Skip to main content

Advertisement

Log in

Drug-Induced Pancreatic Injury (DIPI): Redefining Drug-Induced Pancreatitis in Adult and Pediatric Populations

  • Pancreas (C Forsmark, Section Editor)
  • Published:
Current Treatment Options in Gastroenterology Aims and scope Submit manuscript

Abstract

Purpose of review

Drug-induced pancreatitis is the second most common cause of acute pancreatitis (AP) in children and ranks as the third in adults. The aims of this targeted review are to provide a basis for conceptualizing drug-induced pancreatic injury (DIPI), to highlight specific drugs that are common or emerging risk factors, and to suggest a framework for future studies of DIPI.

Recent findings

We challenge the traditional notion of diagnosing a drug exposure as the etiology of pancreatitis only after other etiologies could not be identified. Instead, we propose rethinking the disease process as a continuum of pancreatic injury due to drug exposure that can be concomitant with other risk factors.

Summary

We favor a shift to use of the term drug-induced pancreatic injury (DIPI). There is a need to better characterize DIPI and to probe the mechanisms underlying the various types of DIPI, for the safer use of the DIPI inducing drugs by thwarting the adverse event of pancreatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Park A, Latif SU, Shah AU, Tian J, Werlin S, Hsiao A, et al. Changing referral trends of acute pancreatitis in children: a 12-year single-center analysis. J Pediatr Gastroenterol Nutr. 2009;49:316–22.

    PubMed  PubMed Central  Google Scholar 

  2. Balani AR, Grendell JH. Drug-induced pancreatitis : incidence, management and prevention. Drug Saf. 2008;31:823–37.

    CAS  PubMed  Google Scholar 

  3. Andersen V, Sonne J, Andersen M. Spontaneous reports on drug-induced pancreatitis in Denmark from 1968 to 1999. Eur J Clin Pharmacol. 2001;57:517–21.

    CAS  PubMed  Google Scholar 

  4. Lankisch PG, Droge M, Gottesleben F. Drug induced acute pancreatitis: incidence and severity. Gut. 1995;37:565–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vinklerova I, Prochazka M, Prochazka V, et al. Incidence, severity, and etiology of drug-induced acute pancreatitis. Dig Dis Sci. 2010;55:2977–81.

    PubMed  Google Scholar 

  6. Sweeny KF, Lin TK, Nathan JD, Denson LA, Husain SZ, Hornung L, et al. Rapid progression of acute pancreatitis to acute recurrent pancreatitis in children. J Pediatr Gastroenterol Nutr. 2019;68:104–9.

    PubMed  PubMed Central  Google Scholar 

  7. •• Bai HX, Ma MH, Orabi AI, et al. Novel characterization of drug-associated pancreatitis in children. J Pediatr Gastroenterol Nutr. 2011;53:423–8.This is the first study, to our knowledge, to define drug-associated pancreatitis as being non-mutually exclusive with other risk factors for pancreatitis, and thus, the study paved the way for a novel method for conceptualizing drug-induced pancreatitis injury (DIPI).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Whitcomb DC, Yadav D, Adam S, Hawes RH, Brand RE, Anderson MA, et al. Multicenter approach to recurrent acute and chronic pancreatitis in the United States: the North American Pancreatitis Study 2 (NAPS2). Pancreatology. 2008;8:520–31.

    PubMed  PubMed Central  Google Scholar 

  9. • Schwarzenberg SJ, Uc A, Zimmerman B, et al. Chronic pancreatitis: pediatric and adult cohorts show similarities in disease Progress despite different risk factors. J Pediatr Gastroenterol Nutr. 2019;68:566–73 This study combines data from two large pediatric and adult chronic pancreatitis registries to compare phenotypic differences between the two age groups.

    PubMed  PubMed Central  Google Scholar 

  10. Nakashima Y, Howard JM. Drug-induced acute pancreatitis. Surg Gynecol Obstet. 1977;145:105–9.

    CAS  PubMed  Google Scholar 

  11. • Badalov N, Baradarian R, Iswara K, et al. Drug-induced acute pancreatitis: an evidence-based review. Clin Gastroenterol Hepatol. 2007;5:648–61 quiz 644.The Badalov classification schema described in this paper for drug-induced pancreatitis is commonly used in clinical practice.

    PubMed  Google Scholar 

  12. •• Simons-Linares CR, Elkhouly MA, Salazar MJ. Drug-induced acute pancreatitis in adults: an update. Pancreas. 2019;48:1263–73 This article comprehensively chronicles causes of drug-induced pancreatic injury with appraisal and detailed synopsis of published evidence to date on multiple causes of drug-induced pancreatic injury.

    CAS  PubMed  Google Scholar 

  13. Tenner S. Drug induced acute pancreatitis: does it exist? World J Gastroenterol. 2014;20:16529–34.

    PubMed  PubMed Central  Google Scholar 

  14. Zheng J, Yang QJ, Dang FT, Yang J. Drug-induced pancreatitis: an update. Arab J Gastroenterol. 2019;20:183–8.

    PubMed  Google Scholar 

  15. Wolfe D, Kanji S, Yazdi F, Barbeau P, Rice D, Beck A, et al. Drug induced pancreatitis: a systematic review of case reports to determine potential drug associations. PLoS One. 2020;15:e0231883.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bermejo F, Lopez-Sanroman A, Taxonera C, et al. Acute pancreatitis in inflammatory bowel disease, with special reference to azathioprine-induced pancreatitis. Aliment Pharmacol Ther. 2008;28:623–8.

    CAS  PubMed  Google Scholar 

  17. Rasmussen HH, Fonager K, Sorensen HT, et al. Risk of acute pancreatitis in patients with chronic inflammatory bowel disease. A Danish 16-year nationwide follow-up study. Scand J Gastroenterol. 1999;34:199–201.

    CAS  PubMed  Google Scholar 

  18. Weber P, Seibold F, Jenss H. Acute pancreatitis in Crohn's disease. J Clin Gastroenterol. 1993;17:286–91.

    CAS  PubMed  Google Scholar 

  19. Srinath AI, Gupta N, Husain SZ. Probing the Association of Pancreatitis in inflammatory bowel disease. Inflamm Bowel Dis. 2016;22:465–75.

    PubMed  Google Scholar 

  20. Nogueira JR, Freedman MA. Acute pancreatitis as a complication of Imuran therapy in regional enteritis. Gastroenterology. 1972;62:1040–1.

    CAS  PubMed  Google Scholar 

  21. Present DH, Korelitz BI, Wisch N, Glass JL, Sachar DB, Pasternack BS. Treatment of Crohn's disease with 6-mercaptopurine. A long-term, randomized, double-blind study. N Engl J Med. 1980;302:981–7.

    CAS  PubMed  Google Scholar 

  22. Ardizzone S, Maconi G, Sampietro GM, Russo A, Radice E, Colombo E, et al. Azathioprine and mesalamine for prevention of relapse after conservative surgery for Crohn's disease. Gastroenterology. 2004;127:730–40.

    CAS  PubMed  Google Scholar 

  23. Candy S, Wright J, Gerber M, Adams G, Gerig M, Goodman R. A controlled double blind study of azathioprine in the management of Crohn's disease. Gut. 1995;37:674–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Teich N, Mohl W, Bokemeyer B, Bündgens B, Büning J, Miehlke S, et al. Azathioprine-induced acute pancreatitis in patients with inflammatory bowel diseases—a prospective study on incidence and severity. J Crohns Colitis. 2016;10:61–8.

    PubMed  Google Scholar 

  25. •• Heap GA, Weedon MN, Bewshea CM, et al. HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nat Genet. 2014;46:1131–4 This is the first study, to our knowledge, to implicate susceptibility genes to DIPI, using the context of thiopurine-related DIPI.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilson A, Jansen LE, Rose RV, Gregor JC, Ponich T, Chande N, et al. HLA-DQA1-HLA-DRB1 polymorphism is a major predictor of azathioprine-induced pancreatitis in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2018;47:615–20.

    CAS  PubMed  Google Scholar 

  27. Lopez RN, Gupta N, Lemberg DA. Vedolizumab-associated pancreatitis in Paediatric ulcerative colitis: functional selectivity of the alpha4beta7integrin and MAdCAM-1 pathway? J Crohns Colitis. 2018;12:507–8.

    PubMed  Google Scholar 

  28. Werlang ME, Lewis MD, Bartel MJ. Tumor necrosis factor alpha inhibitor-induced acute pancreatitis. ACG Case Rep J. 2017;4:e103.

    PubMed  PubMed Central  Google Scholar 

  29. Batalden PB, Van Dyne BJ, Cloyd J. Pancreatitis associated with valproic acid therapy. Pediatrics. 1979;64:520–2.

    CAS  PubMed  Google Scholar 

  30. Walker RM, Smith GS, Barsoum NJ, Macallum GE. Preclinical toxicology of the anticonvulsant calcium valproate. Toxicology. 1990;63:137–55.

    CAS  PubMed  Google Scholar 

  31. Eisses JF, Criscimanna A, Dionise ZR, Orabi AI, Javed TA, Sarwar S, et al. Valproic acid limits pancreatic recovery after pancreatitis by inhibiting histone Deacetylases and preventing Acinar Redifferentiation programs. Am J Pathol. 2015;185:3304–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Amylon MD, Shuster J, Pullen J, Berard C, Link MP, Wharam M, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a pediatric oncology group study. Leukemia. 1999;13:335–42.

    CAS  PubMed  Google Scholar 

  33. • Wolthers BO, Frandsen TL, Abrahamsson J, et al. Asparaginase-associated pancreatitis: a study on phenotype and genotype in the NOPHO ALL2008 protocol. Leukemia. 2017;31:325–32 This study combined raw data from one and a half dozen international pediatric leukemia trial groups to confirm observations from previous series and systematic reviews that asparaginase-associated pancreatitis is a more severe form of pancreatitis than other etiologies and that it leads to substantial long-term endocrine dysfunction in a sizeable proportion of patients.

    CAS  PubMed  Google Scholar 

  34. Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33:2938–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolthers BO, Frandsen TL, Baruchel A, Attarbaschi A, Barzilai S, Colombini A, et al. Asparaginase-associated pancreatitis in childhood acute lymphoblastic leukaemia: an observational Ponte di Legno Toxicity Working Group study. Lancet Oncol. 2017;18:1238–48.

    CAS  PubMed  Google Scholar 

  36. Raja RA, Schmiegelow K, Frandsen TL. Asparaginase-associated pancreatitis in children. Br J Haematol. 2012;159:18–27.

    CAS  PubMed  Google Scholar 

  37. Oparaji JA, Rose F, Okafor D, Howard A, Turner RL, Orabi AI, et al. Risk factors for asparaginase-associated pancreatitis: a systematic review. J Clin Gastroenterol. 2017;51:907–13.

    CAS  PubMed  Google Scholar 

  38. Raja RA, Schmiegelow K, Henriksen BM, Leth Frandsen T. Serial ultrasound monitoring for early recognition of asparaginase associated pancreatitis in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol. 2015;32:474–81.

    CAS  PubMed  Google Scholar 

  39. Raja RA, Schmiegelow K, Sorensen DN, et al. Asparaginase-associated pancreatitis is not predicted by hypertriglyceridemia or pancreatic enzyme levels in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2017;64:32–8.

    CAS  PubMed  Google Scholar 

  40. Ben Tanfous M, Sharif-Askari B, Ceppi F, Laaribi H, Gagne V, Rousseau J, et al. Polymorphisms of asparaginase pathway and asparaginase-related complications in children with acute lymphoblastic leukemia. Clin Cancer Res. 2015;21:329–34.

    CAS  PubMed  Google Scholar 

  41. Liu QY, Abu-El-Haija M, Husain SZ, et al. Risk factors for rapid progression from acute recurrent to chronic pancreatitis in children: report from INSPPIRE. J Pediatr Gastroenterol Nutr. 2019;69:206–11.

    PubMed  PubMed Central  Google Scholar 

  42. Wolthers BO, Frandsen TL, Patel CJ, Abaji R, Attarbaschi A, Barzilai S, et al. Trypsin-encoding PRSS1-PRSS2 variations influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: a Ponte di Legno toxicity working group report. Haematologica. 2019;104:556–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Abaji R, Gagne V, Xu CJ, et al. Whole-exome sequencing identified genetic risk factors for asparaginase-related complications in childhood ALL patients. Oncotarget. 2017;8:43752–67.

    PubMed  PubMed Central  Google Scholar 

  44. Peng S, Gerasimenko JV, Tsugorka T, Gryshchenko O, Samarasinghe S, Petersen OH, et al. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371:20150423.

    Google Scholar 

  45. Peng S, Gerasimenko JV, Tsugorka TM, Gryshchenko O, Samarasinghe S, Petersen OH, et al. Galactose protects against cell damage in mouse models of acute pancreatitis. J Clin Invest. 2018;128:3769–78.

    PubMed  PubMed Central  Google Scholar 

  46. Mukherjee A, Ahmed N, Rose FT, Ahmad AN, Javed TA, Wen L, Bottino R, Xiao X, Kilberg MS, Husain SZ. Asparagine Synthetase Is Highly Expressed at Baseline in the Pancreas Through Heightened PERK Signaling. Cell Mol Gastroenterol Hepatol. 2020;9(1):1–13. https://doi.org/10.1016/j.jcmgh.2019.08.003

  47. Grant P, Gandhi P. A case of cannabis-induced pancreatitis. JOP. 2004;5:41–3.

    PubMed  Google Scholar 

  48. Barkin JA, Nemeth Z, Saluja AK, Barkin JS. Cannabis-induced acute pancreatitis: a systematic review. Pancreas. 2017;46:1035–8.

    PubMed  Google Scholar 

  49. Simons-Linares CR, Barkin JA, Wang Y, Jaiswal P, Trick W, Bartel MJ, et al. Is there an effect of Cannabis consumption on acute pancreatitis? Dig Dis Sci. 2018;63:2786–91.

    PubMed  Google Scholar 

  50. Njei B, Sharma P, McCarty TR, et al. Cannabis use is associated with increased risk of post-endoscopic retrograde Cholangiopancreatography pancreatitis: analysis of the US Nationwide Inpatient Sample Database, 2004-2014. Pancreas. 2018;47:1142–9.

    CAS  PubMed  Google Scholar 

  51. Dembinski A, Warzecha Z, Ceranowicz P, et al. Cannabinoids in acute gastric damage and pancreatitis. J Physiol Pharmacol. 2006;57(Suppl 5):137–54.

    PubMed  Google Scholar 

  52. Simons-Linares CR, Barkin JA, Jang S, Bhatt A, Lopez R, Stevens T, et al. The impact of Cannabis consumption on mortality, morbidity, and cost in acute pancreatitis patients in the United States: a 10-year analysis of the National Inpatient Sample. Pancreas. 2019;48:850–5.

    PubMed  Google Scholar 

  53. Lynch SM, Wu GY. Hepatitis C Virus: a review of treatment guidelines, cost-effectiveness, and access to therapy. J Clin Transl Hepatol. 2016;4:310–9.

    PubMed  PubMed Central  Google Scholar 

  54. Zhang J, Nguyen D, Hu KQ. Chronic Hepatitis C Virus infection: a review of current direct-acting antiviral treatment strategies. N Am J Med Sci (Boston). 2016;9:47–54.

    Google Scholar 

  55. Chaudhari S, Park J, Anand BS, Pimstone NR, Dieterich DT, Batash S, et al. Acute pancreatitis associated with interferon and ribavirin therapy in patients with chronic hepatitis C. Dig Dis Sci. 2004;49:1000–6.

    CAS  PubMed  Google Scholar 

  56. Puri P, Anand AC, Saraswat VA, Acharya SK, Dhiman RK, Sarin SK, et al. Indian National Association for study of the liver (INASL) guidance for antiviral therapy against HCV infection in 2015. J Clin Exp Hepatol. 2015;5:221–38.

    PubMed  PubMed Central  Google Scholar 

  57. Karch FE, Lasagna L. Adverse drug reactions. A critical review. JAMA. 1975;234:1236–41.

    CAS  PubMed  Google Scholar 

  58. Uc A, Husain SZ. Pancreatitis in children. Gastroenterology. 2019;156:1969–78.

    PubMed  PubMed Central  Google Scholar 

  59. Arimone Y, Miremont-Salame G, Haramburu F, et al. Inter-expert agreement of seven criteria in causality assessment of adverse drug reactions. Br J Clin Pharmacol. 2007;64:482–8.

    PubMed  PubMed Central  Google Scholar 

  60. Liu F, Jagannatha A, Yu H. Towards drug safety surveillance and Pharmacovigilance: current Progress in detecting medication and adverse drug events from electronic health records. Drug Saf. 2019;42:95–7.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Z. Husain MD.

Ethics declarations

Conflict of Interest

Monique Barakat declares that she has no conflict of interest. Emory Manten declares that he has no conflict of interest. Sohail Husain declares that he has no conflict of interest. Jodie Barkin declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pancreas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barakat, M.T., Manten, E.M., Husain, S.Z. et al. Drug-Induced Pancreatic Injury (DIPI): Redefining Drug-Induced Pancreatitis in Adult and Pediatric Populations. Curr Treat Options Gastro 18, 657–669 (2020). https://doi.org/10.1007/s11938-020-00311-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11938-020-00311-0

Keywords

Navigation