Skip to main content

Advertisement

Log in

Stroke Treatment in the Setting of Systemic Disease

  • Neurologic Manifestations of Systemic Disease (D Lapides, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

While the possible stroke risks for more prevalent conditions, such as cardiac disease or cancer, are important to recognize, there are other equally devastating systemic diseases that can affect younger adults and, if not cautious, may be misdiagnosed if stroke is the initial presentation.

Purpose of review

We aim to discuss treatments of three rarer, but important systemic diseases associated with an increased incidence of ischemic stroke, specifically sickle cell anemia, human immunodeficiency virus (HIV), and Takayasu’s arteritis.

Recent findings

Given that individuals with these diseases are now living longer, there is increasingly a two-pronged approach to therapy in order to both (1) control the underlying disease process and (2) address traditional stroke-risk factors.

Summary

Ischemic stroke in a patient with HIV may be due to accelerated atherosclerosis, tobacco abuse, or other traditional stroke-risk factors. Therefore, stroke prevention and management are similar to that of the general population. Stroke in HIV can be due to opportunistic infections, in which case the underlying infection should be treated aggressively. For patients with sickle cell anemia, the focus of treatment is on decreasing HbS to prevent further stroke. Patients with Takayasu’s arteritis are treated with immunosuppression to decrease inflammation and prevent stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Feigin VL, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018;379(25):2429–37. https://doi.org/10.1056/NEJMoa1804492.

    Article  PubMed  PubMed Central  Google Scholar 

  2. DeBaun MR, Kirkham FJ. Central nervous system complications and management in sickle cell disease. Blood. 2016;127(7):829–38. https://doi.org/10.1182/blood-2015-09-618,579.

    Article  CAS  PubMed  Google Scholar 

  3. Marcus JL, Leyden WA, Chao CR, Chow FC, Horberg MA, Hurley LB, et al. HIV infection and incidence of ischemic stroke. Aids. 2014;28(13):1911–9. https://doi.org/10.1097/qad.0000000000000352.

    Article  CAS  PubMed  Google Scholar 

  4. Bogorodskaya M, Chow FC, Triant VA. Stroke in HIV. Can J Cardiol. 2019;35(3):280–7. https://doi.org/10.1016/j.cjca.2018.11.032.

    Article  PubMed  Google Scholar 

  5. Jameson JL, Kasper DL, Longo DL, Fauci AS, Hauser SL, Loscalzo J. Harrison’s principles of internal medicine. 20th ed. New York: McGraw-Hill Education; 2018.

    Google Scholar 

  6. Chow FC, Regan S, Feske S, Meigs JB, Grinspoon SK, Triant VA. Comparison of ischemic stroke incidence in HIV-infected and non-HIV-infected patients in a US health care system. J Acquir Immune Defic Syndr. 2012;60(4):351–8. https://doi.org/10.1097/QAI.0b013e31825c7f24.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chow FC, Wilson MR, Wu K, Ellis RJ, Bosch RJ, Linas BP. Stroke incidence is highest in women and non-Hispanic blacks living with HIV in the AIDS Clinical Trials Group Longitudinal Linked Randomized Trials cohort. Aids. 2018;32(9):1125–35. https://doi.org/10.1097/qad.0000000000001799.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chow FC. HIV infection, vascular disease, and stroke. Semin Neurol. 2014;34(1):35–46. https://doi.org/10.1055/s-0034-1,372,341.

    Article  PubMed  Google Scholar 

  9. Chetty R. Vasculitides associated with HIV infection. J Clin Pathol. 2001;54(4):275–8. https://doi.org/10.1136/jcp.54.4.275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duprez DA, Neuhaus J, Kuller LH, Tracy R, Belloso W, De Wit S, et al. Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS One. 2012;7(9):e44454. https://doi.org/10.1371/journal.pone.0044454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ford ES, Greenwald JH, Richterman AG, Rupert A, Dutcher L, Badralmaa Y, et al. Traditional risk factors and D-dimer predict incident cardiovascular disease events in chronic HIV infection. Aids. 2010;24(10):1509–17. https://doi.org/10.1097/QAD.0b013e32833ad914.

    Article  PubMed  PubMed Central  Google Scholar 

  12. . Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–418. https://doi.org/10.1161/STR.0000000000000211American Heart Association guidelines regarding management of acute ischemic stroke along with evidence for each recommendation.

    Article  PubMed  Google Scholar 

  13. Johnston SC, Easton JD, Farrant M, Barsan W, Conwit RA, Elm JJ, et al. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med. 2018;379(3):215–25. https://doi.org/10.1056/NEJMoa1800410 Landmark POINT trial which showed that dual antiplatelet therapy in the acute post-stroke time period reduces the risk of future ischemic events.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Wang Y, Zhao X, Liu L, Wang D, Wang C, et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med. 2013;369(1):11–9. https://doi.org/10.1056/NEJMoa1215340.

    Article  CAS  PubMed  Google Scholar 

  15. Hughes CA, Tseng A, Cooper R. Managing drug interactions in HIV-infected adults with comorbid illness. Cmaj. 2015;187(1):36–43. https://doi.org/10.1503/cmaj.131626.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Topçuoglu MA, Arsava EM, Ay H. Antiplatelet resistance in stroke. Expert Rev Neurother. 2011;11(2):251–63. https://doi.org/10.1586/ern.10.203.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arnett Donna K, Blumenthal Roger S, Albert Michelle A, Buroker Andrew B, Goldberger Zachary D, Hahn Ellen J, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e563–e95. https://doi.org/10.1161/CIR.0000000000000677.

    Article  CAS  PubMed  Google Scholar 

  18. Rothwell PM, Cook NR, Gaziano JM, Price JF, Belch JFF, Roncaglioni MC, et al. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: analysis of individual patient data from randomised trials. Lancet. 2018;392(10145):387–99. https://doi.org/10.1016/s0140-6736(18)31133-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Msoka TF, Van Guilder GP, van Furth M, Smulders Y, Meek SJ, Bartlett JA, et al. The effect of HIV infection, antiretroviral therapy on carotid intima-media thickness: a systematic review and meta-analysis. Life Sci. 2019;235:116851. https://doi.org/10.1016/j.lfs.2019.116851.

    Article  CAS  PubMed  Google Scholar 

  20. Hsue Priscilla Y, Lo Joan C, Franklin A, Bolger Ann F, Martin Jeffrey N, Deeks Steven G, et al. Progression of atherosclerosis as assessed by carotid intima-media thickness in patients with HIV infection. Circulation. 2004;109(13):1603–8. https://doi.org/10.1161/01.CIR.0000124480.32233.8A.

    Article  CAS  PubMed  Google Scholar 

  21. Lorenz MW, Stephan C, Harmjanz A, Staszewski S, Buehler A, Bickel M, et al. Both long-term HIV infection and highly active antiretroviral therapy are independent risk factors for early carotid atherosclerosis. Atherosclerosis. 2008;196(2):720–6. https://doi.org/10.1016/j.atherosclerosis.2006.12.022.

    Article  CAS  PubMed  Google Scholar 

  22. Seminari E, Pan A, Voltini G, Carnevale G, Maserati R, Minoli L, et al. Assessment of atherosclerosis using carotid ultrasonography in a cohort of HIV-positive patients treated with protease inhibitors. Atherosclerosis. 2002;162(2):433–8. https://doi.org/10.1016/s0021-9150(01)00736-5.

    Article  CAS  PubMed  Google Scholar 

  23. Ryom L, Lundgren JD, El-Sadr W, Reiss P, Kirk O, Law M, et al. Cardiovascular disease and use of contemporary protease inhibitors: the D:A:D international prospective multicohort study. Lancet HIV. 2018;5(6):e291–300. https://doi.org/10.1016/s2352-3018(18)30043-2.

    Article  PubMed  Google Scholar 

  24. Kannel WB, Giordano M. Long-term cardiovascular risk with protease inhibitors and management of the dyslipidemia. Am J Cardiol. 2004;94(7):901–6. https://doi.org/10.1016/j.amjcard.2004.06.025.

    Article  CAS  PubMed  Google Scholar 

  25. Dionne B. Key principles of antiretroviral pharmacology. Infect Dis Clin N Am. 2019;33(3):787–805. https://doi.org/10.1016/j.idc.2019.05.006.

    Article  Google Scholar 

  26. Amarenco P, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355(6):549–59. https://doi.org/10.1056/NEJMoa061894.

    Article  CAS  PubMed  Google Scholar 

  27. Chauvin B, Drouot S, Barrail-Tran A, Taburet AM. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors. Clin Pharmacokinet. 2013;52(10):815–31. https://doi.org/10.1007/s40262-013-0075-4.

    Article  CAS  PubMed  Google Scholar 

  28. Benjamin LA, Bryer A, Emsley HC, Khoo S, Solomon T, Connor MD. HIV infection and stroke: current perspectives and future directions. Lancet Neurol. 2012;11(10):878–90. https://doi.org/10.1016/s1474-4422(12)70205-3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barbaro G. Cardiovascular manifestations of HIV Infection. Circulation. 2002;106(11):1420–5. https://doi.org/10.1161/01.CIR.0000031704.78200.59.

    Article  PubMed  Google Scholar 

  30. Vasudev R, Shah P, Bikkina M, Shamoon F. Infective endocarditis in HIV. Int J Cardiol. 2016;214:216–7. https://doi.org/10.1016/j.ijcard.2016.03.125.

    Article  PubMed  Google Scholar 

  31. Hsue PY. Mechanisms of cardiovascular disease in the setting of HIV infection. Can J Cardiol. 2019;35(3):238–48. https://doi.org/10.1016/j.cjca.2018.12.024.

    Article  PubMed  Google Scholar 

  32. January Craig T, Wann LS, Calkins H, Chen Lin Y, Cigarroa Joaquin E, Cleveland Joseph C, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. Circulation. 2019;140(2):e125–e51. https://doi.org/10.1161/CIR.0000000000000665.

    Article  CAS  PubMed  Google Scholar 

  33. Homma S, Thompson JLP, Pullicino PM, Levin B, Freudenberger RS, Teerlink JR, et al. Warfarin and aspirin in patients with heart failure and sinus rhythm. N Engl J Med. 2012;366(20):1859–69. https://doi.org/10.1056/NEJMoa1202299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zannad F, Anker SD, Byra WM, Cleland JGF, Fu M, Gheorghiade M, et al. Rivaroxaban in patients with heart failure, sinus rhythm, and coronary disease. N Engl J Med. 2018;379(14):1332–42. https://doi.org/10.1056/NEJMoa1808848.

    Article  CAS  PubMed  Google Scholar 

  35. Remick J, Georgiopoulou V, Marti C, Ofotokun I, Kalogeropoulos A, Lewis W, et al. Heart failure in patients with human immunodeficiency virus infection. Circulation. 2014;129(17):1781–9. https://doi.org/10.1161/CIRCULATIONAHA.113.004574.

    Article  PubMed  PubMed Central  Google Scholar 

  36. García-Cabrera E, Fernández-Hidalgo N, Almirante B, Ivanova-Georgieva R, Noureddine M, Plata A, et al. Neurological complications of infective endocarditis. Circulation. 2013;127(23):2272–84. https://doi.org/10.1161/CIRCULATIONAHA.112.000813.

    Article  PubMed  Google Scholar 

  37. Liedtke MD, Rathbun RC. Warfarin-antiretroviral interactions. Ann Pharmacother. 2009;43(2):322–8. https://doi.org/10.1345/aph.1 L497.

    Article  CAS  PubMed  Google Scholar 

  38. Benjamin L, Khoo S. HIV infection and stroke. Handb Clin Neurol. 2018;152:187–200. https://doi.org/10.1016/b978-0-444-63,849-6.00015-3.

    Article  PubMed  Google Scholar 

  39. Mofenson LM, Brady MT, Danner SP, Dominguez KL, Hazra R, Handelsman E, et al. Guidelines for the prevention and treatment of opportunistic infections among HIV-exposed and HIV-infected children: recommendations from CDC, the National Institutes of Health, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics. MMWR Recomm Rep. 2009;58(RR-11):1.

    PubMed  PubMed Central  Google Scholar 

  40. Kaplan JE, Benson C, Holmes KK, Brooks JT, Pau A, Masur H. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep. 2009;58(Rr-4):1–207 quiz CE1–4.

  41. Nagel MA, Cohrs RJ, Mahalingam R, Wellish MC, Forghani B, Schiller A, et al. The varicella zoster virus vasculopathies. Neurology. 2008;70(11):853. https://doi.org/10.1212/01.wnl.0000304747.38502.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Dewi M, et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet. 2013;381(9861):142–51. https://doi.org/10.1016/S0140-6736(12)61229-X.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hassell KL. Population estimates of sickle cell disease in the U.S. Am J Prev Med. 2010;38(4):S512–S21. https://doi.org/10.1016/j.amepre.2009.12.022.

    Article  PubMed  Google Scholar 

  44. Adams RJ, McKie VC, Hsu L, Files B, Vichinsky E, Pegelow C, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339(1):5–11. https://doi.org/10.1056/nejm199807023390102.

    Article  CAS  PubMed  Google Scholar 

  45. Adams RJ, Brambilla D. Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med. 2005;353(26):2769–78. https://doi.org/10.1056/NEJMoa050460.

    Article  CAS  PubMed  Google Scholar 

  46. DeBaun MR, Gordon M, McKinstry RC, Noetzel MJ, White DA, Sarnaik SA, et al. Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia. N Engl J Med. 2014;371(8):699–710. https://doi.org/10.1056/NEJMoa1401731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chou ST, Alsawas M, Fasano RM, Field JJ, Hendrickson JE, Howard J, et al. American Society of Hematology 2020 guidelines for sickle cell disease: transfusion support. Blood Adv. 2020;4(2):327–55. https://doi.org/10.1182/bloodadvances.2019001143 Ten recommendations from the American Society of Hematology expert panel regarding administration of blood transfusions in patients with sickle cell disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hulbert ML, Scothorn DJ, Panepinto JA, Scott JP, Buchanan GR, Sarnaik S, et al. Exchange blood transfusion compared with simple transfusion for first overt stroke is associated with a lower risk of subsequent stroke: a retrospective cohort study of 137 children with sickle cell anemia. J Pediatr. 2006;149(5):710–2. https://doi.org/10.1016/j.jpeds.2006.06.037.

    Article  PubMed  Google Scholar 

  49. Singh A, Xu YJ. The cell killing mechanisms of hydroxyurea. Genes (Basel). 2016;7(11):99. https://doi.org/10.3390/genes7110099.

    Article  CAS  Google Scholar 

  50. Rodgers GP, Dover GJ, Noguchi CT, Schechter AN, Nienhuis AW. Hematologic responses of patients with sickle cell disease to treatment with hydroxyurea. N Engl J Med. 1990;322(15):1037–45. https://doi.org/10.1056/nejm199004123221504.

    Article  CAS  PubMed  Google Scholar 

  51. Ware RE, Davis BR, Schultz WH, Brown RC, Aygun B, Sarnaik S, et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia-TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial. Lancet. 2016;387(10019):661–70. https://doi.org/10.1016/s0140-6736(15)01041-7.

    Article  CAS  PubMed  Google Scholar 

  52. Hydroxyurea. IBM Micromedex. Truven Health Analytics, Greenwood Village, CO. 2020. www.micromedexsolutions.com. Accessed May 42,020.

  53. Wang WC, Oyeku SO, Luo Z, Boulet SL, Miller ST, Casella JF, et al. Hydroxyurea is associated with lower costs of care of young children with sickle cell anemia. Pediatrics. 2013;132(4):677–83. https://doi.org/10.1542/peds.2013-0333.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Adams RJ, Cox M, Ozark SD, Kanter J, Schulte PJ, Xian Y, et al. Coexistent sickle cell disease has no impact on the safety or outcome of lytic therapy in acute ischemic stroke: findings from Get With The Guidelines-Stroke. Stroke. 2017;48(3):686–91. https://doi.org/10.1161/strokeaha.116.015412.

    Article  PubMed  Google Scholar 

  55. Krishnamurti L, Neuberg DS, Sullivan KM, Kamani NR, Abraham A, Campigotto F, et al. Bone marrow transplantation for adolescents and young adults with sickle cell disease: results of a prospective multicenter pilot study. Am J Hematol. 2019;94(4):446–54. https://doi.org/10.1002/ajh.25401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jordan LC, Juttukonda MR, Kassim AA, DeBaun MR, Davis LT, Pruthi S, et al. Haploidentical bone marrow transplantation improves cerebral hemodynamics in adults with sickle cell disease. Am J Hematol. 2019;94(6):E155–E8. https://doi.org/10.1002/ajh.25455.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Aguilar-Salinas P, Hayward K, Santos R, Agarwal V, Sauvageau E, Hanel RA, et al. Surgical revascularization for pediatric patients with sickle cell disease and moyamoya disease in the prevention of ischemic strokes: a single-center case series and a systematic review. World Neurosurg. 2019;123:435–42.e8. https://doi.org/10.1016/j.wneu.2018.11.157.

    Article  PubMed  Google Scholar 

  58. Hall EM, Leonard J, Smith JL, Guilliams KP, Binkley M, Fallon RJ, et al. Reduction in overt and silent stroke recurrence rate following cerebral revascularization surgery in children with sickle cell disease and severe cerebral vasculopathy. Pediatr Blood Cancer. 2016;63(8):1431–7. https://doi.org/10.1002/pbc.26022.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Younger DS. Stroke due to vasculitis in children and adults. Neurol Clin. 2019;37(2):279–302. https://doi.org/10.1016/j.ncl.2019.01.004.

    Article  PubMed  Google Scholar 

  60. Toshihiko N. Current status of large and small vessel vasculitis in Japan. Int J Cardiol. 1996;54(Suppl):S91–8. https://doi.org/10.1016/s0167-5273(96)88777-8.

    Article  PubMed  Google Scholar 

  61. Hall S, Barr W, Lie JT, Stanson AW, Kazmier FJ, Hunder GG. Takayasu arteritis. A study of 32 North American patients. Medicine (Baltimore). 1985;64(2):89–99.

    Article  CAS  Google Scholar 

  62. Duarte MM, Geraldes R, Sousa R, Alarcão J, Costa J. Stroke and transient ischemic attack in Takayasu’s arteritis: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2016;25(4):781–91. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.12.005.

    Article  PubMed  Google Scholar 

  63. Couture P, Chazal T, Rosso C, Haroche J, Léger A, Hervier B, et al. Cerebrovascular events in Takayasu arteritis: a multicenter case-controlled study. J Neurol. 2018;265(4):757–63. https://doi.org/10.1007/s00415-018-8744-8This case-controlled study is one of the most comprehensive descriptions of the different types of strokes observed in TA, including potential pathophysiology and which vessels are commonly involved.

    Article  PubMed  Google Scholar 

  64. Kerr GS, Hallahan CW, Giordano J, Leavitt RY, Fauci AS, Rottem M, et al. Takayasu arteritis. Ann Intern Med. 1994;120(11):919–29. https://doi.org/10.7326/0003-4819-120-11-199,406,010-00004.

    Article  CAS  PubMed  Google Scholar 

  65. Bond KM, Nasr D, Lehman V, Lanzino G, Cloft HJ, Brinjikji W. Intracranial and extracranial neurovascular manifestations of Takayasu arteritis. AJNR Am J Neuroradiol. 2017;38(4):766–72. https://doi.org/10.3174/ajnr.A5095.

    Article  CAS  PubMed  Google Scholar 

  66. Brunner J, Feldman BM, Tyrrell PN, Kuemmerle-Deschner JB, Zimmerhackl LB, Gassner I, et al. Takayasu arteritis in children and adolescents. Rheumatology (Oxford). 2010;49(10):1806–14. https://doi.org/10.1093/rheumatology/keq167.

    Article  Google Scholar 

  67. Hellmich B, Agueda A, Monti S, Buttgereit F, de Boysson H, Brouwer E, et al. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2020;79(1):19–30. https://doi.org/10.1136/annrheumdis-2019-215,672.

    Article  PubMed  Google Scholar 

  68. Bardi M, Diamantopoulos AP. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice summary. Radiol Med. 2019;124(10):965–72. https://doi.org/10.1007/s11547-019-01058-0.

    Article  PubMed  Google Scholar 

  69. Pipitone N, Versari A, Salvarani C. Role of imaging studies in the diagnosis and follow-up of large-vessel vasculitis: an update. Rheumatology (Oxford). 2008;47(4):403–8. https://doi.org/10.1093/rheumatology/kem379.

    Article  CAS  Google Scholar 

  70. Ishihara T, Haraguchi G, Tezuka D, Kamiishi T, Inagaki H, Isobe M. Diagnosis and assessment of Takayasu arteritis by multiple biomarkers. Circ J. 2013;77(2):477–83. https://doi.org/10.1253/circj.cj-12-0131.

    Article  CAS  PubMed  Google Scholar 

  71. Keser G, Direskeneli H, Aksu K. Management of Takayasu arteritis: a systematic review. Rheumatology (Oxford). 2014;53(5):793–801. https://doi.org/10.1093/rheumatology/ket320.

    Article  CAS  PubMed  Google Scholar 

  72. Rice JB, White AG, Scarpati LM, Wan G, Nelson WW. Long-term systemic corticosteroid exposure: a systematic literature review. Clin Ther. 2017;39(11):2216–29. https://doi.org/10.1016/j.clinthera.2017.09.011.

    Article  CAS  Google Scholar 

  73. Nakaoka Y, Isobe M, Takei S, Tanaka Y, Ishii T, Yokota S, et al. Efficacy and safety of tocilizumab in patients with refractory Takayasu arteritis: results from a randomised, double-blind, placebo-controlled, phase 3 trial in Japan (the TAKT study). Ann Rheum Dis. 2018;77(3):348. https://doi.org/10.1136/annrheumdis-2017-211,878.

    Article  CAS  PubMed  Google Scholar 

  74. Comarmond C, Plaisier E, Dahan K, Mirault T, Emmerich J, Amoura Z, et al. Anti TNF-α in refractory Takayasu’s arteritis: cases series and review of the literature. Autoimmun Rev. 2012;11(9):678–84. https://doi.org/10.1016/j.autrev.2011.11.025.

    Article  CAS  PubMed  Google Scholar 

  75. Park MC, Lee SW, Park YB, Lee SK. Serum cytokine profiles and their correlations with disease activity in Takayasu’s arteritis. Rheumatology (Oxford). 2006;45(5):545–8. https://doi.org/10.1093/rheumatology/kei266.

    Article  CAS  PubMed  Google Scholar 

  76. Osman M, Emery D, Yacyshyn E. Tocilizumab for treating Takayasu’s arteritis and associated stroke: a case series and updated review of the literature. J Stroke Cerebrovasc Dis. 2015;24(6):1291–8. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.01.032.

    Article  PubMed  Google Scholar 

  77. Sheppard M, Laskou F, Stapleton PP, Hadavi S, Dasgupta B. Tocilizumab (actemra). Hum Vaccin Immunother. 2017;13(9):1972–88. https://doi.org/10.1080/21645515.2017.1316909.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tocilizumab. IBM Micromedex. Truven Health Analytics, Greenwood Village, CO. 2020. www.micromedexsolutions.com. Accessed August 202,020.

  79. Abisror N, Mekinian A, Lavigne C, Vandenhende MA, Soussan M, Fain O. Tocilizumab in refractory Takayasu arteritis: a case series and updated literature review. Autoimmun Rev. 2013;12(12):1143–9. https://doi.org/10.1016/j.autrev.2013.06.019.

    Article  CAS  PubMed  Google Scholar 

  80. Hoffman GS, Leavitt RY, Kerr GS, Rottem M, Sneller MC, Fauci AS. Treatment of glucocorticoid-resistant or relapsing Takayasu arteritis with methotrexate. Arthritis Rheum. 1994;37(4):578–82. https://doi.org/10.1002/art.1780370420.

    Article  CAS  Google Scholar 

  81. Valsakumar AK, Valappil UC, Jorapur V, Garg N, Nityanand S, Sinha N. Role of immunosuppressive therapy on clinical, immunological, and angiographic outcome in active Takayasu’s arteritis. J Rheumatol. 2003;30(8):1793–8.

    CAS  PubMed  Google Scholar 

  82. Mycophenolate mofetil. IBM Micromedex. Truven Health Analytics, Greenwood Village, CO. 2020. www.micromedexsolutions.com. Accessed August 202,020.

  83. Li J, Yang Y, Zhao J, Li M, Tian X, Zeng X. The efficacy of mycophenolate mofetil for the treatment of Chinese Takayasu’s arteritis. Sci Rep. 2016;6:38687. https://doi.org/10.1038/srep38687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Methotrexate. IBM Micromedex. Truven Health Analytics, Greenwood Village, CO. 2020. www.micromedexsolutions.com. Accessed August 192,020.

  85. Azathioprine. IBM Micromedex. Truven Health Analytics, Greenwood Village, CO. 2020. www.micromedexsolutions.com.

  86. Esfahani NZ, Anderson DM, Pieper C, Adams HP Jr. Intracerebral hemorrhage after IV tPA for stroke as early symptom of ANCA-associated vasculitis. eNeurologicalSci. 2017;9:1-2. https://doi.org/10.1016/j.ensci.2017.08.004

  87. Srinivasan G, Boschman C, Roth SI, Hendel RC. Unsuspected vasculitis and intracranial hemorrhage following thrombolysis. Clin Cardiol. 1997;20(1):84–6. https://doi.org/10.1002/clc.4960200118.

    Article  CAS  PubMed  Google Scholar 

  88. Field K, Gharzai L, Bardeloza K, Houghton B. Takayasu arteritis presenting as embolic stroke. BMJ Case Rep. 2017;2017. https://doi.org/10.1136/bcr-2017-220,001.

  89. Min PK, Park S, Jung JH, Ko YG, Choi D, Jang Y, et al. Endovascular therapy combined with immunosuppressive treatment for occlusive arterial disease in patients with Takayasu’s arteritis. J Endovasc Ther. 2005;12(1):28–34. https://doi.org/10.1583/12-01-04-1329.1.

    Article  PubMed  Google Scholar 

  90. Lee BB, Laredo J, Neville R, Villavicencio JL. Endovascular management of takayasu arteritis: is it a durable option? Vascular. 2009;17(3):138–46. https://doi.org/10.2310/6670.2009.00012.

    Article  PubMed  Google Scholar 

  91. Hu J, Huang H, Zhang X, Li G, Liu Q, Wu M, et al. Stent placement for treatment of long segment (≥80 mm) carotid artery stenosis in patients with Takayasu disease. J Vasc Interv Radiol. 2012;23(11):1473–7. https://doi.org/10.1016/j.jvir.2012.08.020.

    Article  PubMed  Google Scholar 

  92. Emmans L, Nguyen TM, Laufer N. Percutaneous treatment of severe carotid stenosis due to Takayasu’s arteritis early after carotid endarterectomy. J Invasive Cardiol. 2007;19(9):E258–60.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karissa C. Arthur MD.

Ethics declarations

Conflict of Interest

Karissa C. Arthur declares that she has no conflict of interest. Elizabeth Fracica declares that she has no conflict of interest. Michelle C. Johansen declares that she has no conflict of interest..

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurologic Manifestations of Systemic Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthur, K.C., Fracica, E. & Johansen, M.C. Stroke Treatment in the Setting of Systemic Disease. Curr Treat Options Neurol 22, 44 (2020). https://doi.org/10.1007/s11940-020-00650-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11940-020-00650-4

Keywords

Navigation