Skip to main content

Advertisement

Log in

Subependymal Giant Cell Astrocytomas (SEGAs): a Model of Targeting Tumor Growth and Epilepsy

  • Neuro-oncology (R Soffietti, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

Subependymal giant cell astrocytomas (SEGAs) are grade I astrocytic tumors according to WHO 2016, mainly associated to tuberous sclerosis complex. They are rare and achievements in their management are often the result of small series and case reports. The main purpose of this review was to summarize recent developments in diagnosis and treatment of SEGAs.

Recent findings

The role of treatment with mTOR inhibitors has been confirmed through many studies in the last decade. New treatment options for patients with contraindication to surgery have been proposed, like Gamma Knife and laser interstitial thermal therapy (LITT). Furthermore, more recent preclinical studies, investigating MAPK/ERK pathways, CK2 protein (casein kinase), and metalloproteinases and their tissue inhibitors (TIMPs), have been published, suggesting new pharmacological treatments.

Summary

This review is focused on natural history, pathogenesis, diagnosis, and treatment of SEGAs, with an update of the more recent developments. SEGAs are mainly associated to tuberous sclerosis complex, while in sporadic forms to mutations in genes TSC1 or TSC2 limited to the tumor. TSC2 mutation leads to higher incidence of SEGAs, earlier onset and more aggressive course. Diagnosis is made by MRI and by criteria defined in the EXIST-1 study. Treatment options are surgery and pharmacological treatment with mTOR inhibitors. LITT shows promising results. Besides tumor grade, SEGAs show a continuous tendency to growth after incomplete resection or withdrawal of mTOR inhibitors. Preclinical studies have explored novel treatment options, but they need to be confirmed in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  Google Scholar 

  2. Fujiwara S, Takaki T, Hikita T, Nishio S. Subependymal giant-cell astrocytoma associated with tuberous sclerosis. Do subependymal nodules grow? Childs Nerv Syst. 1989;5(1):43–4.

    Article  CAS  Google Scholar 

  3. Nabbout R, Santos M, Rolland Y, Delalande O, Dulac O, Chiron C. Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis. J Neurol Neurosurg Psychiatry. 1999;66(3):370–5.

    Article  CAS  Google Scholar 

  4. • Marques R, Belousova E, Benedik MP, et al. Treatment patterns and use of resources in patients with tuberous sclerosis complex: insights from the TOSCA registry. Front Neurol. 2019;10:1144 The largest registry that reported a comprehensive overview on clinical characteristics, treatment patterns, quality of life, and use of resources in patients with tuberous sclerosis complex (including 554 SEGAs).

    Article  Google Scholar 

  5. Ogorek B, Hamieh L, Hulshof HM, et al. TSC2 pathogenic variants are predictive of severe clinical manifestations in TSC infants: results of the EPISTOP study. Genet Med. 2020;22(9):1489–97.

    Article  CAS  Google Scholar 

  6. Kothare SV, Singh K, Chalifoux JR, Staley BA, Weiner HL, Menzer K, et al. Severity of manifestations in tuberous sclerosis complex in relation to genotype. Epilepsia. 2014;55(7):1025–9.

    Article  CAS  Google Scholar 

  7. Kotulska K, Borkowska J, Mandera M, Roszkowski M, Jurkiewicz E, Grajkowska W, et al. Congenital subependymal giant cell astrocytomas in patients with tuberous sclerosis complex. Childs Nerv Syst. 2014;30(12):2037–42.

    Article  Google Scholar 

  8. Chan DL, Kennedy SE, Sarkozy VE, et al. Congenital subependymal giant cell astrocytoma in children with tuberous sclerosis complex: growth patterns and neurological outcome. Pediatr Res. 2020. https://doi.org/10.1038/s41390-020-1002-1007.

  9. O’Rawe M, Chandran AS, Joshi S, Simonin A, Dyke JM, Lee S. A case of subependymal giant cell astrocytoma without tuberous sclerosis complex and review of the literature. Childs Nerv Syst. 2020. https://doi.org/10.1007/s00381-020-04823-z.

  10. Suzuki M, Kondo A, Ogino I, et al. A case of solitary subependymal giant cell astrocytoma with histopathological anaplasia and TSC2 gene alteration. Childs Nerv Syst. 2020. https://doi.org/10.1007/s00381-020-04839-5.

  11. Fohlen M, Harzallah I, Polivka M, Giuliano F, Pons L, Streichenberger N, et al. Identification of TSC1 or TSC2 mutation limited to the tumor in three cases of solitary subependymal giant cell astrocytoma using next-generation sequencing technology. Childs Nerv Syst. 2020;36(5):961–5.

    Article  Google Scholar 

  12. Cuccia V, Zuccaro G, Sosa F, Monges J, Lubienieky F, Taratuto AL. Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst. 2003;19(4):232–43.

    Article  Google Scholar 

  13. Park SM, Lee YJ, Son YJ, Kim YO, Woo YJ. Clinical progress of epilepsy in children with tuberous sclerosis: prognostic factors for seizure outcome. Chonnam Med J. 2011;47(3):150–4.

    Article  Google Scholar 

  14. Jiang T, Jia G, Ma Z, Luo SQ, Zhang YQ. The diagnosis and treatment of subependymal giant cell astrocytoma combined with tuberous sclerosis. Childs Nerv Syst. 2011;27(1):55–62.

    Article  CAS  Google Scholar 

  15. Tsai JD, Wei CC, Tsao TF, Hsiao YP, Tsai HJ, Yang SH, et al. Association between the growth rate of subependymal giant cell astrocytoma and age in patients with tuberous sclerosis complex. Childs Nerv Syst. 2016;32(1):89–95.

    Article  Google Scholar 

  16. Torres OA, Roach ES, Delgado MR, Sparagana SP, Sheffield E, Swift D, et al. Early diagnosis of subependymal giant cell astrocytoma in patients with tuberous sclerosis. J Child Neurol. 1998;13(4):173–7.

    Article  CAS  Google Scholar 

  17. Adriaensen ME, Zonnenberg BA, De Jong PA. Natural history and CT scan follow-up of subependymal giant cell tumors in tuberous sclerosis complex patients. J Clin Neurosci. 2014;21(6):939–41.

    Article  Google Scholar 

  18. •• Roth J, Roach ES, Bartels U, et al. Subependymal giant cell astrocytoma: diagnosis, screening, and treatment. Recommendations from the International Tuberous Sclerosis Complex Consensus Conference 2012. Pediatr Neurol. 2013;49(6):439–44 This article summarizes the diagnostic criteria and treatment options for SEGAs.

    Article  Google Scholar 

  19. •• Franz DN, Belousova E, Sparagana S, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381(9861):125–32 A phase III trial that supports the use of everolimus for SEGAs associated with tuberous sclerosis.

    Article  CAS  Google Scholar 

  20. Russo C, Nastro A, Cicala D, de Liso M, Covelli EM, Cinalli G. Neuroimaging in tuberous sclerosis complex. Childs Nerv Syst. 2020;36(10):2497–509.

    Article  Google Scholar 

  21. Gaillard A, Crombè A, Jecko V, et al. Magnetic resonance imaging diagnosis of subependymal giant cell astrocytomas in follow-up of children with tuberous sclerosis complex: should we always use contrast enhancement? Pediatr Radiol. 2020;50(10):1397–408.

    Article  Google Scholar 

  22. Fohlen M, Ferrand-Sorbets S, Delalande O, Dorfmüller G. Surgery for subependymal giant cell astrocytomas in children with tuberous sclerosis complex. Childs Nerv Syst. 2018;34(8):1511–9.

    Article  Google Scholar 

  23. Harter DH, Bassani L, Rodgers SD, Roth J, Devinsky O, Carlson C, et al. A management strategy for intraventricular subependymal giant cell astrocytomas in tuberous sclerosis complex. J Neurosurg Pediatr. 2014;13(1):21–8.

    Article  Google Scholar 

  24. Sun P, Kohrman M, Liu J, Guo A, Rogerio J, Krueger D. Outcomes of resecting subependymal giant cell astrocytoma (SEGA) among patients with SEGA-related tuberous sclerosis complex: a national claims database analysis. Curr Med Res Opin. 2012;28(4):657–63.

    Article  Google Scholar 

  25. Hidalgo ET, Ali A, Weiner HL, Harter DH. Resection of Intraventricular tumors in children by purely endoscopic means. World Neurosurg. 2016;87:372–80.

    Article  Google Scholar 

  26. Cinalli G, Imperato A, Mirone G, di Martino G, Nicosia G, Ruggiero C, et al. Initial experience with endoscopic ultrasonic aspirator in purely neuroendoscopic removal of intraventricular tumors. J Neurosurg Pediatr. 2017;19(3):325–32.

    Article  Google Scholar 

  27. Campen CJ, Porter BE. Subependymal giant cell astrocytoma (SEGA) treatment update. Curr Treat Options Neurol. 2011;13(4):380–5.

    Article  Google Scholar 

  28. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363(19):1801–11.

    Article  CAS  Google Scholar 

  29. Kuki I, Kawawaki H, Okazaki S, Ehara E, Yoshida Y, Kunihiro N, et al. Efficacy and safety of everolimus in patients younger than 12 months with congenital subependymal giant cell astrocytoma. Brain and Development. 2018;40(5):415–20.

    Article  Google Scholar 

  30. • Ebrahimi-Fakhari D, Franz DN. Pharmacological treatment strategies for subependymal giant cell astrocytoma (SEGA). Expert Opin Pharmacother. 2020;21(11):1329–36 An updated review on diagnosis, symptoms, and practical management of SEGAs.

    Article  CAS  Google Scholar 

  31. Park KJ, Kano H, Kondziolka D, Niranjan A, Flickinger JC, Lunsford LD. Gamma Knife surgery for subependymal giant cell astrocytomas. Clinical article. J Neurosurg. 2011;114(3):808–13.

    Article  Google Scholar 

  32. Ouyang T, Zhang N, Benjamin T, Wang L, Jiao J, Zhao Y, et al. Subependymal giant cell astrocytoma: current concepts, management, and future directions. Childs Nerv Syst. 2014;30(4):561–70.

    Article  Google Scholar 

  33. Matsumura H, Takimoto H, Shimada N, et al. Glioblastoma following radiotherapy in a patient with tuberous sclerosis. Neurol Med Chir. 1998;38(5):287–91.

    Article  CAS  Google Scholar 

  34. Buckley RT, Wang AC, Miller JW, Novotny EJ, Ojemann JG. Stereotactic laser ablation for hypothalamic and deep intraventricular lesions. Neurosurg Focus. 2016;41(4):E10.

    Article  Google Scholar 

  35. Dadey DYA, Kamath AA, Leuthardt EC, Smyth MD. Laser interstitial thermal therapy for subependymal giant cell astrocytoma: technical case report. Neurosurg Focus. 2016;41(4):E9.

    Article  Google Scholar 

  36. Tovar-Spinoza Z, Choi H. Magnetic resonance-guided laser interstitial thermal therapy: report of a series of pediatric brain tumors. J Neurosurg Pediatr. 2016;17(6):723–33.

    Article  Google Scholar 

  37. Karsy M, Patel DM, Bollo RJ. Trapped ventricle after laser ablation of a subependymal giant cell astrocytoma complicated by intraventricular gadolinium extravasation: case report. J Neurosurg Pediatr. 2018;21(5):523–7.

    Article  Google Scholar 

  38. Desai VR, Jenson AV, Hoverson E, Desai RM, Boghani Z, Lee MR. Stereotactic laser ablation for subependymal giant cell astrocytomas: personal experience and review of the literature. Childs Nerv Syst. 2020;36(11):2685–91.

    Article  Google Scholar 

  39. Frassanito P, Noya C, Tamburrini G. Current trends in the management of subependymal giant cell astrocytomas in tuberous sclerosis. Childs Nerv Syst. 2020;36(10):2527–36.

    Article  Google Scholar 

  40. Nguyen HS, Doan NB, Gelsomino M, Shabani S, Awad AJ, Best B, et al. Subependymal giant cell astrocytomas: a surveillance, epidemiology, and end results program-based analysis from 2004 to 2013. World Neurosurg. 2018;118:e263–8.

    Article  Google Scholar 

  41. • Bongaarts A, van Scheppingen J, Korotkov A, et al. The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas. Brain. 2020;143(1):131–49 This study shows that the MAPK/ERK pathway could be used as a target for treatment independent of or in combination with mTORC1 inhibitors for tuberous sclerosis complex patients.

    Article  Google Scholar 

  42. •• Pucko E, Ostrowski R, Matyja E. Novel small molecule protein kinase CK2 inhibitors exert potent antitumor effects on T98G and SEGA cells in vitro. Folia Neuropathol 2019;57(3):239-248. A novel pathway targeted with specific inhibitor in vitro on SEGA cells.

  43. •• Bongaarts A, de Jong JM, Broekaart DWM, et al. Dysregulation of the MMP/TIMP proteolytic system in subependymal giant cell astrocytomas in patients with tuberous sclerosis complex: modulation of MMP by MicroRNA-320d in vitro. J Neuropathol Exp Neurol. 2020;79(7):777–90 The emerging role of metalloproteinases to increase tumorigenesis and proliferation of SEGA cells in preclinical setting.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Rudà MD.

Ethics declarations

Conflict of Interest

Francesca Mo declares no competing interests. Alessia Pellerino declares no competing interests. Roberta Rudà declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, F., Pellerino, A. & Rudà, R. Subependymal Giant Cell Astrocytomas (SEGAs): a Model of Targeting Tumor Growth and Epilepsy. Curr Treat Options Neurol 23, 18 (2021). https://doi.org/10.1007/s11940-021-00673-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11940-021-00673-5

Keywords

Navigation