Skip to main content

Advertisement

Log in

Treatment Opportunities in Patients With Metabolic Myopathies

  • Neuromuscular Disorders (C Fournier, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Metabolic myopathies are disorders affecting utilization of carbohydrates or fat in the skeletal muscle. Adult patients with metabolic myopathies typically present with exercise-induced pain, contractures or stiffness, fatigue, and myoglobinuria. Symptoms are related to energy failure.

Purpose of review In this review, the current treatment options, including exercise therapy, dietary treatment, pharmacological supplementation, gene transcription, and enzyme replacement therapy, are described.

Recent findings Recognition of the metabolic block in the metabolic myopathies has started the development of new therapeutic options. Enzyme replacement therapy with rGAA has revolutionized treatment of early onset Pompe disease. Supplements of riboflavin, carnitine, and sucrose show promise in patients with respectively riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency, primary carnitine deficiency, and McArdle disease. Treatment with citric acid cycle intermediates supply by triheptanoin seems promising in patients with glucogenoses, and studies are ongoing in patients with McArdle disease.

Summary Treatment of metabolic myopathies primarily relies on avoiding precipitating factors and dietary supplements that bypass the metabolic block. Only a few of the used supplements are validated, and further studies are needed to define efficacious treatments. Further potential treatment targets are molecular therapies aimed at enzyme correction, such as chaperone therapy, gene therapy, gene expression therapy, and enzyme replacement therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Ørngreen M and Vissing J. Metabolic myopathies in Oxford textbook of neuromuscular disorders. First edition. ed. Oxford textbooks in clinical neurology. Oxford: Oxford University Press; 2014.

  2. Haller RG, et al. Myophosphorylase deficiency impairs muscle oxidative metabolism. Ann Neurol. 1985;17(2):196–9.

    Article  CAS  PubMed  Google Scholar 

  3. Tein I. Metabolic myopathies. Semin Pediatr Neurol. 1996;3(2):59–98.

    Article  CAS  PubMed  Google Scholar 

  4. Vissing J, Haller RG. The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N Engl J Med. 2003;349(26):2503–9.

    Article  CAS  PubMed  Google Scholar 

  5. Andersen ST, Haller RG, Vissing J. Effect of oral sucrose shortly before exercise on work capacity in McArdle disease. Arch Neurol. 2008;65(6):786–9.

    Article  PubMed  Google Scholar 

  6. Andersen ST, Vissing J. Carbohydrate- and protein-rich diets in McArdle disease: effects on exercise capacity. J Neurol Neurosurg Psychiatry. 2008;79(12):1359–63.

    Article  CAS  PubMed  Google Scholar 

  7. Vorgerd M, et al. Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebo-controlled crossover trial. Arch Neurol. 2000;57(7):956–63.

    Article  CAS  PubMed  Google Scholar 

  8. Preisler N, et al. Fat and carbohydrate metabolism during exercise in phosphoglucomutase type 1 deficiency. J Clin Endocrinol Metab. 2013;98(7):E1235–40.

    Article  CAS  PubMed  Google Scholar 

  9. •• Voermans NC, et al. PGM1 deficiency: substrate use during exercise and effect of treatment with galactose. Neuromuscul Disord. 2017;27(4):370–6. This study indicates that oral supplementation of galactose is beneficial in patients with phosphoglucomutase 1 deficiency.

    Article  CAS  PubMed  Google Scholar 

  10. van der Ploeg AT, et al. A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med. 2010;362(15):1396–406.

    Article  PubMed  Google Scholar 

  11. Kishnani PS, et al. Glycogen storage disease type III diagnosis and management guidelines. Genet Med. 2010;12(7):446–63.

    Article  CAS  PubMed  Google Scholar 

  12. Preisler N, et al. Exercise intolerance in glycogen storage disease type III: weakness or energy deficiency? Mol Genet Metab. 2013;109(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  13. Orngreen MC, Olsen DB, Vissing J. Exercise tolerance in carnitine palmitoyltransferase II deficiency with IV and oral glucose. Neurology. 2002;59(7):1046–51.

    Article  CAS  PubMed  Google Scholar 

  14. Orngreen MC, Ejstrup R, Vissing J. Effect of diet on exercise tolerance in carnitine palmitoyltransferase II deficiency. Neurology. 2003;61(4):559–61.

    Article  PubMed  Google Scholar 

  15. Lamhonwah AM, et al. Novel OCTN2 mutations: no genotype-phenotype correlations: early carnitine therapy prevents cardiomyopathy. Am J Med Genet. 2002;111(3):271–84.

    Article  PubMed  Google Scholar 

  16. Olsen RK, et al. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain. 2007;130(Pt 8):2045–54.

    Article  PubMed  Google Scholar 

  17. Gempel K, et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain. 2007;130(Pt 8):2037–44.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Laforet P, Vianey-Saban C. Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges. Neuromuscul Disord. 2010;20(11):693–700.

    Article  PubMed  Google Scholar 

  19. •• Olpin SE, et al. The investigation and management of metabolic myopathies. J Clin Pathol. 2015;68(6):410–7. This review summarizes the diagnostic process and management of patients with metabolic myopathies.

    Article  PubMed  Google Scholar 

  20. Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009;361(1):62–72.

    Article  CAS  PubMed  Google Scholar 

  21. Cervellin G, Comelli I, Lippi G. Rhabdomyolysis: historical background, clinical, diagnostic and therapeutic features. Clin Chem Lab Med. 2010;48(6):749–56.

    Article  CAS  PubMed  Google Scholar 

  22. Haller RG, Vissing J. Spontaneous “second wind” and glucose-induced second “second wind” in McArdle disease: oxidative mechanisms. Arch Neurol. 2002;59(9):1395–402.

    Article  PubMed  Google Scholar 

  23. Haller RG, Vissing J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology. 2004;62(1):82–6.

    Article  CAS  PubMed  Google Scholar 

  24. Lewis SF, Vora S, Haller RG. Abnormal oxidative metabolism and O2 transport in muscle phosphofructokinase deficiency. J Appl Physiol (1985). 1991;70(1):391–8.

    CAS  Google Scholar 

  25. Orngreen MC, et al. Fuel utilization in subjects with carnitine palmitoyltransferase 2 gene mutations. Ann Neurol. 2005;57(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  26. Orngreen MC, et al. Fat metabolism during exercise in patients with McArdle disease. Neurology. 2009;72(8):718–24.

    Article  CAS  PubMed  Google Scholar 

  27. Orngreen MC, et al. Fuel utilization in patients with very long-chain acyl-coa dehydrogenase deficiency. Ann Neurol. 2004;56(2):279–83.

    Article  CAS  PubMed  Google Scholar 

  28. Orngreen MC, et al. Is muscle glycogenolysis impaired in X-linked phosphorylase b kinase deficiency? Neurology. 2008;70(20):1876–82.

    Article  CAS  PubMed  Google Scholar 

  29. Andersen ST, et al. Effect of changes in fat availability on exercise capacity in McArdle disease. Arch Neurol. 2009;66(6):762–6.

    Article  PubMed  Google Scholar 

  30. •• Orngreen MC, et al. Bezafibrate in skeletal muscle fatty acid oxidation disorders: a randomized clinical trial. Neurology. 2014;82(7):607–13. This randomized, double-blind, controlled study of Bezafibrate vs. placebo in 10 patients with the fatty acid oxidation defects VLCAD and CPT II deficiencies showed no improvement of FAO neither at rest or during exercise.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vissing J, Quistorff B, Haller RG. Effect of fuels on exercise capacity in muscle phosphoglycerate mutase deficiency. Arch Neurol. 2005;62(9):1440–3.

    Article  PubMed  Google Scholar 

  32. Vissing J. Exercise training in metabolic myopathies. Rev Neurol (Paris). 2016;172(10):559–65.

    Article  CAS  Google Scholar 

  33. Mate-Munoz JL, et al. Favorable responses to acute and chronic exercise in McArdle patients. Clin J Sport Med. 2007;17(4):297–303.

    Article  PubMed  Google Scholar 

  34. Haller RG, et al. Aerobic conditioning: an effective therapy in McArdle’s disease. Ann Neurol. 2006;59(6):922–8.

    Article  PubMed  Google Scholar 

  35. Ollivier K, et al. Effects of an endurance training on patients with McArdle’s disease. Sci Sports. 2005;20(1):21–6.

    Article  Google Scholar 

  36. Ollivier K, et al. Exercise tolerance and daily life in McArdle’s disease. Muscle Nerve. 2005;31(5):637–41.

    Article  PubMed  Google Scholar 

  37. Lucia A, et al. Genotypic and phenotypic features of McArdle disease: insights from the Spanish national registry. J Neurol Neurosurg Psychiatry. 2012;83(3):322–8.

    Article  PubMed  Google Scholar 

  38. van den Berg LE, et al. Safety and efficacy of exercise training in adults with Pompe disease: evaluation of endurance, muscle strength and core stability before and after a 12 week training program. Orphanet J Rare Dis. 2015;10:87.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Terzis G, et al. Effect of aerobic and resistance exercise training on late-onset Pompe disease patients receiving enzyme replacement therapy. Mol Genet Metab. 2011;104(3):279–83.

    Article  CAS  PubMed  Google Scholar 

  40. Santalla A, et al. Feasibility of resistance training in adult McArdle patients: clinical outcomes and muscle strength and mass benefits. Front Aging Neurosci. 2014;6:334.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pearson CM, Rimer DG, Mommaerts WF. A metabolic myopathy due to absence of muscle phosphorylase. Am J Med. 1961;30:502–17.

    Article  CAS  PubMed  Google Scholar 

  42. Stojkovic T, et al. Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med. 2009;361(4):425–7.

    Article  CAS  PubMed  Google Scholar 

  43. Preisler N, et al. Muscle phosphorylase kinase deficiency: a neutral metabolic variant or a disease? Neurology. 2012;78(4):265–8.

    Article  CAS  PubMed  Google Scholar 

  44. Laforet PO, Orngreen MC; Preisler N; Andersen, G; Vissing, J, Muscle fat oxidation is blocked during exercise in neutral lipid storage disease. Arch Neurol. 2012.

  45. Orngreen MC, et al. Effects of IV glucose and oral medium-chain triglyceride in patients with VLCAD deficiency. Neurology. 2007;69(3):313–5.

    Article  CAS  PubMed  Google Scholar 

  46. Haller RG, Lewis SF. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. N Engl J Med. 1991;324(6):364–9.

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41(3):709–31.

    Article  PubMed  Google Scholar 

  48. Roe CR, Mochel F. Anaplerotic diet therapy in inherited metabolic disease: therapeutic potential. J Inherit Metab Dis. 2006;29(2–3):332–40.

    Article  CAS  PubMed  Google Scholar 

  49. Roe CR, et al. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest. 2002;110(2):259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roe CR, et al. Carnitine palmitoyltransferase II deficiency: successful anaplerotic diet therapy. Neurology. 2008;71(4):260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harris RA, Devlin TM. Textbook of biochemistry with clinical correlations. New York: Wiley-Liss; 1997. p. 322–3.

    Google Scholar 

  52. Farshidfar F, Pinder MA, and Myrie SB, Creatine supplementation and skeletal muscle metabolism for building muscle mass—review of the potential mechanisms of action. Curr Protein Pept Sci. 2017.

  53. Vorgerd M, et al. Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover study. Arch Neurol. 2002;59(1):97–101.

    Article  PubMed  Google Scholar 

  54. Longo N, Amat C. di San Filippo, and M. Pasquali, Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet. 2006;142C(2):77–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scholte HR, et al. Primary carnitine deficiency. J Clin Chem Clin Biochem. 1990;28(5):351–7.

    CAS  PubMed  Google Scholar 

  56. Madsen KL, et al. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-carnitine supplementation. J Clin Endocrinol Metab. 2013;98(4):1667–75.

    Article  CAS  PubMed  Google Scholar 

  57. Izumi R, et al. A case of McArdle disease: efficacy of vitamin B6 on fatigability and impaired glycogenolysis. Intern Med. 2010;49(15):1623–5.

    Article  PubMed  Google Scholar 

  58. Sato S, et al. Confirmation of the efficacy of vitamin B6 supplementation for McArdle disease by follow-up muscle biopsy. Muscle Nerve. 2012;45(3):436–40.

    Article  PubMed  Google Scholar 

  59. •• Quinlivan R, Martinuzzi A, and Schoser B. Pharmacological and nutritional treatment for McArdle disease (glycogen storage disease type V). Cochrane Database Syst Rev. 2014;(11):CD003458. This Cochrane review critically and thoroughly examine existing treatment studies in patients with McArdle disease.

  60. Vistisen B, et al. Minor amounts of plasma medium-chain fatty acids and no improved time trial performance after consuming lipids. J Appl Physiol. 2003;95(6):2434–43.

    Article  CAS  PubMed  Google Scholar 

  61. Vorgerd M, Zange J. Treatment of glycogenosys type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle. Acta Myol. 2007;26(1):61–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Danser AH, et al. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation. 1995;92(6):1387–8.

    Article  CAS  PubMed  Google Scholar 

  63. Martinuzzi A, et al. Phenotype modulators in myophosphorylase deficiency. Ann Neurol. 2003;53(4):497–502.

    Article  CAS  PubMed  Google Scholar 

  64. Martinuzzi A, et al. Chronic therapy for McArdle disease: the randomized trial with ACE inhibitor. Acta Myol. 2007;26(1):64–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bastin J, Lopes-Costa A, Djouadi F. Exposure to resveratrol triggers pharmacological correction of fatty acid utilization in human fatty acid oxidation-deficient fibroblasts. Hum Mol Genet. 2011;20(10):2048–57.

    Article  CAS  PubMed  Google Scholar 

  66. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.

    Article  CAS  PubMed  Google Scholar 

  67. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–35.

    Article  CAS  PubMed  Google Scholar 

  68. Lemberger T, et al. PPAR tissue distribution and interactions with other hormone-signaling pathways. Ann N Y Acad Sci. 1996;804:231–51.

    Article  CAS  PubMed  Google Scholar 

  69. Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol. 1996;12:335–63.

    Article  CAS  PubMed  Google Scholar 

  70. Abshagen U, Sporl-Radun S, Marinow J. Steady-state kinetics of bezafibrate and clofibrate in healthy female volunteers. Eur J Clin Pharmacol. 1980;17(4):305–8.

    Article  CAS  PubMed  Google Scholar 

  71. Monk JP, Todd PA. Bezafibrate. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hyperlipidaemia. Drugs. 1987;33(6):539–76.

    Article  CAS  PubMed  Google Scholar 

  72. Djouadi F, et al. Peroxisome proliferator activated receptor delta (PPARdelta) agonist but not PPARalpha corrects carnitine palmitoyl transferase 2 deficiency in human muscle cells. J Clin Endocrinol Metab. 2005;90(3):1791–7.

    Article  CAS  PubMed  Google Scholar 

  73. Djouadi F, et al. Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders. Hum Mol Genet. 2005;14(18):2695–703.

    Article  CAS  PubMed  Google Scholar 

  74. Djouadi F, et al. Potential of fibrates in the treatment of fatty acid oxidation disorders: revival of classical drugs? J Inherit Metab Dis. 2006;29(2–3):341–2.

    Article  CAS  PubMed  Google Scholar 

  75. Bonnefont JP, et al. Bezafibrate for an inborn mitochondrial beta-oxidation defect. N Engl J Med. 2009;360(8):838–40.

    Article  CAS  PubMed  Google Scholar 

  76. Bonnefont JP, et al. Long-term follow-up of bezafibrate treatment in patients with the myopathic form of carnitine palmitoyltransferase 2 deficiency. Clin Pharmacol Ther. 2010;88(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  77. Schroers A, et al. Gentamicin treatment in McArdle disease: failure to correct myophosphorylase deficiency. Neurology. 2006;66(2):285–6.

    Article  CAS  PubMed  Google Scholar 

  78. Vorgerd M. Therapeutic options in other metabolic myopathies. Neurotherapeutics. 2008;5(4):579–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oldfors A, DiMauro S. New insights in the field of muscle glycogenoses. Curr Opin Neurol. 2013;26(5):544–53.

    Article  CAS  PubMed  Google Scholar 

  80. Sherard ES Jr, Steiman GS, Couri D. Treatment of childhood epilepsy with valproic acid: results of the first 100 patients in a 6-month trial. Neurology. 1980;30(1):31–5.

    Article  PubMed  Google Scholar 

  81. Detich N, Bovenzi V, Szyf M. Valproate induces replication-independent active DNA demethylation. J Biol Chem. 2003;278(30):27586–92.

    Article  CAS  PubMed  Google Scholar 

  82. Tan P, et al. A splice-site mutation causing ovine McArdle’s disease. Neuromuscul Disord. 1997;7(5):336–42.

    Article  CAS  PubMed  Google Scholar 

  83. •• Howell JM, et al. Phosphorylase re-expression, increase in the force of contraction and decreased fatigue following notexin-induced muscle damage and regeneration in the ovine model of McArdle disease. Neuromuscul Disord. 2014;24(2):167–77. This study shows regeneration of muscle fibres after necrosis induced by intramuscular injections of notexin in a natural ovine model of McArdle disease.

    Article  PubMed  Google Scholar 

  84. •• Howell JM, et al. Investigating sodium valproate as a treatment for McArdle disease in sheep. Neuromuscul Disord. 2015;25(2):111–9. This study found effect of treatment with valproic acid on phosphorylase expression in muscle cells from the McArdle mouse model.

    Article  PubMed  Google Scholar 

  85. van der Ploeg AT, Reuser AJ. Pompe’s disease. Lancet. 2008;372(9646):1342–53.

    Article  PubMed  Google Scholar 

  86. van der Ploeg AT, et al. Open-label extension study following the late-onset treatment study (LOTS) of alglucosidase alfa. Mol Genet Metab. 2012;107(3):456–61.

    Article  PubMed  Google Scholar 

  87. Li S, et al. Adjunctive beta2-agonists reverse neuromuscular involvement in murine Pompe disease. FASEB J. 2013;27(1):34–44.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette Cathrine Ørngreen MD.

Ethics declarations

Conflict of Interest

Mette Cathrine Ørngreen declares that she has no conflict of interest.

John Vissing has received research and travel support, and/or speaker honoraria from the Sanofi/Genzyme, Ultragenyx Pharmaceuticals, Santhera Pharmaceuticals, and aTyr Pharma and served as a consultant on advisory boards for Sanofi/Genzyme, aTyr Pharma, Ultragenyx Pharmaceuticals, Santhera Pharmaceuticals, Sarepta Therapeutics, Novo Nordisk, Alexion Pharmaceuticals, and Stealth Biotherapeutics within the last 3 years.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuromuscular Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ørngreen, M.C., Vissing, J. Treatment Opportunities in Patients With Metabolic Myopathies. Curr Treat Options Neurol 19, 37 (2017). https://doi.org/10.1007/s11940-017-0473-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-017-0473-2

Keywords

Navigation