.org/10.1212/wnl.0000000000009822. An important analysis of a large cohort of subthalamic nucleus DBS PD patients indicating that dementia is not more common in this population than in general PD population.

  28. Aybek S, Gronchi-Perrin A, Berney A, Chiuvé SC, Villemure JG, Burkhard PR, et al. Long-term cognitive profile and incidence of dementia after STN-DBS in Parkinson’s disease. Mov Disord. 2007;22(7):974–81. https://doi.org/10.1002/mds.21478.

    Article  PubMed  Google Scholar 

  29. Odekerken VJ, Boel JA, Geurtsen GJ, Schmand BA, Dekker IP, de Haan RJ, et al. Neuropsychological outcome after deep brain stimulation for Parkinson disease. Neurology. 2015;84(13):1355–61. https://doi.org/10.1212/wnl.0000000000001419.

    Article  CAS  PubMed  Google Scholar 

  30. Boel JA, Odekerken VJ, Schmand BA, Geurtsen GJ, Cath DC, Figee M, et al. Cognitive and psychiatric outcome 3 years after globus pallidus pars interna or subthalamic nucleus deep brain stimulation for Parkinson’s disease. Parkinsonism Relat Disord. 2016;33:90–5. https://doi.org/10.1016/j.parkreldis.2016.09.018.

    Article  PubMed  Google Scholar 

  31. Combs HL, Folley BS, Berry DT, Segerstrom SC, Han DY, Anderson-Mooney AJ, et al. Cognition and depression following deep brain stimulation of the subthalamic nucleus and globus pallidus pars internus in Parkinson’s disease: a meta-analysis. Neuropsychol Rev. 2015;25(4):439–54. https://doi.org/10.1007/s11065-015-9302-0.

    Article  PubMed  Google Scholar 

  32. Hoops S, Nazem S, Siderowf AD, Duda JE, Xie SX, Stern MB, et al. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology. 2009;73(21):1738–45. https://doi.org/10.1212/WNL.0b013e3181c34b47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dalrymple-Alford JC, MacAskill MR, Nakas CT, Livingston L, Graham C, Crucian GP, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717–25. https://doi.org/10.1212/WNL.0b013e3181fc29c9.

    Article  CAS  PubMed  Google Scholar 

  34. Snyder A, Gruber-Baldini AL, Rainer von Coelln F, Savitt JM, Reich SG, Armstrong MJ, et al. Comparison of Mini-Mental State Examination and Montreal Cognitive Assessment ratings across levels of Parkinson’s disease severity. J Parkinsons Dis. 2021;11(4):1995–2003. https://doi.org/10.3233/jpd-212705.

  35. Goldman JG, Holden S, Ouyang B, Bernard B, Goetz CG, Stebbins GT. Diagnosing PD-MCI by MDS Task Force criteria: how many and which neuropsychological tests? Mov Disord. 2015;30(3):402–6. https://doi.org/10.1002/mds.26084.

    Article  PubMed  Google Scholar 

  36. Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56(9):1143–53. https://doi.org/10.1212/wnl.56.9.1143.

  37. Galvin JE, Pollack J, Morris JC. Clinical phenotype of Parkinson disease dementia. Neurology. 2006;67(9):1605–11. https://doi.org/10.1212/01.wnl.0000242630.52203.8f.

    Article  PubMed  Google Scholar 

  38. Reijnders JS, Ehrt U, Weber WE, Aarsland D, Leentjens AF. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord. 2008;23(2):183–9; quiz 313. https://doi.org/10.1002/mds.21803.

  39. Torbey E, Pachana NA, Dissanayaka NN. Depression rating scales in Parkinson’s disease: a critical review updating recent literature. J Affect Disord. 2015;184:216–24. https://doi.org/10.1016/j.jad.2015.05.059.

    Article  PubMed  Google Scholar 

  40. Ogura H, Kosasa T, Kuriya Y, Yamanishi Y. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find Exp Clin Pharmacol. 2000;22(8):609–13. https://doi.org/10.1358/mf.2000.22.8.701373.

    Article  CAS  PubMed  Google Scholar 

  41. Kandiah N, Pai MC, Senanarong V, Looi I, Ampil E, Park KW, et al. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin Interv Aging. 2017;12:697–707. https://doi.org/10.2147/cia.S129145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Emre M, Aarsland D, Albanese A, Byrne EJ, Deuschl G, De Deyn PP, et al. Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med. 2004;351(24):2509–18. https://doi.org/10.1056/NEJMoa041470.

    Article  CAS  PubMed  Google Scholar 

  43. Oertel W, Poewe W, Wolters E, De Deyn PP, Emre M, Kirsch C, et al. Effects of rivastigmine on tremor and other motor symptoms in patients with Parkinson’s disease dementia: a retrospective analysis of a double-blind trial and an open-label extension. Drug Saf. 2008;31(1):79–94. https://doi.org/10.2165/00002018-200831010-00007.

    Article  CAS  PubMed  Google Scholar 

  44. Emre M, Poewe W, De Deyn PP, Barone P, Kulisevsky J, Pourcher E, et al. Long-term safety of rivastigmine in Parkinson disease dementia: an open-label, randomized study. Clin Neuropharmacol. 2014;37(1):9–16. https://doi.org/10.1097/wnf.0000000000000010.

    Article  CAS  PubMed  Google Scholar 

  45. Dubois B, Tolosa E, Katzenschlager R, Emre M, Lees AJ, Schumann G, et al. Donepezil in Parkinson’s disease dementia: a randomized, double-blind efficacy and safety study. Mov Disord. 2012;27(10):1230–8. https://doi.org/10.1002/mds.25098.

    Article  CAS  PubMed  Google Scholar 

  46. Ravina B, Putt M, Siderowf A, Farrar JT, Gillespie M, Crawley A, et al. Donepezil for dementia in Parkinson’s disease: a randomised, double blind, placebo controlled, crossover study. J Neurol Neurosurg Psychiatry. 2005;76(7):934–9. https://doi.org/10.1136/jnnp.2004.050682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mori E, Ikeda M, Kosaka K, Investigators D-DS. Donepezil for dementia with Lewy bodies: a randomized, placebo-controlled trial. Ann Neurol. 2012;72(1):41–52. https://doi.org/10.1002/ana.23557.

  48. Litvinenko IV, Odinak MM, Mogil’naya VI, Emelin AY. Efficacy and safety of galantamine (reminyl) for dementia in patients with Parkinson’s disease (an open controlled trial). Neurosci Behav Physiol. 2008;38(9):937–45. https://doi.org/10.1007/s11055-008-9077-3.

    Article  CAS  PubMed  Google Scholar 

  49. •• Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov Disord. 2019;34(2):180–98. https://doi.org/10.1002/mds.27602. A landmark evidence-based review from major subspecialty society on treatments of nonmotor symptoms of PD.

  50. Emre M, Tsolaki M, Bonuccelli U, Destée A, Tolosa E, Kutzelnigg A, et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(10):969–77. https://doi.org/10.1016/s1474-4422(10)70194-0.

    Article  CAS  PubMed  Google Scholar 

  51. Leroi I, Overshott R, Byrne EJ, Daniel E, Burns A. Randomized controlled trial of memantine in dementia associated with Parkinson’s disease. Mov Disord. 2009;24(8):1217–21. https://doi.org/10.1002/mds.22495.

    Article  PubMed  Google Scholar 

  52. Aarsland D, Ballard C, Walker Z, Bostrom F, Alves G, Kossakowski K, et al. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2009;8(7):613–8. https://doi.org/10.1016/s1474-4422(09)70146-2.

    Article  CAS  PubMed  Google Scholar 

  53. Hanagasi HA, Gurvit H, Unsalan P, Horozoglu H, Tuncer N, Feyzioglu A, et al. The effects of rasagiline on cognitive deficits in Parkinson’s disease patients without dementia: a randomized, double-blind, placebo-controlled, multicenter study. Mov Disord. 2011;26(10):1851–8. https://doi.org/10.1002/mds.23738.

    Article  PubMed  Google Scholar 

  54. Weintraub D, Hauser RA, Elm JJ, Pagan F, Davis MD, Choudhry A, et al. Rasagiline for mild cognitive impairment in Parkinson’s disease: a placebo-controlled trial. Mov Disord. 2016;31(5):709–14. https://doi.org/10.1002/mds.26617.

    Article  CAS  PubMed  Google Scholar 

  55. Hinson VK, Delambo A, Elm J, Turner T. A randomized clinical trial of atomoxetine for mild cognitive impairment in Parkinson’s disease. Mov Disord Clin Pract. 2017;4(3):416–23. https://doi.org/10.1002/mdc3.12455.

    Article  PubMed  Google Scholar 

  56. Kehagia AA, Housden CR, Regenthal R, Barker RA, Müller U, Rowe J, et al. Targeting impulsivity in Parkinson’s disease using atomoxetine. Brain. 2014;137(Pt 7):1986–97. https://doi.org/10.1093/brain/awu117.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Marsh L, Biglan K, Gerstenhaber M, Williams JR. Atomoxetine for the treatment of executive dysfunction in Parkinson’s disease: a pilot open-label study. Mov Disord. 2009;24(2):277–82. https://doi.org/10.1002/mds.22307.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Trung J, Hanganu A, Jobert S, Degroot C, Mejia-Constain B, Kibreab M, et al. Transcranial magnetic stimulation improves cognition over time in Parkinson’s disease. Parkinsonism Relat Disord. 2019;66:3–8. https://doi.org/10.1016/j.parkreldis.2019.07.006.

    Article  PubMed  Google Scholar 

  59. Buard I, Sciacca DM, Martin CS, Rogers S, Sillau SH, Greher MR, et al. Transcranial magnetic stimulation does not improve mild cognitive impairment in Parkinson’s disease. Mov Disord. 2018;33(3):489–91. https://doi.org/10.1002/mds.27246.

    Article  PubMed  Google Scholar 

  60. Doruk D, Gray Z, Bravo GL, Pascual-Leone A, Fregni F. Effects of tDCS on executive function in Parkinson’s disease. Neurosci Lett. 2014;582:27–31. https://doi.org/10.1016/j.neulet.2014.08.043.

    Article  CAS  PubMed  Google Scholar 

  61. Lawrence BJ, Gasson N, Johnson AR, Booth L, Loftus AM. Cognitive training and transcranial direct current stimulation for mild cognitive impairment in Parkinson’s disease: a randomized controlled trial. Parkinsons Dis. 2018;2018:4318475. https://doi.org/10.1155/2018/4318475.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Manenti R, Cotelli MS, Cobelli C, Gobbi E, Brambilla M, Rusich D, et al. Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson disease: a randomized, placebo-controlled study. Brain Stimul. 2018;11(6):1251–62. https://doi.org/10.1016/j.brs.2018.07.046.

    Article  PubMed  Google Scholar 

  63. Biundo R, Weis L, Fiorenzato E, Gentile G, Giglio M, Schifano R, et al. Double-blind randomized trial of tDCS versus sham in Parkinson patients with mild cognitive impairment receiving cognitive training. Brain Stimul. 2015;8(6):1223–5. https://doi.org/10.1016/j.brs.2015.07.043.

    Article  PubMed  Google Scholar 

  64. Adenzato M, Manenti R, Enrici I, Gobbi E, Brambilla M, Alberici A, et al. Transcranial direct current stimulation enhances theory of mind in Parkinson’s disease patients with mild cognitive impairment: a randomized, double-blind, sham-controlled study. Transl Neurodegener. 2019;8:1. https://doi.org/10.1186/s40035-018-0141-9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Del Felice A, Castiglia L, Formaggio E, Cattelan M, Scarpa B, Manganotti P, et al. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: a randomized cross-over trial. Neuroimage Clin. 2019;22:101768. https://doi.org/10.1016/j.nicl.2019.101768.

  66. Mo JJ, Liu LY, Peng WB, Rao J, Liu Z, Cui LL. The effectiveness of creatine treatment for Parkinson’s disease: an updated meta-analysis of randomized controlled trials. BMC Neurol. 2017;17(1):105. https://doi.org/10.1186/s12883-017-0885-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Beal MF, Oakes D, Shoulson I, Henchcliffe C, Galpern WR, Haas R, et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol. 2014;71(5):543–52. https://doi.org/10.1001/jamaneurol.2014.131.

    Article  PubMed  Google Scholar 

  68. Li Z, Wang P, Yu Z, Cong Y, Sun H, Zhang J, et al. The effect of creatine and coenzyme q10 combination therapy on mild cognitive impairment in Parkinson’s disease. Eur Neurol. 2015;73(3–4):205–11. https://doi.org/10.1159/000377676.

    Article  CAS  PubMed  Google Scholar 

  69. Rein-Hedin E, Sjöberg F, Waters S, Sonesson C, Waters N, Huss F, et al. First-in-human study to assess the safety, tolerability, and pharmacokinetics of pirepemat, a cortical enhancer, in healthy volunteers. Clin Pharmacol Drug Dev. 2021;10(12):1485–94. https://doi.org/10.1002/cpdd.959.

    Article  CAS  PubMed  Google Scholar 

  70. Svenningsson P, Odin P, Dizdar N, Johansson A, Grigoriou S, Tsitsi P, et al. A phase 2a trial investigating the safety and tolerability of the novel cortical enhancer IRL752 in Parkinson’s disease dementia. Mov Disord. 2020;35(6):1046–54. https://doi.org/10.1002/mds.28020.

    Article  CAS  PubMed  Google Scholar 

  71. Fernandez HH. SYN120 (a dual 5-HT6/5-HT2A antagonist) study to evaluate safety, tolerability, and efficacy in Parkinson’s disease dementia (SYNAPSE): phase 2a study results (S4.005). International Congress of the International Parkinson and Movement Disorders Society. Hong Kong, China. 2018.

  72. Biglan K, Munsie L, Svensson KA, Ardayfio P, Pugh M, Sims J, et al. Safety and efficacy of mevidalen in Lewy body dementia: a phase 2, randomized, placebo-controlled trial. Mov Disord. 2022;37(3):513–24. https://doi.org/10.1002/mds.28879.

    Article  CAS  PubMed  Google Scholar 

  73. Anavex Life Sciences announces presentation of phase 2 clinical biomarker study from PDD study. Anavex Life Sciences Announces Presentation of Phase 2 Clinical Biomarker Data from ANAVEX®2–73-PDD-001 Parkinson’s Disease Dementia Study at AD/PD™ 2022 International Conference. Online2022.

  74. Rawner E. A randomized, double-blind, placebo-controlled trial assessing the safety and tolerability of GRF6021 in subjects with Parkinson’s disease and cognitive impairment. International Conference on Alzheimer's & Parkinson's Diseases. Barcelona, Spain2021.

  75. Camilleri M, Subramanian T, Pagan F, Isaacson S, Gil R, Hauser RA, et al. Oral ENT-01 targets enteric neurons to treat constipation in Parkinson disease : a randomized controlled trial. Ann Intern Med. 2022;175(12):1666–74. https://doi.org/10.7326/m22-1438.

    Article  PubMed  Google Scholar 

  76. Enterin meets study endpoints for the phase 2b (KARMET) study involving patients with Parkinson’s disease. Online2022.

  77. Hua X, Church K, Walker W, L’Hostis P, Viardot G, Danjou P, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the positive modulator of HGF/MET, fosgonimeton, in healthy volunteers and subjects with Alzheimer’s disease: randomized, placebo-controlled, double-blind, phase i clinical trial. J Alzheimers Dis. 2022;86(3):1399–413. https://doi.org/10.3233/jad-215511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Silveira CRA, MacKinley J, Coleman K, Li Z, Finger E, Bartha R, et al. Ambroxol as a novel disease-modifying treatment for Parkinson’s disease dementia: protocol for a single-centre, randomized, double-blind, placebo-controlled trial. BMC Neurol. 2019;19(1):20. https://doi.org/10.1186/s12883-019-1252-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mullin S, Smith L, Lee K, D’Souza G, Woodgate P, Elflein J, et al. Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations: a nonrandomized, noncontrolled trial. JAMA Neurol. 2020;77(4):427–34. https://doi.org/10.1001/jamaneurol.2019.4611.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lozano AM, Fosdick L, Chakravarty MM, Leoutsakos JM, Munro C, Oh E, et al. A phase ii study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis. 2016;54(2):777–87. https://doi.org/10.3233/jad-160017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartsch C, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry. 2015;20(3):353–60. https://doi.org/10.1038/mp.2014.32.

    Article  CAS  PubMed  Google Scholar 

  82. Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, et al. Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci. 1983;59(2):277–89. https://doi.org/10.1016/0022-510x(83)90045-x.

    Article  CAS  PubMed  Google Scholar 

  83. Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, et al. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev. 2013;37(10 Pt 2):2676–88. https://doi.org/10.1016/j.neubiorev.2013.09.003.

    Article  PubMed  Google Scholar 

  84. Kalmbach A, Hedrick T, Waters J. Selective optogenetic stimulation of cholinergic axons in neocortex. J Neurophysiol. 2012;107(7):2008–19. https://doi.org/10.1152/jn.00870.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Metherate R, Cox CL, Ashe JH. Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J Neurosci. 1992;12(12):4701–11. https://doi.org/10.1523/jneurosci.12-12-04701.1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci. 1999;22(6):273–80. https://doi.org/10.1016/s0166-2236(98)01361-7.

    Article  CAS  PubMed  Google Scholar 

  87. Rodriguez R, Kallenbach U, Singer W, Munk MH. Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J Neurosci. 2004;24(46):10369–78. https://doi.org/10.1523/jneurosci.1839-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gratwicke J, Zrinzo L, Kahan J, Peters A, Beigi M, Akram H, et al. Bilateral deep brain stimulation of the nucleus basalis of Meynert for Parkinson disease dementia: a randomized clinical trial. JAMA Neurol. 2018;75(2):169–78. https://doi.org/10.1001/jamaneurol.2017.3762.

    Article  PubMed  Google Scholar 

  89. Maltête D, Wallon D, Bourilhon J, Lefaucheur R, Danaila T, Thobois S, et al. Nucleus basalis of Meynert stimulation for Lewy body dementia: a phase I randomized clinical trial. Neurology. 2021;96(5):e684–97. https://doi.org/10.1212/wnl.0000000000011227.

    Article  PubMed  PubMed Central  Google Scholar 

  90. • Cappon D, Gratwicke J, Zrinzo L, Akram H, Hyam J, Hariz M, et al. Deep brain stimulation of the nucleus basalis of Meynert for Parkinson’s disease dementia: a 36 months follow up study. Mov Disord Clin Pract. 2022;9(6):765–74. https://doi.org/10.1002/mdc3.13510. A longer-term critical analysis of nucleus basalis of Meynert DBS in PDD addressing unanswered questions and future directions of this modality.

  91. Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008(2):CD005381. https://doi.org/10.1002/14651858.CD005381.pub2.

  92. Picelli A, Varalta V, Melotti C, Zatezalo V, Fonte C, Amato S, et al. Effects of treadmill training on cognitive and motor features of patients with mild to moderate Parkinson’s disease: a pilot, single-blind, randomized controlled trial. Funct Neurol. 2016;31(1):25–31. https://doi.org/10.11138/fneur/2016.31.1.025.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nadeau A, Pourcher E, Corbeil P. Effects of 24 wk of treadmill training on gait performance in Parkinson’s disease. Med Sci Sports Exerc. 2014;46(4):645–55. https://doi.org/10.1249/mss.0000000000000144.

    Article  PubMed  Google Scholar 

  94. Rios Romenets S, Anang J, Fereshtehnejad SM, Pelletier A, Postuma R. Tango for treatment of motor and non-motor manifestations in Parkinson’s disease: a randomized control study. Complement Ther Med. 2015;23(2):175–84. https://doi.org/10.1016/j.ctim.2015.01.015.

    Article  PubMed  Google Scholar 

  95. McKee KE, Hackney ME. The effects of adapted tango on spatial cognition and disease severity in Parkinson’s disease. J Mot Behav. 2013;45(6):519–29. https://doi.org/10.1080/00222895.2013.834288.

    Article  PubMed  Google Scholar 

  96. Duchesne C, Lungu O, Nadeau A, Robillard ME, Boré A, Bobeuf F, et al. Enhancing both motor and cognitive functioning in Parkinson’s disease: aerobic exercise as a rehabilitative intervention. Brain Cogn. 2015;99:68–77. https://doi.org/10.1016/j.bandc.2015.07.005.

    Article  CAS  PubMed  Google Scholar 

  97. Nocera JR, Amano S, Vallabhajosula S, Hass CJ. Tai chi exercise to improve non-motor symptoms of Parkinson’s disease. J Yoga Phys Ther. 2013;3. https://doi.org/10.4172/2157-7595.1000137.

  98. Pompeu JE, Mendes FA, Silva KG, Lobo AM, Oliveira TeP, Zomignani AP, et al. Effect of Nintendo Wii™-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: a randomised clinical trial. Physiotherapy. 2012;98(3):196–204. https://doi.org/10.1016/j.physio.2012.06.004.

  99. Cruise KE, Bucks RS, Loftus AM, Newton RU, Pegoraro R, Thomas MG. Exercise and Parkinson’s: benefits for cognition and quality of life. Acta Neurol Scand. 2011;123(1):13–9. https://doi.org/10.1111/j.1600-0404.2010.01338.x.

    Article  CAS  PubMed  Google Scholar 

  100. da Silva FC, Iop RDR, de Oliveira LC, Boll AM, de Alvarenga JGS, Gutierres Filho PJB, et al. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: a systematic review of randomized controlled trials of the last 10 years. PLoS ONE. 2018;13(2):e0193113. https://doi.org/10.1371/journal.pone.0193113.

  101. Murray DK, Sacheli MA, Eng JJ, Stoessl AJ. The effects of exercise on cognition in Parkinson’s disease: a systematic review. Transl Neurodegener. 2014;3(1):5. https://doi.org/10.1186/2047-9158-3-5.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Emig M, George T, Zhang JK, Soudagar-Turkey M. The Role of exercise in Parkinson’s disease. J Geriatr Psychiatry Neurol. 2021;34(4):321–30. https://doi.org/10.1177/08919887211018273.

    Article  PubMed  Google Scholar 

  103. • Alberts JL, Rosenfeldt AB. The universal prescription for Parkinson’s disease: exercise. J Parkinsons Dis. 2020;10(s1):S21–7. https://doi.org/10.3233/JPD-202100. A substantive review of the role of exercise in the treatment of PD.

  104. Lumosity to pay $2 million to settle FTC deceptive advertising charges for its “brain training” program. Company claimed program would sharpen performance in everyday life and protect against cognitive decline. Online2016.

  105. Petrella JR, Michael AM, Qian M, Nwosu A, Sneed J, Goldberg TE, et al. Impact of computerized cognitive training on default mode network connectivity in subjects at risk for Alzheimer’s disease: a 78-week randomized controlled trial. J Alzheimers Dis. 2022. https://doi.org/10.3233/jad-220946.

    Article  PubMed  Google Scholar 

  106. Melby-Lervag M, Hulme C. Is working memory training effective? A meta-analytic review Dev Psychol. 2013;49(2):270–91. https://doi.org/10.1037/a0028228.

    Article  PubMed  Google Scholar 

  107. Díez-Cirarda M, Ibarretxe-Bilbao N, Peña J, Ojeda N. Neurorehabilitation in Parkinson’s disease: a critical review of cognitive rehabilitation effects on cognition and brain. Neural Plast. 2018;2018:2651918. https://doi.org/10.1155/2018/2651918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yamada M, Komatsu J, Nakamura K, Sakai K, Samuraki-Yokohama M, Nakajima K, et al. Diagnostic criteria for dementia with Lewy bodies: updates and future directions. J Mov Disord. 2020;13(1):1–10. https://doi.org/10.14802/jmd.19052.

    Article  PubMed  Google Scholar 

  109. Forsaa EB, Larsen JP, Wentzel-Larsen T, Goetz CG, Stebbins GT, Aarsland D, et al. A 12-year population-based study of psychosis in Parkinson disease. Arch Neurol. 2010;67(8):996–1001. https://doi.org/10.1001/archneurol.2010.166.

    Article  PubMed  Google Scholar 

  110. • Weintraub D, Aarsland D, Chaudhuri KR, Dobkin RD, Leentjens AF, Rodriguez-Violante M, et al. The neuropsychiatry of Parkinson’s disease: advances and challenges. Lancet Neurol. 2022;21(1):89–102. https://doi.org/10.1016/s1474-4422(21)00330-6. A review by experts in the field on neuropsychiatric symptoms of Parkinson disease

  111. Aarsland D, Ballard C Fau - Larsen JP, Larsen Jp Fau - McKeith I, McKeith I. A comparative study of psychiatric symptoms in dementia with Lewy bodies and Parkinson’s disease with and without dementia. 0885–6230.

  112. Ravina B, Marder K, Fernandez HH, Friedman JH, McDonald W, Murphy D, et al. Diagnostic criteria for psychosis in Parkinson’s disease: report of an NINDS. NIMH work group Mov Disord. 2007;22(8):1061–8. https://doi.org/10.1002/mds.21382.

    Article  PubMed  Google Scholar 

  113. Collerton D, Taylor J-P. Advances in the treatment of visual hallucinations in neurodegenerative diseases. Future Neurol. 2013;8(4):433–44. https://doi.org/10.2217/fnl.13.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. • Friedman JH. Pharmacological interventions for psychosis in Parkinson’s disease patients. Expert Opin Pharmacother. 2018;19(5):499–505. https://doi.org/10.1080/14656566.2018.1445721. A review by an expert in the field on pharmacological interventions for PD psychosis.

  115. • Taylor JP, McKeith IG, Burn DJ, Boeve BF, Weintraub D, Bamford C, et al. New evidence on the management of Lewy body dementia. Lancet Neurol. 2020;19(2):157–69. https://doi.org/10.1016/s1474-4422(19)30153-x. A review by experts in the field on recent developments in DLB and PDD.

  116. Patel S, Garcia X, Mohammad ME, Yu XX, Vlastaris K, O’Donnell K, et al. Dopamine agonist withdrawal syndrome (DAWS) in a tertiary Parkinson disease treatment center. J Neurol Sci. 2017;379:308–11. https://doi.org/10.1016/j.jns.2017.06.022.

    Article  CAS  PubMed  Google Scholar 

  117. Dorsey ER, Rabbani A, Gallagher SA, Conti RM, Alexander GC. Impact of FDA black box advisory on antipsychotic medication use. Arch Intern Med. 2010;170(1):96–103. https://doi.org/10.1001/archinternmed.2009.456.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hacksell U, Burstein ES, McFarland K, Mills RG, Williams H. On the discovery and development of pimavanserin: a novel drug candidate for Parkinson’s psychosis. Neurochem Res. 2014;39(10):2008–17. https://doi.org/10.1007/s11064-014-1293-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nuplazid (pimavanserin) label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/207318lbl.pdf (2016). 22 Accessed Dec 2022.

  120. Cummings J, Isaacson S, Mills R, Williams H, Chi-Burris K, Corbett A, et al. Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet. 2014;383(9916):533–40. https://doi.org/10.1016/s0140-6736(13)62106-6.

    Article  CAS  PubMed  Google Scholar 

  121. Patel N, LeWitt P, Neikrug AB, Kesslak P, Coate B, Ancoli-Israel S. Nighttime sleep and daytime sleepiness improved with pimavanserin during treatment of Parkinson’s disease psychosis. Clin Neuropharmacol. 2018;41(6):210–5. https://doi.org/10.1097/WNF.0000000000000307.

    Article  CAS  PubMed  Google Scholar 

  122. Moreno GM, Gandhi R, Lessig SL, Wright B, Litvan I, Nahab FB. Mortality in patients with Parkinson disease psychosis receiving pimavanserin and quetiapine. Neurology. 2018;91(17):797–9. https://doi.org/10.1212/WNL.0000000000006396.

    Article  PubMed  Google Scholar 

  123. Brown JD, Cicali B, Henriksen C, Malaty I, Okun MS, Armstrong MJ. Comparative pharmacovigilance assessment of mortality with pimavanserin in Parkinson disease-related psychosis. J Manag Care Spec Pharm. 2021;27(6):785–90. https://doi.org/10.18553/jmcp.2021.27.6.785.

    Article  PubMed  Google Scholar 

  124. Hwang YJ, Alexander GC, An H, Moore TJ, Mehta HB. Risk of hospitalization and death associated with pimavanserin use in older adults with Parkinson disease. Neurology. 2021;97(13):e1266–75. https://doi.org/10.1212/WNL.0000000000012601.

    Article  CAS  PubMed  Google Scholar 

  125. Layton JB, Forns J, McQuay LJ, Danysh HE, Dempsey C, Anthony MS, et al. Mortality in patients with Parkinson’s disease-related psychosis treated with pimavanserin compared with other atypical antipsychotics: a cohort study. Drug Saf. 2023;46(2):195–208. https://doi.org/10.1007/s40264-022-01260-6.

    Article  PubMed  Google Scholar 

  126. Mosholder AD, Ma Y, Akhtar S, Podskalny GD, Feng Y, Lyu H, et al. Mortality among Parkinson’s Disease patients treated with pimavanserin or atypical antipsychotics: an observational study in Medicare beneficiaries. Am J Psychiatry. 2022;179(8):553–61. https://doi.org/10.1176/appi.ajp.21090876.

    Article  PubMed  Google Scholar 

  127. Pham Nguyen TP, Thibault D, Hamedani AG, Weintraub D, Willis AW. Atypical antipsychotic use and mortality risk in Parkinson disease. Parkinsonism Relat Disord. 2022;103:17–22. https://doi.org/10.1016/j.parkreldis.2022.08.013.

    Article  CAS  PubMed  Google Scholar 

  128. • Ballard CG, Kreitzman DL, Isaacson S, Liu IY, Norton JC, Demos G, et al. Long-term evaluation of open-label pimavanserin safety and tolerability in Parkinson’s disease psychosis. Parkinsonism Relat Disord. 2020;77:100–6. https://doi.org/10.1016/j.parkreldis.2020.06.026. Demonstrates long-term efficacy and safety of pimavanserin in Parkinson disease psychosis.

  129. Wei L, Wang Z, Huang Y, Farias S, Duffy A, Shahlaie K, et al. A retrospective study of pimavanserin in patients with Parkinson’s disease: a single-center experience.(2083). AAN Enter. 2021.

  130. Mahajan A, Bulica B, Ahmad A, Kaminski P, LeWitt P, Taylor D, et al. Pimavanserin use in a movement disorders clinic: a single-center experience. Neurol Sci. 2018;39(10):1767–71. https://doi.org/10.1007/s10072-018-3500-5.

    Article  PubMed  Google Scholar 

  131. Sellers J, Darby RR, Farooque A, Claassen DO. Pimavanserin for psychosis in Parkinson’s disease-related disorders: a retrospective chart review. Drugs Aging. 2019;36(7):647–53. https://doi.org/10.1007/s40266-019-00655-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Akbar U, Friedman JH. Long-term outcomes with pimavanserin for psychosis in clinical practice. Clin Park Relat Disord. 2022;6:100143. https://doi.org/10.1016/j.prdoa.2022.100143.

  133. Prohorov T, Klein C, Miniovitz A, Dobronevsky E, Rabey JM. The effect of quetiapine in psychotic Parkinsonian patients with and without dementia. an open-labeled study utilizing a structured interview. J Neurol. 2006;253(2):171–5. https://doi.org/10.1007/s00415-005-0943-4.

  134. Fernandez HH, Friedman JH, Jacques C, Rosenfeld M. Quetiapine for the treatment of drug-induced psychosis in Parkinson’s disease. Mov Disord. 1999;14(3):484–7. https://doi.org/10.1002/1531-8257(199905)14:3%3c484::aid-mds1016%3e3.0.co;2-b.

    Article  CAS  PubMed  Google Scholar 

  135. Merims D, Balas M, Peretz C, Shabtai H, Giladi N. Rater-blinded, prospective comparison: quetiapine versus clozapine for Parkinson’s disease psychosis. Clin Neuropharmacol. 2006;29(6):331–7. https://doi.org/10.1097/01.Wnf.0000236769.31279.19.

    Article  CAS  PubMed  Google Scholar 

  136. Ondo WG, Tintner R, Voung KD, Lai D, Ringholz G. Double-blind, placebo-controlled, unforced titration parallel trial of quetiapine for dopaminergic-induced hallucinations in Parkinson’s disease. Mov Disord. 2005;20(8):958–63. https://doi.org/10.1002/mds.20474.

    Article  PubMed  Google Scholar 

  137. Shotbolt P, Samuel M, Fox C, David AS. A randomized controlled trial of quetiapine for psychosis in Parkinson’s disease. Neuropsychiatr Dis Treat. 2009;5:327–32. https://doi.org/10.2147/ndt.s5335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rabey JM, Prokhorov T, Miniovitz A, Dobronevsky E, Klein C. Effect of quetiapine in psychotic Parkinson’s disease patients: a double-blind labeled study of 3 months’ duration. Mov Disord. 2007;22(3):313–8. https://doi.org/10.1002/mds.21116.

    Article  PubMed  Google Scholar 

  139. Fernandez HH, Okun MS, Rodriguez RL, Malaty IA, Romrell J, Sun A, et al. Quetiapine improves visual hallucinations in Parkinson disease but not through normalization of sleep architecture: results from a double-blind clinical-polysomnography study. Int J Neurosci. 2009;119(12):2196–205. https://doi.org/10.3109/00207450903222758.

    Article  CAS  PubMed  Google Scholar 

  140. Friedman JH. Quetiapine for Parkinson’s disease psychosis: evidence-based medicine versus expert belief: a case study. Mov Disord. 2018;33(7):1186–7. https://doi.org/10.1002/mds.27378.

    Article  PubMed  Google Scholar 

  141. Trosch RM, Friedman JH, Lannon MC, Pahwa R, Smith D, Seeberger LC, et al. Clozapine use in Parkinson’s disease: a retrospective analysis of a large multicentered clinical experience. Mov Disord. 1998;13(3):377–82. https://doi.org/10.1002/mds.870130302.

    Article  CAS  PubMed  Google Scholar 

  142. Clozapine REMS. 2022. https://www.newclozapinerems.com/home#. Accessed 22 Dec 2022.

  143. Group PS. Low-dose clozapine for the treatment of drug-induced psychosis in Parkinson’s disease. N Engl J Med. 1999;340(10):757–63. https://doi.org/10.1056/nejm199903113401003.

    Article  Google Scholar 

  144. Pollak P, Tison F, Rascol O, Destée A, Péré JJ, Senard JM, et al. Clozapine in drug induced psychosis in Parkinson’s disease: a randomised, placebo controlled study with open follow up. J Neurol Neurosurg Psychiatry. 2004;75(5):689–95. https://doi.org/10.1136/jnnp.2003.029868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Burn D, Emre M, McKeith I, De Deyn PP, Aarsland D, Hsu C, et al. Effects of rivastigmine in patients with and without visual hallucinations in dementia associated with Parkinson’s disease. Mov Disord. 2006;21(11):1899–907. https://doi.org/10.1002/mds.21077.

    Article  PubMed  Google Scholar 

  146. • van Mierlo TJM, Foncke EMJ, Post B, Schmand BA, Bloem BR, van Harten B, et al. Rivastigmine for minor visual hallucinations in Parkinson’s disease:a randomized controlled trial with 24 months follow-up. Brain Behav. 2021;11(8):e2257. https://doi.org/10.1002/brb3.2257. A multicenter randomized double-blind placebo-controlled trial failed to demonstrate efficacy of rivastigmine reducing visual hallucinations in PD.

  147. Sawada H, Oeda T, Kohsaka M, Umemura A, Tomita S, Park K, et al. Early use of donepezil against psychosis and cognitive decline in Parkinson’s disease: a randomised controlled trial for 2 years. J Neurol Neurosurg Psychiatry. 2018;89(12):1332–40. https://doi.org/10.1136/jnnp-2018-318107.

    Article  PubMed  Google Scholar 

  148. Aarsland D, Hutchinson M, Larsen JP. Cognitive, psychiatric and motor response to galantamine in Parkinson’s disease with dementia. Int J Geriatr Psychiatry. 2003;18(10):937–41. https://doi.org/10.1002/gps.949.

    Article  CAS  PubMed  Google Scholar 

  149. Edwards K, Royall D, Hershey L, Lichter D, Hake A, Farlow M, et al. Efficacy and safety of galantamine in patients with dementia with Lewy bodies: a 24-week open-label study. Dement Geriatr Cogn Disord. 2007;23(6):401–5. https://doi.org/10.1159/000101512.

    Article  CAS  PubMed  Google Scholar 

  150. Grace J, Amick MM, Friedman JH. A double-blind comparison of galantamine hydrobromide ER and placebo in Parkinson disease. J Neurol Neurosurg Psychiatry. 2009;80(1):18–23. https://doi.org/10.1136/jnnp.2008.144048.

    Article  CAS  PubMed  Google Scholar 

  151. Levin OS, Batukaeva LA, Smolentseva IG, Amosova NA. Efficacy and safety of memantine in Lewy body dementia. Neurosci Behav Physiol. 2009;39(6):597–604. https://doi.org/10.1007/s11055-009-9167-x.

    Article  CAS  PubMed  Google Scholar 

  152. Isaacson S, Goldstein M, Pahwa R, Singer C, Klos K, Zhang I, et al. Efficacy and safety of SEP-363856, a non–D2-receptor binding drug with antipsychotic activity, in patients with Parkinson’s disease psychosis (2102). American Academy of Neurology Annual Meeting. Held virtual. 2021.

  153. Kujawa K, Leurgans S, Raman R, Blasucci L, Goetz CG. Acute orthostatic hypotension when starting dopamine agonists in Parkinson’s disease. Arch Neurol. 2000;57(10):1461–3. https://doi.org/10.1001/archneur.57.10.1461.

    Article  CAS  PubMed  Google Scholar 

  154. Lang AE. Acute orthostatic hypotension when starting dopamine agonist therapy in Parkinson disease: the role of domperidone therapy. Arch Neurol. 2001;58(5):835. https://doi.org/10.1001/archneur.58.5.835.

    Article  CAS  PubMed  Google Scholar 

  155. Mehagnoul-Schipper DJ, Boerman RH, Hoefnagels WHL, Jansen RWMM. Effect of levodopa on orthostatic and postprandial hypotension in elderly parkinsonian patients. J Gerontol: Series A. 2001;56(12):M749–55. https://doi.org/10.1093/gerona/56.12.M749.

    Article  CAS  Google Scholar 

  156. Jost WH, Altmann C, Fiesel T, Becht B, Ringwald S, Hoppe T. Influence of levodopa on orthostatic hypotension in Parkinson’s disease. Neurol Neurochir Pol. 2020;54(2):200–3. https://doi.org/10.5603/PJNNS.a2020.0019.

    Article  PubMed  Google Scholar 

  157. •• Kluger BM, Miyasaki J, Katz M, Galifianakis N, Hall K, Pantilat S, et al. Comparison of integrated outpatient palliative care with standard care in patients with Parkinson disease and related disorders: a randomized clinical trial. JAMA Neurol. 2020;77(5):551–60. https://doi.org/10.1001/jamaneurol.2019.4992. A prospective randomized controlled trial demonstrating that outpatient palliative care improved multiple aspects of care when combined with standard care of PD and related disorders.

  158. Katz M. Telehealth increases access to palliative care for people with Parkinson’s disease and related disorders. Ann Palliat Med. 2020;9(Suppl 1):S75–9. https://doi.org/10.21037/apm.2019.11.12.

    Article  PubMed  Google Scholar 

  159. Moens K, Houttekier D, Van den Block L, Harding R, Morin L, Marchetti S, et al. Place of death of people living with Parkinson’s disease: a population-level study in 11 countries. BMC Palliat Care. 2015;14:28. https://doi.org/10.1186/s12904-015-0021-3.

    Article  PubMed  PubMed Central  Google Scholar 

  160. van Wamelen DJ, Grigoriou S, Chaudhuri KR, Odin P. Continuous drug delivery aiming continuous dopaminergic stimulation in Parkinson’s Disease. J Parkinsons Dis. 2018;8(s1):S65–72. https://doi.org/10.3233/JPD-181476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Phillips MD.

Ethics declarations

Conflict of Interest

Dr. Oliver Phillips has nothing to disclose. Debolina Ghosh has nothing to disclose. Dr. Hubert H. Fernandez reports grants from Parkinson’s Foundation, grants from Michael J. Fox Foundation, grants and personal fees from Cerevel, grants from Biogen, grants from Roche, grants and personal fees from Parkinson Study Group, personal fees from Amneal, personal fees from Neurocrine, personal fees from AbbVie, personal fees from Springer Publishing, and personal fees from Elsevier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillips, O., Ghosh, D. & Fernandez, H.H. Parkinson Disease Dementia Management: an Update of Current Evidence and Future Directions. Curr Treat Options Neurol 25, 93–119 (2023). https://doi.org/10.1007/s11940-023-00749-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-023-00749-4

Keywords

Navigation