Skip to main content

Advertisement

Log in

Neurologic Manifestations of Systemic Disease: Peripheral Nervous System

  • Neurologic Manifestations of Systemic Disease (D Lapides, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of Review

The impact that systemic disease has on the peripheral nervous system is vast. Polyneuropathies due to these disorders fall into broad categories including metabolic diseases, nutritional deficiencies, rheumatological diseases, infectious diseases, and malignancy-associated disorders. This review focuses on the treatment of these systemic disease–associated polyneuropathies.

Recent Findings

Many of the specific polyneuropathies covered in this review are relatively rare and understudied. As such treatment recommendations are based on expert opinion, small case series, and case reports. Even more prevalent polyneuropathies, such as diabetes-associated, will be covered, though these too often lack standard treatment approaches. The immune checkpoint inhibitor–associated polyneuropathies have garnered much attention recently. Current treatment recommendations for these polyneuropathies will be discussed.

Summary

Recognition of polyneuropathies associated with the systemic disease is imperative as these acquired polyneuropathies represent potentially treatable disorders. In many circumstances, prompt identification and early treatment prevent permanent neurological deficits and pain. The reader is encouraged to consider these polyneuropathy etiologies in order to expedite diagnostic evaluation and if possible therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. England JD, Asbury AK. Peripheral neuropathy. Lancet (London, England) [Internet]. 2004;363:2151–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15220040.

  2. Tesfaye S, Vileikyte L, Rayman G, Sindrup SH, Perkins BA, Baconja M, et al. Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management [Internet]. Diabetes. Metab. Res. Rev. 2011 [cited 2020 Mar 16]. p. 629–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21695762.

  3. Sun J, Wang Y, Zhang X, Zhu S, He H. Prevalence of peripheral neuropathy in patients with diabetes: A systematic review and meta-analysis. Prim Care Diabetes [Internet]. Elsevier Ltd; 2020 [cited 2020 Mar 16]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/31917119.

  4. Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol [Internet]. Elsevier B.V.; 2018 [cited 2020 Mar 16];833:472–523. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29966615.

  5. Malik RA. Wherefore art thou, o treatment for diabetic neuropathy? Int Rev Neurobiol [Internet]. Academic Press Inc.; 2016 [cited 2020 Mar 16];127:287–317. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27133154.

  6. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med [Internet]. 1993;329:977–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8366922.

  7. Hernández-ojeda J, Román-pintos LM, Rodríguez AD, Cardona- EG, Guillermina A. Effect of rosuvastatin on diabetic polyneuropathy: phase IIa study. Diabetes, Metab Syndr Obes Targets Ther. Dove Medical Press Ltd. 2014;7:401–7.

    Google Scholar 

  8. Fried LF, Forrest KYZ, Ellis D, Chang Y, Silvers N, Orchard TJ. Lipid modulation in insulin-dependent diabetes mellitus: effect on microvascular outcomes. J Diabetes Complicat. 2001;15:113–9.

    Article  CAS  Google Scholar 

  9. Smith AG, Russell J, Feldman EL, Goldstein J, Peltier A, Smith S, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care [Internet]. 2006;29:1294–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16732011.

  10. Kluding PM, Singleton JR, Pasnoor M, Dimachkie MM, Barohn RJ, Smith AG, et al. Activity for diabetic polyneuropathy (ADAPT): study design and protocol for a 2-site randomized controlled trial. Phys Ther [Internet]. Oxford University Press (OUP); 2016 [cited 2020 Mar 16];97:20–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27417167.

  11. Gwathmey KG, Grogan J. Nutritional neuropathies [Internet]. Muscle and Nerve. John Wiley and Sons Inc.; 2019 [cited 2020 Mar 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31837157.

  12. Maiya RP, Messing RO. Peripheral systems: neuropathy. Handb Clin Neurol. Elsevier B.V.; 2014. p. 513–25.

  13. Shible AA, Ramadurai D, Gergen D, Reynolds PM. Dry beriberi due to thiamine deficiency associated with peripheral neuropathy and Wernicke’s encephalopathy mimicking Guillain-Barré syndrome: a case report and review of the literature. Am J Case Rep [Internet]. 2019 [cited 2019 Mar 23];20:330–4. Available from: https://www.amjcaserep.com/abstract/index/idArt/914051

  14. Butterworth RF. Pathophysiology of cerebellar dysfunction in the Wernicke-Korsakoff syndrome. Can J Neurol Sci [Internet]. 1993 [cited 2019 Apr 1];20 Suppl 3:S123–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8334588.

  15. Adamolekun B. Neurological disorders associated with cassava diet: a review of putative etiological mechanisms. Metab Brain Dis [Internet]. 2011 [cited 2019 Apr 5];26:79–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21327546.

  16. Adamolekun B. Thiamine deficiency and the etiology of tropical ataxic neuropathy. Int Health [Internet]. 2010 [cited 2019 Apr 1];2:17–21. Available from: https://academic.oup.com/inthealth/article-lookup/doi/10.1016/j.inhe.2009.12.004

  17. Stroh C, Meyer F, Manger T. Beriberi, A severe complication after metabolic surgery - review of the literature. Obes Facts [Internet]. 2014 [cited 2019 Apr 1];7:246–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25095897.

  18. Latt N, Dore G. Thiamine in the treatment of Wernicke encephalopathy in patients with alcohol use disorders. Intern Med J [Internet]. Blackwell Publishing; 2014 [cited 2020 Mar 16];44:911–5. Available from: https://doi.org/10.1111/imj.12522

  19. Xu Y, Sladky JT, Brown MJ. Dose-dependent expression of neuronopathy after experimental pyridoxine intoxication. Neurology [Internet]. 1989;39:1077–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2761702.

  20. Ghavanini AA, Kimpinski K. Revisiting the evidence for neuropathy caused by pyridoxine deficiency and excess. J Clin Neuromuscul Dis [Internet]. 2014 [cited 2019 Apr 5];16:25–31. Available from: https://insights.ovid.com/crossref?an=00131402-201409000-00007

  21. Schaumburg H, Kaplan J, Windebank A, Vick N, Rasmus S, Pleasure D, et al. Sensory neuropathy from pyridoxine abuse. A new megavitamin syndrome. N Engl J Med [Internet]. 1983 [cited 2014 Nov 6];309:445–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6308447.

  22. Hammond N, Wang Y, Dimachkie MM, Barohn RJ. Nutritional neuropathies. Neurol Clin [Internet]. 2013 [cited 2020 Mar 16];31:477–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23642720.

  23. Botez MI, Peyronnard JM, Bachevalier J, Charron L. Polyneuropathy and folate deficiency. Arch Neurol [Internet]. 1978 [cited 2019 Mar 23];35:581–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/210747.

  24. Devalia V, Hamilton MS, Molloy AM, British Committee for Standards in Haematology. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br J Haematol [Internet]. 2014 [cited 2019 Mar 23];166:496–513. Available from: https://doi.org/10.1111/bjh.12959

  25. Langan RC, Goodbred AJ. Vitamin B12 deficiency: recognition and management. Am Fam Physician. 2017;96:384–9.

    PubMed  Google Scholar 

  26. Davidai G, Zakaria T, Goldstein R, Gilai A, Freier S. Hypovitaminosis E induced neuropathy in exocrine pancreatic failure. Arch Dis Child [Internet]. 1986 [cited 2019 Apr 5];61:901–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3767419.

  27. Landrieu P, Selva J, Alvarez F, Ropert A, Métral S. Peripheral nerve involvement in children with chronic cholestasis and vitamin E deficiency. Neuropediatrics [Internet]. 1985 [cited 2019 Apr 5];16:194–201. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3001567.

  28. Chhetri SK, Mills RJ, Shaunak S, Emsley HCA. Copper deficiency. BMJ Publishing Group. 2014;348.

  29. Taylor SW, Laughlin RS, Kumar N, Goodman B, Klein CJ, Dyck PJ, et al. Clinical, physiological and pathological characterisation of the sensory predominant peripheral neuropathy in copper deficiency. J Neurol Neurosurg Psychiatry [Internet]. 2017 [cited 2019 Mar 23];88:839–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28780535.

  30. Gwathmey KG, Pearson KT. Diagnosis and management of sensory polyneuropathy. BMJ [Internet]. 2019;365:l1108. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31068323.

  31. DeFronzo RA, Abdul-Ghani MA. Preservation of β-cell function: the key to diabetes prevention. J Clin Endocrinol Metab [Internet]. 2011;96:2354–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21697254.

  32. Gabbai AA, Castelo A, Oliveira ASB. HIV peripheral neuropathy. Handb Clin Neurol [Internet]. Elsevier B.V.; 2013 [cited 2020 Mar 20]. p. 515–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23931799.

  33. Marra CM, Boutin P, Collier AC. Screening for distal sensory peripheral neuropathy in HIV-infected persons in research and clinical settings. Neurology. Lippincott Williams and Wilkins; 1998;51:1678–1681.

  34. Geraci AP, Simpson DM. Neurological manifestations of HIV-1 infection in the HAART era. Compr Ther [Internet]. American Society of Contemporary Ophthalmology; 2001 [cited 2020 Mar 23];27:232–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11569325.

  35. Anand P, Kharal GA, Reda H, Venna N. Peripheral neuropathies in infectious diseases. Semin Neurol [Internet]. Thieme Medical Publishers, Inc.; 2019 [cited 2020 Mar 23];39:640–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31639846.

  36. Hehir MK, Logigian EL. Infectious neuropathies. Continuum (Minneap Minn) [Internet]. Lippincott Williams and Wilkins; 2014 [cited 2020 Mar 20];20:1274–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25299282.

  37. Moyle GJ, Sadler M. Peripheral neuropathy with nucleoside antiretrovirals. Risk factors, incidence and management. Drug Saf. 1998:481–94.

  38. Levy Y, Uziel Y, Zandman G, Rotman P, Amital H, Sherer Y, et al. Response of vasculitic peripheral neuropathy to intravenous immunoglobulin. Ann N Y Acad Sci [Internet]. 2005 [cited 2013 Apr 9];1051:779–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16127015.

  39. Murai H, Inaba S, Kira J, Yamamoto A, Ohno M, Goto I. Hepatitis C virus associated cryoglobulinemic neuropathy successfully treated with plasma exchange. Artif Organs [Internet]. 1995 [cited 2013 Apr 9];19:334–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7598653.

  40. Soares CN. Refractory mononeuritis multiplex due to hepatitis C infection and cryoglobulinemia: efficient response to rituximab. Neurologist [Internet]. 2016;21:47–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27119277.

  41. Leonhard SE, Lant S, Jacobs BC, Wilder-Smith A, Ferreira MLB, Solomon T, et al. Zika virus infection in the returning traveller: what every neurologist should know. Pract Neurol BMJ Publishing Group. 2018;18:271–7.

    Article  Google Scholar 

  42. Medina MT, England JD, Lorenzana I, Medina-Montoya M, Alvarado D, De Bastos M, et al. Zika virus associated with sensory polyneuropathy. J Neurol Sci Elsevier B.V. 2016:271–2.

  43. Arias A, Torres-Tobar L, Hernández G, Paipilla D, Palacios E, Torres Y, et al. Guillain-Barré syndrome in patients with a recent history of Zika in Cúcuta, Colombia: a descriptive case series of 19 patients from December 2015 to March 2016. J Crit Care [Internet]. W.B. Saunders; 2017 [cited 2020 Mar 20];37:19–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27610587.

  44. Smith DE, Beckham JD, Tyler KL, Pastula DM. Zika virus disease for neurologists. Neurol. Clin. Pract. Lippincott Williams and Wilkins. 2016:515–22.

  45. Abrams RPM, Solis J, Nath A. Therapeutic approaches for Zika virus infection of the nervous system. Neurotherapeutics Springer New York LLC. 2017;14:1027–48.

    CAS  Google Scholar 

  46. Wormser GP, Strle F, Shapiro ED, Dattwyler RJ, Auwaerter PG. A critical appraisal of the mild axonal peripheral neuropathy of late neurologic Lyme disease. Diagn. Microbiol. Infect. Dis. Elsevier Inc.; 2017. p. 163–167.

  47. Halperin JJ, Shapiro ED, Logigian E, Belman AL, Dotevall L, Wormser GP, et al. Practice parameter: treatment of nervous system Lyme disease (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology [Internet]. Lippincott Williams and Wilkins; 2007 [cited 2020 Mar 20];69:91–102. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17522387.

  48. Sejvar JJ, Haddad MB, Tierney BC, Campbell GL, Marfin AA, Van Gerpen JA, et al. Neurologic manifestations and outcome of West Nile virus infection. J Am Med Assoc [Internet]. 2003 [cited 2020 Mar 23];290:511–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12876094.

  49. Shimoni Z, Bin H, Bulvik S, Niven M, Hazzan R, Mendelson E, et al. The clinical response of West Nile virus neuroinvasive disease to intravenous immunoglobulin therapy. Clin Pract [Internet]. PAGEPress Publications; 2012 [cited 2020 Mar 23];2:18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24765417.

  50. Slonchak A, Clarke B, MacKenzie J, Amarilla AA, Setoh YX, Khromykh AA. West Nile virus infection and interferon alpha treatment alter the spectrum and the levels of coding and noncoding host RNAs secreted in extracellular vesicles. BMC Genomics [Internet]. BioMed Central Ltd.; 2019 [cited 2020 Mar 23];20:474. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31182021.

  51. Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med [Internet]. 2004;21:114–21. Available from:. https://doi.org/10.1111/j.1464-5491.2004.01109.x.

    Article  CAS  Google Scholar 

  52. Sadeghiyan Galeshkalami N, Abdollahi M, Najafi R, Baeeri M, Jamshidzade A, Falak R, et al. Alpha-lipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis. Life Sci [Internet]. 2019;216:101–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30393023.

  53. Dyck PJ, Zimmerman BR, Vilen TH, Minnerath SR, Karnes JL, Yao JK, et al. Nerve glucose, fructose, sorbitol, myo-inositol, and fiber degeneration and regeneration in diabetic neuropathy. N Engl J Med [Internet]. 1988 [cited 2020 Mar 29];319:542–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3136330.

  54. Greene DA, Arezzo JC, Brown MB. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Neurology [Internet]. 1999 [cited 2020 Mar 29];53:580–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10449124.

  55. Boulton AJM, Malik RA, Arezzo JC, Sosenko JM. Diabetic somatic neuropathies. Diabetes Care. 2004:1458–86.

  56. Wang X, Lin H, Xu S, Jin Y, Zhang R. Alpha lipoic acid combined with epalrestat: a therapeutic option for patients with diabetic peripheral neuropathy. Drug Des Devel Ther [Internet]. 2018;12:2827–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30233145.

  57. Hammes H-P, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med [Internet]. 2003 [cited 2020 Mar 30];9:294–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12592403.

  58. Trippe BS, Barrentine LW, Curole M V, Tipa E. Nutritional management of patients with diabetic peripheral neuropathy with L-methylfolate-methylcobalamin-pyridoxal-5-phosphate: results of a real-world patient experience trial. Curr Med Res Opin [Internet]. Taylor and Francis Ltd; 2016 [cited 2020 Mar 16];32:219–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26439233.

  59. Stracke H, Gaus W, Achenbach U, Federlin K, Bretzel RG. Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol Diabetes. 2008;116:600–5.

    Article  CAS  Google Scholar 

  60. Fonseca VA, Lavery LA, Thethi TK, Daoud Y, DeSouza C, Ovalle F, et al. Metanx in type 2 diabetes with peripheral neuropathy: a randomized trial. Am J Med [Internet]. 2013;126:141–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002934312005864

  61. Ghadiri-Anari A, Mozafari Z, Gholami S, Khodaei S-A, Aboutorabi-Zarchi M, Sepehri F, et al. Dose vitamin D supplementations improve peripheral diabetic neuropathy? A before-after clinical trial. Diabetes Metab Syndr [Internet]. Elsevier Ltd; 2019 [cited 2020 Mar 16];13:890–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30641826.

  62. Chen H-T, Lin H-D, Won JGS, Lee C-H, Wu S-C, Lin J-D, et al. Cardiovascular autonomic neuropathy, autonomic symptoms and diabetic complications in 674 type 2 diabetes. Diabetes Res Clin Pract [Internet]. 2008 [cited 2020 Mar 30];82:282–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18824270.

  63. Shehab D, Al-Jarallah K, Abdella N, Mojiminiyi OA, Al Mohamedy H. Prospective evaluation of the effect of short-term oral vitamin D supplementation on peripheral neuropathy in type 2 diabetes mellitus. Med Princ Pract [Internet]. S. Karger AG; 2015 [cited 2020 Mar 30];24:250–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25720672.

  64. Malik RA, Williamson S, Abbott C, Carrington AL, Iqbal J, Schady W, et al. Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: randomised double-blind controlled trial. Lancet (London, England) [Internet]. 352:1978–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9872248.

  65. Apfel SC, Kessler JA, Adornato BT, Litchy WJ, Sanders C, Rask CA. Recombinant human nerve growth factor in the treatments of diabetic polyneuropathy. Neurology Lippincott Williams and Wilkins. 1998;51:695–702.

    CAS  Google Scholar 

  66. Bramson C, Herrmann DN, Carey W, Keller D, Brown MT, West CR, et al. Exploring the role of tanezumab as a novel treatment for the relief of neuropathic pain. Pain Med [Internet]. Blackwell Publishing Inc.; 2015 [cited 2020 Mar 30];16:1163–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25594611.

  67. Suarez-Mendez S, Tovilla-Zárate CA, Juárez-Rojop IE, Bermúdez-Ocaña DY. Erythropoietin: a potential drug in the management of diabetic neuropathy. Biomed Pharmacother [Internet]. 2018;105:956–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30021390.

  68. Brines M, Dunne AN, van Velzen M, Proto PL, Ostenson C-G, Kirk RI, et al. ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol Med [Internet]. 2015;20:658–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25387363.

  69. Lupachyk S, Shevalye H, Maksimchyk Y, Drel VR, Obrosova IG. PARP inhibition alleviates diabetes-induced systemic oxidative stress and neural tissue 4-hydroxynonenal adduct accumulation: correlation with peripheral nerve function. Free Radic Biol Med [Internet]. 2011 [cited 2020 Mar 30];50:1400–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21300148.

  70. Byun YS, Kang B, Yoo YS, Joo CK. Poly (ADP-ribose) polymerase inhibition improves corneal epithelial innervation and wound healing in diabetic rats. Investig Ophthalmol Vis Sci [Internet]. Association for Research in Vision and Ophthalmology Inc.; 2015 [cited 2020 Mar 30];56:1948–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25711635.

  71. Li F, Drel VR, Szabó C, Stevens MJ, Obrosova IG. Low-dose poly (ADP-ribose) polymerase inhibitor-containing combination therapies reverse early peripheral diabetic neuropathy. Diabetes [Internet]. 2005 [cited 2020 Mar 30];54:1514–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15855340.

  72. Sweitzer SM, Medicherla S, Almirez R, Dugar S, Chakravarty S, Shumilla JA, et al. Antinociceptive action of a p38alpha MAPK inhibitor, SD-282, in a diabetic neuropathy model. Pain [Internet]. 2004 [cited 2020 Mar 30];109:409–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15157702.

  73. Price SA, Agthong S, Middlemas AB, Tomlinson DR. Mitogen-activated protein kinase p38 mediates reduced nerve conduction in experimental diabetic neuropathy: Interactions with aldose reductase. Diabetes [Internet]. 2004 [cited 2020 Mar 30];53:1851–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15220210.

  74. Mu Z-P, Wang Y-G, Li C-Q, Lv W-S, Wang B, Jing Z-H, et al. Association between tumor necrosis factor-α and diabetic peripheral neuropathy in patients with type 2 diabetes: a meta-analysis. Mol Neurobiol [Internet]. 2017;54:983–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26797519.

  75. Satoh J, Yagihashi S, Toyota T. The possible role of tumor necrosis factor-alpha in diabetic polyneuropathy. Exp Diabesity Res [Internet]. Taylor and Francis Ltd.; 2003 [cited 2020 Mar 16];4:65–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14630568.

  76. Andriambeloson E, Baillet C, Vitte PA, Garotta G, Dreano M, Callizot N. Interleukin-6 attenuates the development of experimental diabetes-related neuropathy. Neuropathology. 2006;26:32–42.

    Article  Google Scholar 

  77. Cox AA, Sagot Y, Hedou G, Grek C, Wilkes T, Vinik AI, et al. Low-dose pulsatile Interleukin-6 as a treatment option for diabetic peripheral neuropathy. Front Endocrinol (Lausanne) [Internet]. 2017;8:89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28512447.

  78. Obrosova IG, Stavniichuk R, Drel VR, Shevalye H, Vareniuk I, Nadler JL, et al. Different roles of 12/15-lipoxygenase in diabetic large and small fiber peripheral and autonomic neuropathies. Am J Pathol [Internet]. Elsevier Inc.; 2010 [cited 2020 Mar 30];177:1436–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20724598.

  79. Stavniichuk R, Drel VR, Shevalye H, Vareniuk I, Stevens MJ, Nadler JL, et al. Role of 12/15-lipoxygenase in nitrosative stress and peripheral prediabetic and diabetic neuropathies. Free Radic Biol Med [Internet]. 2010;49:1036–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20599608.

  80. Cameron NE, Cotter MA. Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets [Internet]. Bentham Science Publishers Ltd.; 2008 [cited 2020 Mar 30];9:60–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18220713.

  81. Kececi H, Degirmenci Y. Hormone replacement therapy in hypothyroidism and nerve conduction study. Neurophysiol Clin [Internet]. 2006 [cited 2020 Mar 16];36:79–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16844546.

  82. Penza P, Lombardi R, Camozzi F, Ciano C, Lauria G. Painful neuropathy in subclinical hypothyroidism: clinical and neuropathological recovery after hormone replacement therapy. Neurol Sci [Internet]. 2009 [cited 2020 Mar 16];30:149–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19214379.

  83. Julian T, Glascow N, Syeed R, Zis P. Alcohol-related peripheral neuropathy: a systematic review and meta-analysis [Internet]. J. Neurol. Dr. Dietrich Steinkopff Verlag GmbH and Co. KG; 2019 [cited 2020 Mar 16]. p. 2907–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30467601.

  84. Chopra K, Tiwari V. Alcoholic neuropathy: possible mechanisms and future treatment possibilities. Br J Clin Pharmacol [Internet]. 2012 [cited 2020 Mar 16];73:348–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21988193.

  85. Kaur M, Singh A, Kumar B, Singh SK, Bhatia A, Gulati M, et al. Protective effect of co-administration of curcumin and sildenafil in alcohol induced neuropathy in rats. Eur J Pharmacol [Internet]. Elsevier B.V.; 2017 [cited 2020 Mar 16];805:58–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28315678.

  86. Knoerl R, Gilchrist L, Kanzawa-Lee GA, Donohoe C, Bridges C, Lavoie Smith EM. Proactive rehabilitation for chemotherapy-induced peripheral neuropathy. Semin Oncol Nurs [Internet]. Elsevier Inc; 2020 [cited 2020 Mar 16];36:150983. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31959510.

  87. Miaskowski C, Mastick J, Paul SM, Topp K, Smoot B, Abrams G, et al. Chemotherapy-induced neuropathy in cancer survivors. J Pain Symptom Manage [Internet]. Elsevier Inc.; 2017 [cited 2020 Mar 16];54:204-218.e2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28063866.

  88. • Dubey D, David WS, Reynolds KL, Chute DF, Clement NF, Cohen JV, et al. Severe neurological toxicity of immune checkpoint inhibitors: growing spectrum. Ann Neurol [Internet]. 2020 [cited 2020 Mar 875 16];87(5):659–669. Available from: https://doi.org/10.1002/ana.25708. This review highlights the spectrum of immune-related adverse events associated with immune checkpoint inhibitors. This paper also describes a treatment approach for these adverse events. Our understanding of these disorders is rapidly evolving.

  89. Supakornnumporn S, Katirji B. Guillain-Barré syndrome triggered by immune checkpoint inhibitors: a case report and literature review. J Clin Neuromuscul Dis [Internet]. Lippincott Williams and Wilkins; 2017 [cited 2020 Mar 16];19:80–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29189553.

  90. Gu Y, Menzies AM, Long G V., Fernando SL, Herkes G. Immune mediated neuropathy following checkpoint immunotherapy [Internet]. J. Clin. Neurosci. Churchill Livingstone; 2017 [cited 2020 Mar 16]. p. 14–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28765062.

  91. Diamantopoulos PT, Tsatsou K, Benopoulou O, Anastasopoulou A, Gogas H. Inflammatory myopathy and axonal neuropathy in a patient with melanoma following pembrolizumab treatment. J Immunother [Internet]. Lippincott Williams and Wilkins; 2017 [cited 2020 Mar 16];40:221–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28498142.

  92. Sepúlveda M, Martinez-Hernandez E, Gaba L, Victoria I, Sola-Valls N, Falgàs N, et al. Motor polyradiculopathy during pembrolizumab treatment of metastatic melanoma. Muscle and Nerve [Internet]. John Wiley and Sons Inc.; 2017 [cited 2020 Mar 16];56:E162–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28439919.

  93. Kimura T, Fukushima S, Miyashita A, Aoi J, Jinnin M, Kosaka T, et al. Myasthenic crisis and polymyositis induced by one dose of nivolumab. Cancer Sci [Internet]. Blackwell Publishing Ltd; 2016 [cited 2020 Mar 16];107:1055–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27420474.

  94. Shirai T, Sano T, Kamijo F, Saito N, Miyake T, Kodaira M, et al. Acetylcholine receptor binding antibody-associated myasthenia gravis and rhabdomyolysis induced by nivolumab in a patient with melanoma. Jpn J Clin Oncol [Internet]. 2016 [cited 2020 Mar 16];46:86–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26491202.

  95. Suzuki S, Ishikawa N, Konoeda F, Seki N, Fukushima S, Takahashi K, et al. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology [Internet]. Lippincott Williams and Wilkins; 2017 [cited 2020 Mar 16];89:1127–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28821685.

  96. Möhn N, Beutel G, Gutzmer R, Ivanyi P, Satzger I, Skripuletz T. Neurological immune related adverse events associated with nivolumab, ipilimumab, and pembrolizumab therapy-review of the literature and future outlook. J Clin Med [Internet]. MDPI AG; 2019 [cited 2020 Mar 16];8:1777. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31653079.

  97. Cuzzubbo S, Javeri F, Tissier M, Roumi A, Barlog C, Doridam J, et al. Neurological adverse events associated with immune checkpoint inhibitors: review of the literature. Eur J Cancer [Internet]. 2017;73:1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28064139.

  98. Kao JC, Liao B, Markovic SN, Klein CJ, Naddaf E, Staff NP, et al. Neurological complications associated with anti-programmed death 1 (PD-1) antibodies. JAMA Neurol [Internet]. 2017;74:1216–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28873125.

  99. Spain L, Walls G, Messiou C, Turajlic S, Gore M, Larkin J. Efficacy and toxicity of rechallenge with combination immune checkpoint blockade in metastatic melanoma: a case series. Cancer Immunol Immunother [Internet]. Springer Science and Business Media Deutschland GmbH; 2017 [cited 2020 Mar 16];66:113–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27838762.

  100. Johnson DB, Manouchehri A, Haugh AM, Quach HT, Balko JM, Lebrun-Vignes B, et al. Neurologic toxicity associated with immune checkpoint inhibitors: a pharmacovigilance study. J Immunother Cancer [Internet]. BioMed Central Ltd.; 2019 [cited 2020 Mar 16];7:134. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31118078.

  101. Altman AL, Golub JS, Pensak ML, Samy RN. Bilateral facial palsy following ipilimumab infusion for melanoma [Internet]. Otolaryngol. - Head Neck Surg. (United States). SAGE Publications Inc.; 2015 [cited 2020 Mar 16]. p. 894–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26408564.

  102. Manousakis G, Koch J, Sommerville RB, El-Dokla A, Harms MB, Al-Lozi MT, et al. Multifocal radiculoneuropathy during ipilimumab treatment of melanoma. Muscle Nerve [Internet]. 2013 [cited 2020 Mar 16];48:440–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23447136.

  103. Alhammad RM, Dronca RS, Kottschade LA, Turner HJ, Staff NP, Mauermann ML, et al. Brachial plexus neuritis associated with anti-programmed cell death-1 antibodies: report of 2 cases. Mayo Clin proceedings Innov Qual outcomes [Internet]. Elsevier BV; 2017 [cited 2020 Mar 16];1:192–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30225416.

  104. Dubey D, Jitprapaikulsan J, Bi H, Do Campo RV, McKeon A, Pittock SJ, et al. Amphiphysin-IgG autoimmune neuropathy: A recognizable clinicopathologic syndrome. Neurology [Internet]. 2019; Available from: http://www.ncbi.nlm.nih.gov/pubmed/31624089.

  105. Johansen A, Christensen SJ, Scheie D, Højgaard JLS, Kondziella D. Neuromuscular adverse events associated with anti-PD-1 monoclonal antibodies: systematic review [Internet]. Neurology. Lippincott Williams and Wilkins; 2019 [cited 2020 Mar 16]. p. 663–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30850443.

  106. Safa H, Johnson DH, Trinh VA, Rodgers TE, Lin H, Suarez-Almazor ME, et al. Immune checkpoint inhibitor related myasthenia gravis: single center experience and systematic review of the literature. J Immunother Cancer [Internet]. BioMed Central Ltd.; 2019 [cited 2020 Mar 16];7:319. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31753014.

  107. Puzanov I, Diab A, Abdallah K, Bingham CO, Brogdon C, Dadu R, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother cancer [Internet]. BioMed Central Ltd.; 2017 [cited 2020 Mar 16];5:95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29162153.

  108. Thaipisuttikul I, Chapman P, Avila EK. Peripheral neuropathy associated with ipilimumab: a report of 2 cases. J Immunother [Internet]. Lippincott Williams and Wilkins; 2015 [cited 2020 Mar 16];38:77–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25658617.

  109. Liao B, Shroff S, Kamiya-Matsuoka C, Tummala S. Atypical neurological complications of ipilimumab therapy in patients with metastatic melanoma. Neuro Oncol [Internet]. 2014 [cited 2020 Mar 16];16:589–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24482447.

  110. Antoine J-C, Camdessanché J-P. Paraneoplastic neuropathies. Curr Opin Neurol [Internet]. 2017;30:513–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28682959.

  111. Ramchandren S, Lewis RA. Monoclonal gammopathy and neuropathy [Internet]. Curr. Opin. Neurol. 2009 [cited 2020 Mar 16]. p. 480–5 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19625962.

  112. Lunn MP. Neuropathies and paraproteins. Curr Opin Neurol [Internet]. Lippincott Williams and Wilkins; 2019 [cited 2020 Mar 16];32:658–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31313705.

  113. Chaudhry HM, Mauermann ML, Rajkumar SV. Monoclonal gammopathy–associated peripheral neuropathy: diagnosis and management. Mayo Clin. Proc. Elsevier Ltd; 2017. p. 838–850.

  114. •• Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang C-C, Ueda M, Kristen A V, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med [Internet]. 2018;379:11–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29972753. This phase 3 study demonstrates the benefit of patisiran, an RNA interference agent, in the treatment of transthyretin familial amyloidosis polyneuropathy, a previously untreatable disease.

  115. Mathew V, Wang AK. Inotersen: new promise for the treatment of hereditary transthyretin amyloidosis. Drug Des Devel Ther [Internet]. Dove Medical Press Ltd.; 2019 [cited 2020 Mar 16];13:1515–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31118583.

  116. •• Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med [Internet]. 2018;379:22–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29972757. This phase 3 study demonstrates the benefit of inotersen, an antisense oligonucleotide, in the treatment of transthyretin familial amyloidosis polyneuropathy, a previously untreatable disease.

  117. Gemignani F, Marbini A, Pavesi G, Di Vittorio S, Manganelli P, Cenacchi G, et al. Peripheral neuropathy associated with primary Sjögren’s syndrome. J Neurol Neurosurg Psychiatry [Internet]. BMJ Publishing Group; 1994 [cited 2020 Mar 16];57:983–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8057125.

  118. Barendregt PJ, van den Bent MJ, van Raaij-van den Aarssen VJ, van den Meiracker AH, Vecht CJ, van der Heijde GL, et al. Involvement of the peripheral nervous system in primary Sjögren’s syndrome. Ann Rheum Dis [Internet]. 2001 [cited 2020 Mar 16];60:876–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11502615.

  119. Sène D, Jallouli M, Lefaucheur J-P, Saadoun D, Costedoat-Chalumeau N, Maisonobe T, et al. Peripheral neuropathies associated with primary Sjögren syndrome: immunologic profiles of nonataxic sensory neuropathy and sensorimotor neuropathy. Medicine (Baltimore) [Internet]. 2011 [cited 2019 Dec 16];90:133–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21358442.

  120. García-Carrasco M, Ramos-Casals M, Rosas J, Pallarés L, Calvo-Alen J, Cervera R, et al. Primary Sjögren syndrome: clinical and immunologic disease patterns in a cohort of 400 patients. Medicine (Baltimore). 2002;81:270–80.

    Article  Google Scholar 

  121. Lafitte C, Amoura Z, Cacoub P, Pradat-Diehl P, Picq C, Salachas F, et al. Neurological complications of primary Sjögren’s syndrome. J Neurol [Internet]. 2001 [cited 2020 Mar 16];248:577–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11517999.

  122. Perzyńska-Mazan J, Maślińska M, Gasik R. Neurological manifestations of primary Sjögren’s syndrome [Internet]. Reumatologia. Termedia Publishing House Ltd.; 2018 [cited 2020 Mar 16]. p. 99–105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29853725.

  123. Margaretten M. Neurologic manifestations of primary Sjögren syndrome. Rheum. Dis. Clin. North Am. W.B. Saunders; 2017. p. 519–529.

  124. • Humă AC, Kecskeş EM, Tulbă D, Bălănescu P, Băicuş C. Immunosuppressive treatment for peripheral neuropathies in Sjogren’s syndrome - a systematic review. Rom J Intern Med [Internet]. 2019; available from: http://www.ncbi.nlm.nih.gov/pubmed/31527298. An excellent systematic review of treatment options in Sjögren’s associated peripheral neuropathy. This review highlights the need for prospective randomized controlled treatment trials for Sjögren’s associated polyneuropathy.

  125. Font J, Ramos-Casals M, De la Red G, Pou A, Casanova A, García-Carrasco M, et al. Pure sensory neuropathy in primary Sjögren’s syndrome. Longterm prospective followup and review of the literature. J Rheumatol. 2003;30:1552–7.

    PubMed  Google Scholar 

  126. McCoy SS, Baer AN. Neurological complications of Sjögren’s syndrome: diagnosis and management. Curr Treat options Rheumatol [Internet]. 2017;3:275–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30627507.

  127. Vrancken AFJE, Said G. Vasculitic neuropathy. Handb Clin Neurol [Internet]. 2013;115:463–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23931796.

  128. Chung S a, Seo P. Microscopic polyangiitis. Rheum Dis Clin North Am [Internet]. Elsevier Ltd; 2010 [cited 2013 Apr 8];36:545–58. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2917831&tool=pmcentrez&rendertype=abstract

  129. Villiger PM, Guillevin L. Microscopic polyangiitis: clinical presentation. Autoimmun Rev [Internet]. Elsevier B.V.; 2010 [cited 2013 Mar 18];9:812–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20656070.

  130. Zhang W, Zhou G, Shi Q, Zhang X, Zeng X-F, Zhang F-C. Clinical analysis of nervous system involvement in ANCA-associated systemic vasculitides. Clin Exp Rheumatol [Internet]. 2009 [cited 2013 Apr 7];27:S65–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19646349.

  131. Comarmond C, Pagnoux C, Khellaf M, Cordier J-F, Hamidou M, Viallard J-F, et al. Eosinophilic granulomatosis with polyangiitis (Churg-Strauss): clinical characteristics and long-term followup of the 383 patients enrolled in the French Vasculitis Study Group cohort. Arthritis Rheum [Internet]. 2013;65:270–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23044708.

  132. Guillevin L, Pagnoux C, Mouthon L. Churg-strauss syndrome. Semin Respir Crit care Med [Internet]. 2004;25:535–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16088497.

  133. Uchiyama M, Mitsuhashi Y, Yamazaki M, Tsuboi R. Elderly cases of Churg-Strauss syndrome: case report and review of Japanese cases. J Dermatol [Internet]. 2012 [cited 2013 Apr 30];39:76–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22133207.

  134. Pagnoux C, Seror R, Henegar C, Mahr A, Cohen P, Le Guern V, et al. Clinical features and outcomes in 348 patients with polyarteritis nodosa: a systematic retrospective study of patients diagnosed between 1963 and 2005 and entered into the French Vasculitis Study Group Database. Arthritis Rheum [Internet]. 2010 [cited 2013 Mar 5];62:616–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20112401.

  135. Burns TM, Schaublin G a, Dyck PJB. Vasculitic neuropathies. Neurol Clin [Internet]. 2007 [cited 2013 Apr 7];25:89–113. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17324722.

  136. Gorson KC. Therapy for vasculitic neuropathies. Curr Treat Options Neurol [Internet]. 2006 [cited 2013 May 5];8:105–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16464407.

  137. Stone JH, Merkel P A, Spiera R, Seo P, Langford C a, Hoffman GS, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med [Internet]. 2010;363:221–32. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3137658&tool=pmcentrez&rendertype=abstract

  138. Jones RB, Tervaert JWC, Hauser T, Luqmani R, Morgan MD, Peh CA, et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med [Internet]. 2010 [cited 2013 Apr 30];363:211–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20647198.

  139. Fanouriakis A, Kougkas N, Vassilopoulos D, Fragouli E, Repa A, Sidiropoulos P. Rituximab for eosinophilic granulomatosis with polyangiitis with severe vasculitic neuropathy: case report and review of current clinical evidence. Semin Arthritis Rheum [Internet]. 2015;45:60–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25908179.

  140. Pagnoux C, Guillevin L, French Vasculitis Study Group, MAINRITSAN investigators. Rituximab or azathioprine maintenance in ANCA-associated vasculitis. N Engl J Med [Internet]. 2015;372:386–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25607433.

  141. Langford C a. 15. Vasculitis. J Allergy Clin Immunol [Internet]. 2003 [cited 2013 Apr 8];111:S602–12. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0091674902913424

  142. Jayne D, Rasmussen N, Andrassy K, Bacon P, Tervaert JWC, Dadoniené J, et al. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N Engl J Med [Internet]. 2003;349:36–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12840090.

  143. Collins MP, Dyck PJB, Gronseth GS, Guillevin L, Hadden RDM, Heuss D, et al. Peripheral Nerve Society Guideline on the classification, diagnosis, investigation, and immunosuppressive therapy of non-systemic vasculitic neuropathy: executive summary. J Peripher Nerv Syst [Internet]. 2010 [cited 2013 Apr 7];15:176–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21040139.

  144. Stern BJ, Krumholz A, Johns C, Scott P, Nissim J. Sarcoidosis and its neurological manifestations. Arch Neurol [Internet]. 1985 [cited 2019 Dec 27];42:909–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3896208.

  145. Pawate S, Moses H, Sriram S. Presentations and outcomes of neurosarcoidosis: a study of 54 cases. QJM [Internet]. 2009 [cited 2020 Mar 20];102:449–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19383611.

  146. Lower EE, Broderick JP, Brott TG, Baughman RP. Diagnosis and management of neurological sarcoidosis. Arch Intern Med. 1997;157:1864–8.

    Article  CAS  Google Scholar 

  147. Terkelsen AJ, Karlsson P, Lauria G, Freeman R, Finnerup NB, Jensen TS. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol [Internet]. 2017;16:934–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29029847.

  148. Bakkers M, Merkies ISJ, Lauria G, Devigili G, Penza P, Lombardi R, et al. Intraepidermal nerve fiber density and its application in sarcoidosis. Neurology [Internet]. 2009;73:1142–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19805731.

  149. Ungprasert P, Crowson CS, Matteson EL. Epidemiology and clinical characteristics of sarcoidosis: an update from a population-based cohort study from Olmsted County, Minnesota. Reumatismo [Internet]. 2017;69:16–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28535617.

  150. Allen RKA, Sellars RE, Sandstrom PA. A prospective study of 32 patients with neurosarcoidosis. Sarcoidosis, Vasc Diffus lung Dis Off J WASOG [Internet]. 2003 [cited 2020 Mar 20];20:118–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12870721.

  151. Ferriby D, de Seze J, Stojkovic T, Hachulla E, Wallaert B, Destée A, et al. Long-term follow-up of neurosarcoidosis. Neurology [Internet]. 2001 [cited 2020 Mar 20];57:927–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11552036.

  152. Bagnato F, Stern BJ. Neurosarcoidosis: diagnosis, therapy and biomarkers [Internet]. Expert Rev. Neurother. Expert reviews ltd.; 2015 [cited 2020 Mar 20]. p. 533–48 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25936846.

  153. • Tavee JO, Karwa K, Ahmed Z, Thompson N, Parambil J, Culver DA. Sarcoidosis-associated small fiber neuropathy in a large cohort: clinical aspects and response to IVIG and anti-TNF alpha treatment. Respir Med [Internet]. 2017;126:135–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28318820. This retrospective study examined the treatment of sarcoidosis-associated small fiber neuropathy and found that these patients often do not respond to standard treatment (methotrexate and corticosteroids). Rather, they are more likely to respond to IVIg and TNFα inhibitors.

  154. Bril V, England J, Franklin GM, Backonja M, Cohen J, Del Toro D, et al. Evidence-based guideline: treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology [Internet]. 2011;76:1758–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21482920.

  155. Bates D, Schultheis BC, Hanes MC, Jolly SM, Chakravarthy K V, Deer TR, et al. A comprehensive algorithm for management of neuropathic pain. Pain Med [Internet]. 2019 [cited 2020 Mar 23];20:S2–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31152178.

  156. Attal N, Cruccu G, Baron R, Haanpää M, Hansson P, Jensen TS, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol [Internet]. 2010;17:1113–e88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20402746.

  157. Evidence-based guideline: Treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2011;76:1758–65. https://doi.org/10.1212/WNL.0b013e3182166ebe . pmid:21482920.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly G. Gwathmey MD.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurologic Manifestations of Systemic Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dworetz, A., Graley, C., Padia, H. et al. Neurologic Manifestations of Systemic Disease: Peripheral Nervous System. Curr Treat Options Neurol 22, 25 (2020). https://doi.org/10.1007/s11940-020-00631-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-020-00631-7

Keywords

Navigation