Skip to main content

Advertisement

Log in

Vertebral Artery Stenosis

  • Cerebrovascular Disease and Stroke (S Silverman, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Vertebral artery stenosis is a common condition associated with a very high risk of stroke. The goal of this review is to summarize the pathophysiology and natural history of vertebral artery stenosis and to evaluate the efficacy of medical and endovascular therapies.

Recent findings

Early and aggressive initiation of medical care combined with advancements in antithrombotic and lipid-lowering therapies has substantially reduced the risk of stroke due to vertebral artery stenosis. Endovascular therapy does not appear to be beneficial with extracranial vertebral artery stenosis and appears harmful with intracranial vertebral artery stenosis.

Summary

Risk of stroke due to symptomatic vertebral artery stenosis can be significantly reduced with implementation of standardized best medical therapy protocols focusing on ultra-early dual antiplatelet therapy, high-intensity statin therapy + novel lipid-lowering agents, and aggressive risk factor control. Endovascular therapy with angioplasty and stenting is not likely to play a significant role in treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Markus HS, van der Worp HB, Rothwell PM. Posterior circulation ischaemic stroke and transient ischaemic attack: diagnosis, investigation, and secondary prevention. Lancet Neurol. 2013;12(10):989–98.

    Article  PubMed  Google Scholar 

  2. Ornello R, et al. Distribution and temporal trends from 1993 to 2015 of ischemic stroke subtypes: a systematic review and meta-analysis. Stroke. 2018;49(4):814–9.

    Article  PubMed  Google Scholar 

  3. Saver JL. Cryptogenic Stroke. N Engl J Med. 2016;375(11):e26.

    Article  PubMed  Google Scholar 

  4. Gulli G, et al. Stroke risk after posterior circulation stroke/transient ischemic attack and its relationship to site of vertebrobasilar stenosis: pooled data analysis from prospective studies. Stroke. 2013;44(3):598–604.

    Article  PubMed  Google Scholar 

  5. •• Markus HS, et al. Antiplatelet therapy vs anticoagulation therapy in cervical artery dissection: the cervical artery dissection in stroke study (CADISS) randomized clinical trial final results. JAMA Neurol. 2019;76(6):657–64 Therapy versus anticoagulation for cervical artery dissection. No significant difference was found between treatment groups with respect to ischemic stroke outcomes or rates of arterial recanalization.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marquardt L, et al. Incidence and prognosis of > or = 50% symptomatic vertebral or basilar artery stenosis: prospective population-based study. Brain. 2009;132(Pt 4):982–8.

    CAS  PubMed  Google Scholar 

  7. Amarenco P, et al. One-year risk of stroke after transient ischemic attack or minor stroke. N Engl J Med. 2016;374(16):1533–42.

    Article  CAS  PubMed  Google Scholar 

  8. Debette S, Leys D. Cervical-artery dissections: predisposing factors, diagnosis, and outcome. Lancet Neurol. 2009;8(7):668–78.

    Article  PubMed  Google Scholar 

  9. •• Powers WJ, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–418 The most recent AHA/ASA acute ischemic stroke guidelines.

    Article  PubMed  Google Scholar 

  10. Brott TG, et al. ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. J Am Coll Cardiol. 2011;57(8):e16–94.

    Article  PubMed  Google Scholar 

  11. Jenkins JS, Stewart M. Endovascular treatment of vertebral artery stenosis. Prog Cardiovasc Dis. 2017;59(6):619–25.

    Article  PubMed  Google Scholar 

  12. Tiu C, et al. Vertebral artery dissection: a contemporary perspective. Maedica (Buchar). 2016;11(2):144–9.

    Google Scholar 

  13. • Markus HS, et al. Stenting for symptomatic vertebral artery stenosis: the vertebral artery ischaemia stenting trial. Neurology. 2017;89(12):1229–36 The most recent randomized trial of stenting versus best medical therapy for symptomatic extracranial or intracranial vertebral rtery stenosis (VIST). No significant difference was found between treatment groups. The trial was problematic because medical therapy was not balanced between stent and medical groups.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Coward LJ, et al. Long-term outcome after angioplasty and stenting for symptomatic vertebral artery stenosis compared with medical treatment in the Carotid And Vertebral Artery Transluminal Angioplasty Study (CAVATAS): a randomized trial. Stroke. 2007;38(5):1526–30.

    Article  CAS  PubMed  Google Scholar 

  15. Gulli G, Khan S, Markus HS. Vertebrobasilar stenosis predicts high early recurrent stroke risk in posterior circulation stroke and TIA. Stroke. 2009;40(8):2732–7.

    Article  PubMed  Google Scholar 

  16. Savitz SI, Caplan LR. Vertebrobasilar disease. N Engl J Med. 2005;352(25):2618–26.

    Article  CAS  PubMed  Google Scholar 

  17. Naylor AR, et al. Editor’s choice - management of atherosclerotic carotid and vertebral artery disease: 2017 clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg. 2018;55(1):3–81.

    Article  CAS  PubMed  Google Scholar 

  18. Caplan LR, et al. New England medical center posterior circulation registry. Ann Neurol. 2004;56(3):389–98.

    Article  PubMed  Google Scholar 

  19. Chimowitz MI, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med. 2005;352(13):1305–16.

    Article  CAS  PubMed  Google Scholar 

  20. Mazighi M, et al. Prospective study of symptomatic atherothrombotic intracranial stenoses: the GESICA study. Neurology. 2006;66(8):1187–91.

    Article  CAS  PubMed  Google Scholar 

  21. Flossmann E, Rothwell PM. Prognosis of vertebrobasilar transient ischaemic attack and minor stroke. Brain. 2003;126(Pt 9):1940–54.

    Article  PubMed  Google Scholar 

  22. Shahidi S, et al. Urgent best medical therapy may obviate the need for urgent surgery in patients with symptomatic carotid stenosis. Stroke. 2013;44(8):2220–5.

    Article  PubMed  Google Scholar 

  23. Britt TB, Agarwal S. Vertebral artery dissection, in StatPearls: Treasure Island (FL); 2020.

  24. Schwartz NE, et al. Clinical and radiographic natural history of cervical artery dissections. J Stroke Cerebrovasc Dis. 2009;18(6):416–23.

    Article  PubMed  Google Scholar 

  25. Traenka C, et al. Artery occlusion independently predicts unfavorable outcome in cervical artery dissection. Neurology. 2020;94(2):e170–80.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Debette S, et al. Epidemiology, pathophysiology, diagnosis, and management of intracranial artery dissection. Lancet Neurol. 2015;14(6):640–54.

    Article  PubMed  Google Scholar 

  27. Urasyanandana K, et al. Treatment outcomes in cerebral artery dissection and literature review. Interv Neuroradiol. 2018;24(3):254–62.

    Article  PubMed  PubMed Central  Google Scholar 

  28. • Liu X, et al. Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): an open-label, randomised controlled trial. Lancet Neurol. 2020;19(2):115–22 A randomized trial of mechanical thrombectomy versus best medical therapy for acute basilar artery occlusion (BEST). Perfusion imaging was not used. Twelve patients with acute vertebral artery occlusion were included, among which patients treated medically had better outcomes than patients treated with thrombectomy.

    Article  PubMed  Google Scholar 

  29. Zhang DP, et al. Vertebral artery hypoplasia, posterior circulation infarction and relative hypoperfusion detected by perfusion magnetic resonance imaging semiquantitatively. J Neurol Sci. 2016;368:41–6.

    Article  PubMed  Google Scholar 

  30. Searls DE, et al. Symptoms and signs of posterior circulation ischemia in the new England medical center posterior circulation registry. Arch Neurol. 2012;69(3):346–51.

    Article  PubMed  Google Scholar 

  31. Arch AE, et al. Missed ischemic stroke diagnosis in the emergency department by emergency medicine and neurology services. Stroke. 2016;47(3):668–73.

    Article  PubMed  Google Scholar 

  32. Debette S, et al. Differential features of carotid and vertebral artery dissections: the CADISP study. Neurology. 2011;77(12):1174–81.

    Article  CAS  PubMed  Google Scholar 

  33. Hwang DY, et al. Comparative sensitivity of computed tomography vs. magnetic resonance imaging for detecting acute posterior fossa infarct. J Emerg Med. 2012;42(5):559–65.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zerna C, et al. Current practice and future directions in the diagnosis and acute treatment of ischaemic stroke. Lancet. 2018;392(10154):1247–56.

    Article  PubMed  Google Scholar 

  35. Allen LM, et al. Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics. 2012;32(5):1285–97 discussion 1297–9.

    Article  PubMed  Google Scholar 

  36. Thomalla G, et al. MRI-guided thrombolysis for stroke with unknown time of Ooset. N Engl J Med. 2018;379(7):611–22.

    Article  PubMed  Google Scholar 

  37. Schramm P, et al. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours' duration. Stroke. 2004;35(7):1652–8.

    Article  PubMed  Google Scholar 

  38. Kattah JC, et al. HINTS to diagnose stroke in the acute vestibular syndrome: three-step bedside oculomotor examination more sensitive than early MRI diffusion-weighted imaging. Stroke. 2009;40(11):3504–10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Oppenheim C, et al. False-negative diffusion-weighted MR findings in acute ischemic stroke. AJNR Am J Neuroradiol. 2000;21(8):1434–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Alakbarzade V, Pereira AC. Cerebral catheter angiography and its complications. Pract Neurol. 2018;18(5):393–8.

    Article  PubMed  Google Scholar 

  41. Joshi KC, et al. Transradial approach for neurointerventions: a systematic review of the literature. In:J Neurointerv Surg; 2020.

    Google Scholar 

  42. Khan S, et al. Imaging of vertebral artery stenosis: a systematic review. J Neurol Neurosurg Psychiatry. 2007;78(11):1218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Albers GW, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Goyal M, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31.

    Article  PubMed  Google Scholar 

  45. Ma H, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380(19):1795–803.

    Article  PubMed  Google Scholar 

  46. Nogueira RG, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21.

    Article  PubMed  Google Scholar 

  47. Bollwein C, et al. Diagnostic accuracy of whole-brain CT perfusion in the detection of acute infratentorial infarctions. Neuroradiology. 2016;58(11):1077–85.

    Article  PubMed  Google Scholar 

  48. Fabritius MP, et al. Incremental value of computed tomography perfusion for final infarct prediction in acute ischemic cerebellar stroke. J Am Heart Assoc. 2019;8(21):e013069.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sporns P, et al. Computed tomography perfusion improves diagnostic accuracy in acute posterior circulation stroke. Cerebrovasc Dis. 2016;41(5–6):242–7.

    Article  PubMed  Google Scholar 

  50. van der Hoeven EJ, et al. Additional diagnostic value of computed tomography perfusion for detection of acute ischemic stroke in the posterior circulation. Stroke. 2015;46(4):1113–5.

    Article  PubMed  Google Scholar 

  51. Compter A, et al. Stenting versus medical treatment in patients with symptomatic vertebral artery stenosis: a randomised open-label phase 2 trial. Lancet Neurol. 2015;14(6):606–14.

    Article  PubMed  Google Scholar 

  52. Zaidat OO, et al. Effect of a balloon-expandable intracranial stent vs medical therapy on risk of stroke in patients with symptomatic intracranial stenosis: the VISSIT randomized clinical trial. JAMA. 2015;313(12):1240–8.

    Article  CAS  PubMed  Google Scholar 

  53. Chimowitz MI, et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365(11):993–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Derdeyn CP, et al. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet. 2014;383(9914):333–41.

    Article  PubMed  Google Scholar 

  55. • Lutsep HL, et al. Does the stenting versus aggressive medical therapy trial support stenting for subgroups with intracranial stenosis? Stroke. 2015;46(11):3282–4 An excellent subgroup analysis of SAMMPRIS patients, which showed that best medical therapy was superior to stenting in patients with symptomatic intracranial vertebral artery stenosis.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Johnston SC, et al. Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA. N Engl J Med. 2018;379(3):215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med. 2013;369(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  58. • Wang Y, et al. Ticagrelor plus aspirin versus clopidogrel plus aspirin for platelet reactivity in patients with minor stroke or transient ischaemic attack: open label, blinded endpoint, randomised controlled phase II trial. BMJ. 2019;365:l2211 This is a recent phase II trial which found ticagrelor-aspirin to be superior to clopidogrel-aspirin after a minor stroke or TIA, particularly in patients with CYP2C19 loss-of-function alleles. The ticagrelor-aspirin group had significantly reduced platelet activity and significantly lower risk of stroke in patients with large artery atherosclerosis.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hindy G, et al. Role of blood lipids in the development of ischemic stroke and its subtypes: a Mendelian randomization study. Stroke. 2018;49(4):820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Imamura T, et al. LDL cholesterol and the development of stroke subtypes and coronary heart disease in a general Japanese population: the Hisayama study. Stroke. 2009;40(2):382–8.

    Article  CAS  PubMed  Google Scholar 

  61. Amarenco P, et al. Results of the stroke prevention by aggressive reduction in cholesterol levels (SPARCL) trial by stroke subtypes. Stroke. 2009;40(4):1405–9.

    Article  CAS  PubMed  Google Scholar 

  62. Newman CB, et al. Statin safety and associated adverse events: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2019;39(2):e38–81.

    Article  CAS  PubMed  Google Scholar 

  63. • Brooks DC, Schindler JL. Management of hyperlipidemia after stroke. Curr Treat Options Cardiovasc Med. 2019;21(12):93 A recently published review article detailing management of hyperlipidemia to reduce stroke risk. A key point is that large artery atherosclerosis is very responsive to lipid-lowering therapy. Aggressive LDL reduction should be attempted, first with highest-intensity statin therapy, followed by addition of a PCSK9 inhibitor or ezetimibe if LDL > 70 mg/dl despite statin therapy.

    Article  PubMed  Google Scholar 

  64. Cannon CP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.

    Article  CAS  PubMed  Google Scholar 

  65. Sabatine MS, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22.

    Article  CAS  PubMed  Google Scholar 

  66. Schwartz GG, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–107.

    Article  CAS  PubMed  Google Scholar 

  67. Amin-Hanjani S, et al. Higher stroke risk with lower blood pressure in hemodynamic vertebrobasilar disease: analysis from the VERiTAS study. J Stroke Cerebrovasc Dis. 2017;26(2):403–10.

    Article  PubMed  Google Scholar 

  68. Whelton PK, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2018;71(6):e13–e115.

    CAS  PubMed  Google Scholar 

  69. Arnett DK, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019;140(11):e596–646.

    PubMed  PubMed Central  Google Scholar 

  70. Wang F, et al. Mechanical Thrombectomy for Posterior Circulation Occlusion: A Comparison of Outcomes with the Anterior Circulation Occlusion - A Meta-Analysis. J Atheroscler Thromb. 2020.

  71. Coward LJ, Featherstone RL, Brown MM. Percutaneous transluminal angioplasty and stenting for vertebral artery stenosis. Cochrane Database Syst Rev. 2005;2:CD000516.

    Google Scholar 

  72. Antoniou GA, et al. Percutaneous transluminal angioplasty and stenting in patients with proximal vertebral artery stenosis. J Vasc Surg. 2012;55(4):1167–77.

    Article  PubMed  Google Scholar 

  73. Eberhardt O, et al. Stenting of vertebrobasilar arteries in symptomatic atherosclerotic disease and acute occlusion: case series and review of the literature. J Vasc Surg. 2006;43(6):1145–54.

    Article  PubMed  Google Scholar 

  74. Stayman AN, Nogueira RG, Gupta R. A systematic review of stenting and angioplasty of symptomatic extracranial vertebral artery stenosis. Stroke. 2011;42(8):2212–6.

    Article  PubMed  Google Scholar 

  75. Compter A, Chaturvedi S. Vertebral artery stenosis: the hurdles of stenting are too high. Neurology. 2017;89(12):1204–5.

    Article  PubMed  Google Scholar 

  76. Chimowitz MI, Derdeyn CP. Endovascular therapy for atherosclerotic intracranial arterial stenosis: back to the drawing board. JAMA. 2015;313(12):1219–20.

    Article  CAS  PubMed  Google Scholar 

  77. Markus HS, et al. Stenting for symptomatic vertebral artery stenosis: a preplanned pooled individual patient data analysis. Lancet Neurol. 2019;18(7):666–73.

    Article  PubMed  Google Scholar 

  78. Compter A, et al. Risks of stenting in patients with extracranial and intracranial vertebral artery stenosis. Lancet Neurol. 2015;14(9):875.

    Article  PubMed  Google Scholar 

  79. Turan TN, Chimowitz MI. Yet again no benefit of stenting over medical therapy. Lancet Neurol. 2015;14(6):565–6.

    Article  PubMed  Google Scholar 

  80. •• Pan Y, et al. Outcomes associated with clopidogrel-aspirin use in minor stroke or transient ischemic attack: a pooled analysis of clopidogrel in high-risk patients with acute non-disabling cerebrovascular events (CHANCE) and platelet-oriented inhibition in new TIA and minor ischemic stroke (POINT) trials. JAMA Neurol. 2019; A pooled analysis of the POINT and CHANCE trials, demonstrating that 21 days of aspirin-clopidogrel started within 12–-24 hours after a TIA or minor ischemic stroke is associated with an approximate 34% reduction in risk of ischemic stroke compared to aspirin alone.

  81. Tillman H, et al. Risk for major hemorrhages in patients receiving clopidogrel and aspirin compared with aspirin alone after transient ischemic attack or minor ischemic stroke: a secondary analysis of the POINT randomized clinical trial. JAMA Neurol. 2019;76(7):774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vangen-Lonne AM, et al. Declining incidence of ischemic stroke: what is the impact of changing risk factors? The Tromso study 1995 to 2012. Stroke. 2017;48(3):544–50.

    Article  PubMed  Google Scholar 

  83. Cholesterol Treatment Trialists C. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet. 2019;393(10170):407–15.

    Article  Google Scholar 

  84. Caprio FZ, et al. Efficacy and safety of novel oral anticoagulants in patients with cervical artery dissections. Cerebrovasc Dis. 2014;38(4):247–53.

    Article  CAS  PubMed  Google Scholar 

  85. Gensicke H, et al. New ischaemic brain lesions in cervical artery dissection stratified to antiplatelets or anticoagulants. Eur J Neurol. 2015;22(5):859–65, e61.

    Article  CAS  PubMed  Google Scholar 

  86. Kennedy F, et al. Antiplatelets vs anticoagulation for dissection: CADISS nonrandomized arm and meta-analysis. Neurology. 2012;79(7):686–9.

    Article  CAS  PubMed  Google Scholar 

  87. Ramchand P, et al. Recanalization after extracranial dissection: effect of antiplatelet compared with anticoagulant therapy. J Stroke Cerebrovasc Dis. 2018;27(2):438–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Schindler MD.

Ethics declarations

Conflict of Interest

Daniel C. Brooks and Joseph L. Schindler declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cerebrovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooks, D.C., Schindler, J.L. Vertebral Artery Stenosis. Curr Treat Options Cardio Med 22, 35 (2020). https://doi.org/10.1007/s11936-020-00832-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00832-y

Keywords

Navigation