Skip to main content

Advertisement

Log in

Approach to the Management of Sodium Disorders in the Neuro Critical Care Unit

  • Critical Care Neurology (H Hinson, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of Review

To present an overview of the current diagnostic and therapeutic approaches for patients with hyponatremia and hypernatremia in the neurocritical care unit (NCCU).

Recent Findings

Dysnatremias are associated with poor neurological outcomes and mortality in neurocritically ill patients. Volume status determination, although challenging, is critical in differentiating between the two most common etiologies of hyponatremia in the NCCU: SIADH and salt wasting. Central diabetes insipidus (CDI) is common in post trans-sphenoidal surgery patients and in severe brain injuries where it portends a poor prognosis.

Summary

Treatment of dysnatremia should take into account severity of symptoms, rapidity of onset, and presence and extent of underlying brain injury. Severe acute hyponatremia is an emergency that should be treated with intravenous hypertonic saline. Controlled speed of correction is crucial in preventing osmotic demyelination syndrome in the most vulnerable patients in patients with chronic hyponatremia. SIADH is the most common cause of hyponatremia in the NCCU and is usually treated with fluid restriction, vaptans, oral salt, urea, and occasionally saline and loop diuretics. Salt wasting is a common cause of hypovolemic hyponatremia in severe brain injuries and should be managed with fluid and salt repletion ± fludrocortisone. Hypernatremia is treated with hypotonic solutions after correcting volume status as needed with isotonic solution, with the addition of desmopressin or vasopressin in cases of CDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Funk G-C, Lindner G, Druml W, Metnitz B, Schwarz C, Bauer P, et al. Incidence and prognosis of dysnatremias present on ICU admission. Intensive Care Med. 2010;36(2):304–11. https://doi.org/10.1007/s00134-009-1692-0

    Article  PubMed  Google Scholar 

  2. Kirkman MA, Albert AF, Ibrahim A, Doberenz D. Hyponatremia and brain injury: historical and contemporary perspectives. Neurocrit Care. 2013;18(3):406–16. https://doi.org/10.1007/s12028-012-9805-y

    Article  PubMed  Google Scholar 

  3. Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. Am J Med. 2006;119(7 Suppl 1):S30–5. https://doi.org/10.1016/j.amjmed.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  4. •• Seay NW, Lehrich RW, Greenberg A. Diagnosis and management of disorders of body tonicity-hyponatremia and hypernatremia: core curriculum 2020. Am J Kidney Dis. 2020;75(2):272–286. https://doi.org/10.1053/j.ajkd.2019.07.014. Comprehensive review on the regulation of water and sodium homeostasis, diagnosis and treatment of dysnatremias.

  5. Castle-Kirszbaum M, Kyi M, Wright C, Goldschlager T, Danks RA, Parkin WG. Hyponatraemia and hypernatraemia: disorders of water balance in neurosurgery. Neurosurg Review. 2021;44(5):2433–58. https://doi.org/10.1007/s10143-020-01450-9

    Article  Google Scholar 

  6. DeVita M, Gardenswartz M, Konecky A, Zabetakis P. Incidence and etiology of hyponatremia in an intensive care unit. Clin Nephrol. 1990;34(4):163–6.

    CAS  PubMed  Google Scholar 

  7. Upadhyay A, Jaber BL, Madias NE. Epidemiology of hyponatremia. Semin Nephrol. 2009;29(3):227–38. https://doi.org/10.1016/j.semnephrol.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  8. Sterns RH, Silver SM. Cerebral salt wasting versus SIADH: what difference? J Am Soc Nephrol. 2008;19(2):194–6. https://doi.org/10.1681/ASN.2007101118

    Article  PubMed  Google Scholar 

  9. Sherlock M, O’Sullivan E, Agha A, Behan LA, Owens D, Finucane F, et al. Incidence and pathophysiology of severe hyponatraemia in neurosurgical patients. Postgrad Med J. 2009;85(1002):171–5. https://doi.org/10.1136/pgmj.2008.072819

    Article  CAS  PubMed  Google Scholar 

  10. Zador Z, Stiver S, Wang V, Manley GT. Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol. 2009;190:159–70. https://doi.org/10.1007/978-3-540-79885-9_7

    Article  CAS  Google Scholar 

  11. Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007;22(6):778–84. https://doi.org/10.1007/s00467-006-0411-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pasantes-Morales H, Franco R, Ordaz B, Ochoa LD. Mechanisms counteracting swelling in brain cells during hyponatremia. Arch Med Res. 2002;33(3):237–44. https://doi.org/10.1016/s0188-4409(02)00353-3

    Article  CAS  PubMed  Google Scholar 

  13. Fisher SK, Heacock AM, Keep RF, Foster DJ. Receptor regulation of osmolyte homeostasis in neural cells. J Physiol. 2010;588(Pt 18):3355–64. https://doi.org/10.1113/jphysiol.2010.190777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Melton JE, Patlak CS, Pettigrew KD, Cserr HF. Volume regulatory loss of Na, Cl, and K from rat brain during acute hyponatremia. Am J Physiol. 1987;252(4 Pt 2):F661–9. https://doi.org/10.1152/ajprenal.1987.252.4.F661

    Article  CAS  PubMed  Google Scholar 

  15. Lien YH, Shapiro JI, Chan L. Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J Clin Invest. 1991;88(1):303–309. https://doi.org/10.1172/JCI115292

  16. • Verbalis JG. The curious story of cerebral salt wasting: fact or fiction?. Clin J Am Soc Nephrol. 2020;15(11):1666–1668. https://doi.org/10.2215/CJN.00070120. Short article on the origin and hypotheses underlying the pathogenesis of salt wasting.

  17. Sherlock M, O’Sullivan E, Agha A, Behan LA, Rawluk D, Brennan P, et al. The incidence and pathophysiology of hyponatraemia after subarachnoid haemorrhage. Clin Endocrinol (Oxf). 2006;64(3):250–4. https://doi.org/10.1111/j.1365-2265.2006.02432.x

    Article  Google Scholar 

  18. Hannon MJ, Thompson CJ. Neurosurgical hyponatremia. J Clin Med. 2014;3(4):1084–104. https://doi.org/10.3390/jcm3041084

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hoffman H, Ziechmann R, Gould G, Chin LS. The impact of aneurysm location on incidence and etiology of hyponatremia following subarachnoid hemorrhage. World Neurosurg. 2018;110:e621–6. https://doi.org/10.1016/j.wneu.2017.11.058

    Article  PubMed  Google Scholar 

  20. Ridwan S, Zur B, Kurscheid J, et al. Hyponatremia after spontaneous aneurysmal subarachnoid hemorrhage-a prospective observational study. World Neurosurg. 2019;129:e538–44. https://doi.org/10.1016/j.wneu.2019.05.210

    Article  PubMed  Google Scholar 

  21. • Quinn L, Tian DH, Fitzgerald E, Flower O, Andersen C, Hammond N, et al. The association between hyponatraemia and long-term functional outcome in patients with aneurysmal subarachnoid haemorrhage: a single centre prospective cohort study. J Clin Neurosci. 2020;78:353–359. https://doi.org/10.1016/j.jocn.2020.06.003. Prospective single-center study refuting the observation that hyponatremia is associated with DCI, vasospasm and poor long-term functional outcome.

  22. • Escamilla-Ocañas CE, Venkatasubba Rao CP, Bershad E, Damani R. Temporal relationship between hyponatremia and development of cerebral vasospasm in aneurysmal subarachnoid hemorrhage patients: a retrospective observational study. J Stroke Cerebrovasc Dis. 2020;29(6): 104789. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104789. Retrospective single-center study of the temporal association of hyponatremia preceding vasospasm in aneurysmal subarachnoid hemorrhage.

    Article  PubMed  Google Scholar 

  23. Uozumi Y, Mizobe T, Miyamoto H, Ashida N, Katsube T, Tatsumi S, et al. Decreased serum sodium levels predict symptomatic vasospasm in patients with subarachnoid hemorrhage. J Clin Neurosci. 2017;46:118–23. https://doi.org/10.1016/j.jocn.2017.08.037

    Article  CAS  PubMed  Google Scholar 

  24. Chua MMJ, Enríquez-Marulanda A, Gomez-Paz S, Akamatsu Y, Salem MM, Maragkos GA, et al. Sodium variability and probability of vasospasm in patients with aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2022;31(1): 106186. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106186

    Article  PubMed  Google Scholar 

  25. Shum H-P, Tam CWY, Yan WW. Impact of dysnatremia and dyskalemia on prognosis in patients with aneurysmal subarachnoid hemorrhage: a retrospective study. Indian J Crit Care Med. 2019;23(12):562–7. https://doi.org/10.5005/jp-journals-10071-23292

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moro N, Katayama Y, Igarashi T, Mori T, Kawamata T, Kojima J. Hyponatremia in patients with traumatic brain injury: incidence, mechanism, and response to sodium supplementation or retention therapy with hydrocortisone. Surg Neurol. 2007;68(4):387–93. https://doi.org/10.1016/j.surneu.2006.11.052

    Article  PubMed  Google Scholar 

  27. Chendrasekhar A, Chow PT, Cohen D, Akella K, Vadali V, Bapatla A, et al. Cerebral salt wasting in traumatic brain injury is associated with increased morbidity and mortality. Neuropsychiatr Dis Treat. 2020;16:801–6. https://doi.org/10.2147/ndt.s233389

    Article  PubMed  PubMed Central  Google Scholar 

  28. •• Harrois A, Anstey JR, van der Jagt M, Taccone FS, Udy AA, Citerio G, et al. Variability in serum sodium concentration and prognostic significance in severe traumatic brain injury: a multicenter observational study. Neurocrit Care. 2020;34(3):899–907. https://doi.org/10.1007/s12028-020-01118-8. Multicenter prospective study demonstrating that daily sodium variability is an independent risk factor for 28-day mortality in severe TBI.

    Article  PubMed  Google Scholar 

  29. Huang W-Y, Weng W-C, Peng T-I, Chien Y-Y, Wu C-L, Lee M, et al. Association of hyponatremia in acute stroke stage with three-year mortality in patients with first-ever ischemic stroke. Cerebrovasc Dis. 2012;34(1):55–62. https://doi.org/10.1159/000338906

    Article  CAS  PubMed  Google Scholar 

  30. Kalita J, Singh RK, Misra UK. Cerebral salt wasting is the most common cause of hyponatremia in stroke. J Stroke Cerebrovasc Dis. 2017;26(5):1026–32. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.12.011

    Article  PubMed  Google Scholar 

  31. Rodrigues B, Staff I, Fortunato G, McCullough LD. Hyponatremia in the prognosis of acute ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23(5):850–4. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.011

    Article  PubMed  Google Scholar 

  32. Liamis G, Barkas F, Megapanou E, Christopoulou E, Makri A, Makaritsis K, et al. Hyponatremia in acute stroke patients: pathophysiology, clinical significance, and management options. Eur Neurol. 2019;82(1–3):32–40. https://doi.org/10.1159/000504475

    Article  CAS  PubMed  Google Scholar 

  33. Rabinstein AA, Wijdicks EFM. Hyponatremia in critically ill neurological patients. Neurologist. 2003;9(6):290–300. https://doi.org/10.1097/01.nrl.0000095258.07720.89

    Article  PubMed  Google Scholar 

  34. Maurer C, Wagner JY, Schmid RM, Saugel B. Assessment of volume status and fluid responsiveness in the emergency department: a systematic approach. Med Klin Intensivmed Notfmed. 2017;112(4):326–33. https://doi.org/10.1007/s00063-015-0124-x

    Article  CAS  PubMed  Google Scholar 

  35. Badgett RG, Lucey CR, Mulrow CD. Can the clinical examination diagnose left-sided heart failure in adults? JAMA. 1997;277(21):1712–9.

    Article  CAS  Google Scholar 

  36. Orso D, Paoli I, Piani T, Cilenti FL, Cristiani L, Guglielmo N. Accuracy of ultrasonographic measurements of inferior vena cava to determine fluid responsiveness: a systematic review and meta-analysis. J Intensive Care Med. 2018;35(4):354–63. https://doi.org/10.1177/0885066617752308

    Article  PubMed  Google Scholar 

  37. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35(1):64–8. https://doi.org/10.1097/01.ccm.0000249851.94101.4f

    Article  PubMed  Google Scholar 

  38. Michard F, Teboul J-L. Predicting fluid responsiveness in ICU patients. Chest. 2002;121(6):2000–8. https://doi.org/10.1378/chest.121.6.2000

    Article  PubMed  Google Scholar 

  39. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7. https://doi.org/10.1097/ccm.0b013e3181a590da

    Article  PubMed  Google Scholar 

  40. Maesaka J, Imbriano L, Mattana J, Gallagher D, Bade N, Sharif S. Differentiating SIADH from cerebral/renal salt wasting: failure of the volume approach and need for a new approach to hyponatremia. J Clin Med. 2014;3(4):1373–85. https://doi.org/10.3390/jcm3041373

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cui H, He G, Yang S, Lv Y, Jiang Z, Gang X, et al. Inappropriate antidiuretic hormone secretion and cerebral salt-wasting syndromes in neurological patients. Front Neurosci. 2019;13. https://doi.org/10.3389/fnins.2019.01170

  42. Verbalis JG, Goldsmith SR, Greenberg A, Korzelius C, Schrier RW, Sterns RH, et al. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med. 2013;126(10):S1–42. https://doi.org/10.1016/j.amjmed.2013.07.006

    Article  PubMed  Google Scholar 

  43. Koenig MA, Bryan M, Lewin JL, Mirski MA, Geocadin RG, Stevens RD. Reversal of transtentorial herniation with hypertonic saline. Neurology. 2008;70(13):1023–9. https://doi.org/10.1212/01.wnl.0000304042.05557.60

    Article  CAS  PubMed  Google Scholar 

  44. Bentsen G, Breivik H, Lundar T, Stubhaug A. Hypertonic saline (7.2%) in 6% hydroxyethyl starch reduces intracranial pressure and improves hemodynamics in a placebo-controlled study involving stable patients with subarachnoid hemorrhage. Crit Care Med. 2006;34(12):2912–7. https://doi.org/10.1097/01.ccm.0000245665.46789.7c

  45. Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intensive Care Med. 2014;40(3):320–31. https://doi.org/10.1007/s00134-014-3210-2

    Article  PubMed  Google Scholar 

  46. •• Faiver L, Hensler D, Rush SC, Kashlan O, Williamson CA, Rajajee V. Safety and efficacy of 23.4% sodium chloride administered via peripheral venous access for the treatment of cerebral herniation and intracranial pressure elevation. Neurocrit Care. 2021;35(3):845–52. https://doi.org/10.1007/s12028-021-01248-7. Single-center retrospective study demonstrating the safety and efficacy of peripheral intravenous administration of 23.4% NaCL in reducing ICP.

  47. Alenazi AO, Alhalimi ZM, Almatar MH, Alhajji TA. Safety of peripheral administration of 3% hypertonic saline in critically ill patients: a literature review. Crit Care Nurse. 2021;41(1):25–30. https://doi.org/10.4037/ccn2021400

    Article  PubMed  Google Scholar 

  48. Jones GM, Bode L, Riha H, Erdman MJ. Safety of continuous peripheral infusion of 3% sodium chloride solution in neurocritical care patients. Am J Crit Care. 2016;26(1):37–42. https://doi.org/10.4037/ajcc2017439

    Article  PubMed  Google Scholar 

  49. Sterns RH, Riggs JE, Schochet SS. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med. 1986;314(24):1535–42. https://doi.org/10.1056/nejm198606123142402

    Article  CAS  PubMed  Google Scholar 

  50. Sterns RH, Cappuccio JD, Silver SM, Cohen EP. Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. J Am Soc Nephrol. 1994;4(8):1522–30. https://doi.org/10.1681/asn.v481522

    Article  CAS  PubMed  Google Scholar 

  51. Karp BI, Laureno R. Central pontine and extrapontine myelinolysis after correction of hyponatremia. Neurologist. 2000;6(5):255–66. https://doi.org/10.1097/00127893-200006050-00002

    Article  Google Scholar 

  52. George JC, Zafar W, Bucaloiu ID, Chang AR. Risk factors and outcomes of rapid correction of severe hyponatremia. Clin J Am Soc Nephrol. 2018;13(7):984–92. https://doi.org/10.2215/cjn.13061117

    Article  PubMed  PubMed Central  Google Scholar 

  53. • Aegisdottir H, Cooray C, Wirdefeldt K, Piehl F, Sveinsson O. Incidence of osmotic demyelination syndrome in Sweden: a nationwide study. Acta Neurol Scand. 2019;140(5):342–349. https://doi.org/10.1111/ane.13150. Large Swedish registry study characterizing the incidence and epidemiology of ODS over a 14-year period of time.

  54. Sood L, Sterns RH, Hix JK, Silver SM, Chen L. Hypertonic saline and desmopressin: a simple strategy for safe correction of severe hyponatremia. Am J Kidney Dis. 2013;61(4):571–8. https://doi.org/10.1053/j.ajkd.2012.11.032

    Article  CAS  PubMed  Google Scholar 

  55. Perianayagam A, Sterns RH, Silver SM, Grieff M, Mayo R, Hix J, et al. DDAVP is effective in preventing and reversing inadvertent overcorrection of hyponatremia. Clin J Am Soc Nephrol. 2008;3(2):331–6. https://doi.org/10.2215/CJN.03190807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. • Garrahy A, Galloway I, Hannon AM, Dineen R, O’Kelly P, Tormey WP, et al. Fluid restriction therapy for chronic SIAD; Results of a prospective randomized controlled trial. J Clin Endocrinol Metab. 2020;105(12):e4360–9. https://doi.org/10.1210/clinem/dgaa619. Small randomized controlled trial of fluid restriction in patients with chronic asymptomatic SIADH for one month showing a modest rise in SNa by day 3 of therapy 3 mmol/L vs 1 mmol/L.

    Article  Google Scholar 

  57. Adrogué HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342(21):1581–9. https://doi.org/10.1056/nejm200005253422107

    Article  PubMed  Google Scholar 

  58. Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355(20):2099–112. https://doi.org/10.1056/nejmoa065181

    Article  CAS  PubMed  Google Scholar 

  59. Murphy T, Dhar R, Diringer M. Conivaptan bolus dosing for the correction of hyponatremia in the neurointensive care unit. Neurocrit Care. 2009;11(1):14–9. https://doi.org/10.1007/s12028-008-9179-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Galton C, Deem S, Yanez ND, Souter M, Chesnut R, Dagal A, et al. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care. 2011;14(3):354–60. https://doi.org/10.1007/s12028-011-9525-8

    Article  CAS  PubMed  Google Scholar 

  61. Madias NE. Effects of tolvaptan, an oral vasopressin V2 receptor antagonist, in hyponatremia. Am J Kidney Dis. 2007;50(2):184–7. PMID: 17660019 https://doi.org/10.1053/j.ajkd.2007.06.011, https://pubmed.ncbi.nlm.nih.gov/17660019/

  62. Kerns E, Patel S, Cohen DM. Hourly oral sodium chloride for the rapid and predictable treatment of hyponatremia. Clin Nephrol. 2014;82(6):397–401. https://doi.org/10.5414/CN108014

    Article  PubMed  Google Scholar 

  63. Spanuchart I, Watanabe H, Aldan T, Chow D, Ng RCK. Are salt tablets effective in the treatment of euvolemic hyponatremia?. South Med J. 2020;113(3):125–9. https://doi.org/10.14423/smj.0000000000001075

  64. Rondon-Berrios H, Tandukar S, Mor MK, Ray EC, Bender FH, Kleyman TR, et al. Urea for the treatment of hyponatremia. Clin J Am Soc Nephrol. 2018;13(11):1627–32. https://doi.org/10.2215/cjn.04020318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Decaux G, Brimioulle S, Genette F, Mockel J. Treatment of the syndrome of inappropriate secretion of antidiuretic hormone by urea. Am J Med. 1980;69(1):99–106. https://doi.org/10.1016/0002-9343(80)90506-9

    Article  CAS  PubMed  Google Scholar 

  66. Coussement J, Danguy C, Zouaoui-Boudjeltia K, Defrance P, Bankir L, Biston P, et al. Treatment of the syndrome of inappropriate secretion of antidiuretic hormone with urea in critically ill patients. Am J Nephrol. 2012;35(3):265–70. https://doi.org/10.1159/000336716

    Article  CAS  PubMed  Google Scholar 

  67. Soupart A, Coffernils M, Couturier B, Gankam-Kengne F, Decaux G. Efficacy and tolerance of urea compared with vaptans for long-term treatment of patients with SIADH. Clin J Am Soc Nephrol. 2012;7(5):742–7. https://doi.org/10.2215/CJN.06990711

    Article  CAS  PubMed  Google Scholar 

  68. Taplin CE, Cowell CT, Silink M, Ambler GR. Fludrocortisone therapy in cerebral salt wasting. Pediatrics. 2006;118(6):e1904–8. https://doi.org/10.1542/peds.2006-0702

    Article  PubMed  Google Scholar 

  69. Mistry AM, Mistry EA, Ganesh Kumar N, Froehler MT, Fusco MR, Chitale RV. Corticosteroids in the management of hyponatremia, hypovolemia, and vasospasm in subarachnoid hemorrhage: a meta-analysis. Cerebrovasc Dis. 2016;42(3–4):263–71. https://doi.org/10.1159/000446251

    Article  CAS  PubMed  Google Scholar 

  70. Hasan D, Lindsay KW, Wijdicks EF, Murray GD, Brouwers PJ, Bakker WH, et al. Effect of fludrocortisone acetate in patients with subarachnoid hemorrhage. Stroke. 1989;20(9):1156–61. https://doi.org/10.1161/01.str.20.9.1156

    Article  CAS  PubMed  Google Scholar 

  71. Feigin VL, Anderson N, Rinkel GJ, Algra A, van Gijn J, Bennett DA. Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage. Cochrane Database Syst Rev. 2005;(3):CD004583. https://doi.org/10.1002/14651858.CD004583.pub2

  72. Lindner G, Funk G-C. Hypernatremia in critically ill patients. J Crit Care. 2013;28(216):e11-216.e20. https://doi.org/10.1016/j.jcrc.2012.05.001

    Article  CAS  Google Scholar 

  73. Aiyagari V, Deibert E, Diringer MN. Hypernatremia in the neurologic intensive care unit: how high is too high? J Crit Care. 2006;21(2):163–72. https://doi.org/10.1016/j.jcrc.2005.10.002

    Article  PubMed  Google Scholar 

  74. Vedantam A, Robertson CS, Gopinath SP. Morbidity and mortality associated with hypernatremia in patients with severe traumatic brain injury. Neurosurg Focus. 2017;43(5):E2. https://doi.org/10.3171/2017.7.FOCUS17418

    Article  PubMed  Google Scholar 

  75. Ayus JC, Armstrong DL, Arieff AI. Effects of hypernatraemia in the central nervous system and its therapy in rats and rabbits. J Physiol. 1996;492 (Pt 1):243–255. https://doi.org/10.1113/jphysiol.1996.sp021305

  76. Neyra JA, Canepa-Escaro F, Li X, et al. Association of hyperchloremia with hospital mortality in critically ill septic patients. Crit Care Med. 2015;43(9):1938–44. https://doi.org/10.1097/CCM.0000000000001161

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yessayan L, Neyra JA, Canepa-Escaro F, et al. Effect of hyperchloremia on acute kidney injury in critically ill septic patients: a retrospective cohort study. BMC Nephrol. 2017;18(1):346. https://doi.org/10.1186/s12882-017-0750-z

    Article  PubMed  PubMed Central  Google Scholar 

  78. de Vasconcellos K, Skinner DL. Hyperchloraemia is associated with acute kidney injury and mortality in the critically ill: A retrospective observational study in a multidisciplinary intensive care unit. J Crit Care. 2018;45:45–51. https://doi.org/10.1016/j.jcrc.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  79. • Ditch KL, Flahive JM, West AM, Osgood ML, Muehlschlegel S. Hyperchloremia, not concomitant hypernatremia, independently predicts early mortality in critically ill moderate-severe traumatic brain injury patients. Neurocrit Care. 2020;33(2):533–41. https://doi.org/10.1007/s12028-020-00928-0. Large retrospective study of prospectively collected data showing that hyperchloremia rather than hypernatremia is an independent risk factor for in-hospital mortality in moderate-severe TBI patients.

    Article  CAS  PubMed  Google Scholar 

  80. • Refardt J, Winzeler B, Christ-Crain M. Diabetes insipidus: an update. Endocrinol Metab Clin North Am. 2020;49(3):517–31. https://doi.org/10.1016/j.ecl.2020.05.012. Review proposing diagnostic algorithms for differentiating the different causes of polyuria polydipsia syndrome, utilizing copeptin measurements.

    Article  PubMed  Google Scholar 

  81. Hui C, Khan M, Radbel JM. Diabetes Insipidus. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC. 2022.

  82. Christ-Crain M, Bichet DG, Fenske WK, et al. Diabetes insipidus Nat Rev Dis Primers. 2019;5(1):54. https://doi.org/10.1038/s41572-019-0103-2

    Article  PubMed  Google Scholar 

  83. • Burke WT, Cote DJ, Penn DL, Iuliano S, McMillen K, Laws ER. Diabetes insipidus after endoscopic transsphenoidal surgery. Neurosurgery. 2020;87(5):949–55. https://doi.org/10.1093/neuros/nyaa148. Retrospective review identifying the rate of transient and permanent CDI after endoscopic transsphenoidal surgery.

  84. Agha A, Sherlock M, Phillips J, Tormey W, Thompson CJ. The natural history of post-traumatic neurohypophysial dysfunction. Eur J Endocrinol. 2005;152(3):371–7. https://doi.org/10.1530/eje.1.01861

    Article  CAS  PubMed  Google Scholar 

  85. Tudor RM, Thompson CJ. Posterior pituitary dysfunction following traumatic brain injury: review. Pituitary. 2019;22(3):296–304. https://doi.org/10.1007/s11102-018-0917-z

    Article  CAS  PubMed  Google Scholar 

  86. Capatina C, Paluzzi A, Mitchell R, et al. Diabetes insipidus after traumatic brain injury. J Clin Med. 2015;4:1448–62.

  87. • Gempeler A, Orrego-González E, Hernandez-Casanas A, Castro AM, Aristizabal-Mayor JD, Mejia-Mantilla JH. Incidence and effect of diabetes insipidus in the acute care of patients with severe traumatic brain injury. Neurocrit Care. 2020;33(3):718–24. https://doi.org/10.1007/s12028-020-00955-x. Retrospective analysis of risk factors for the development of DI in severe TBI patients and the association of DI with death and poor functional outcome in these patients.

  88. Chae MK, Lee JH, Lee TR, Yoon H, Hwang SY, Cha WC, et al. Early central diabetes insipidus: an ominous sign in post–cardiac arrest patients. J Crit Care. 2016;32:63–7. https://doi.org/10.1016/j.jcrc.2015.12.002

    Article  PubMed  Google Scholar 

  89. Christ-Crain M, Winzeler B, Refardt J. Diagnosis and management of diabetes insipidus for the internist: an update. J Intern Med. 2021. https://doi.org/10.1111/joim.13261

    Article  PubMed  Google Scholar 

  90. Miller M, Dalakos T, Moses AM, Fellerman H, Streeten DH. Recognition of partial defects in antidiuretic hormone secretion. Ann Intern Med. 1970;73(5):721–9. https://doi.org/10.7326/0003-4819-73-5-721

    Article  CAS  PubMed  Google Scholar 

  91. •• Christ-Crain M. Diabetes insipidus: new concepts for diagnosis. Neuroendocrinology. 2020;110(9–10):859–67. https://doi.org/10.1159/000505548. Review emphasizing the novel role of copeptin in the differentiation of DI from primary polydipsia.

    Article  CAS  PubMed  Google Scholar 

  92. John CA, Day MW. Central neurogenic diabetes insipidus, syndrome of inappropriate secretion of antidiuretic hormone, and cerebral salt-wasting syndrome in traumatic brain injury. Crit Care Nurse. 2012;32(2):e1–7. https://doi.org/10.4037/ccn2012904

    Article  PubMed  Google Scholar 

  93. Garrahy A, Moran C, Thompson CJ. Diagnosis and management of central diabetes insipidus in adults. Clin Endocrinol (Oxf). 2019;90(1):23–30. https://doi.org/10.1111/cen.13866

    Article  Google Scholar 

  94. Leroy C, Karrouz W, Douillard C, et al. Diabetes insipidus. Ann Endocrinol (Paris). 2013;74(5–6):496–507. https://doi.org/10.1016/j.ando.2013.10.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

All authors declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Critical Care Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, M., Alsbrook, D., Williamson, S. et al. Approach to the Management of Sodium Disorders in the Neuro Critical Care Unit. Curr Treat Options Neurol 24, 327–346 (2022). https://doi.org/10.1007/s11940-022-00723-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-022-00723-6

Keywords

Navigation