Skip to main content

Advertisement

Log in

Idiopathic Non-atherosclerotic Carotid Artery Disease

  • Cerebrovascular Disease and Stroke (S Silverman, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

The purpose of this review is to provide an overview of idiopathic non-atherosclerotic causes of carotid artery disease and its manifestations.

Recent findings

Four major causes of non-atherosclerotic carotid artery disease including dissection, fibromuscular dysplasia, moyamoya disease, and inflammatory large vessel vasculitis are discussed. While there is a dearth of clinical trials involving some of the rarer conditions, recent data from clinical trials supporting antiplatelet over anticoagulation treatment of cervical artery dissection, recent consensus statements on the management of fibromuscular dysplasia, and guideline approaches to diagnosis and treatment of large vessel vasculitis are summarized.

Summary

Idiopathic non-atherosclerotic causes of carotid artery disease are under appreciated and may lead to significant morbidity and mortality. While less common compared with atherosclerotic disease, non-atherosclerotic disease may affect younger patient populations and result in non-cerebrovascular arterial involvement and systemic organ damage. Therefore, prompt recognition of these disorders is key to their management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bejot Y, Aboa-Eboule C, Debette S, et al. Characteristics and outcomes of patients with multiple cervical artery dissection. Stroke. 2014;45(1):37–41.

    PubMed  Google Scholar 

  2. Schwartz NE, Vertinsky AT, Hirsch KG, Albers GW. Clinical and radiographic natural history of cervical artery dissections. J Stroke Cerebrovasc Dis. 2009;18(6):416–23.

    PubMed  Google Scholar 

  3. Lyden PD. Migraine and the risk of carotid artery dissection in the IPSYS Registry: are they related? JAMA Neurol. 2017;74(5):503–4.

    PubMed  Google Scholar 

  4. Kline LB, Vitek JJ, Raymon BC. Painful Horner’s syndrome due to spontaneous carotid artery dissection. Ophthalmology. 1987;94(3):226–30.

    PubMed  CAS  Google Scholar 

  5. von Sarnowski B, Schminke U, Grittner U, et al. Cervical artery dissection in young adults in the stroke in young Fabry patients (sifap1) study. Cerebrovasc Dis. 2015;39(2):110–21.

    Google Scholar 

  6. CADISS trial investigators, Markus HS, Hayter E, et al. Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial. Lancet Neurol. 2015;14(4):361–7.

    Google Scholar 

  7. Hendricks NJ, Matsumoto AH, Angle JF, et al. Is fibromuscular dysplasia underdiagnosed? A comparison of the prevalence of FMD seen in CORAL trial participants versus a single institution population of renal donor candidates. Vasc Med. 2014;19(5):363–7.

    PubMed  Google Scholar 

  8. Cragg AH, Smith TP, Thompson BH, et al. Incidental fibromuscular dysplasia in potential renal donors: long-term clinical follow-up. Radiology. 1989;172(1):145–7.

    PubMed  CAS  Google Scholar 

  9. Touze E, Oppenheim C, Trystram D, et al. Fibromuscular dysplasia of cervical and intracranial arteries. Int J Stroke. 2010;5(4):296–305.

    PubMed  Google Scholar 

  10. Olin JW, Froehlich J, Gu X, et al. The United States Registry for Fibromuscular Dysplasia: results in the first 447 patients. Circulation. 2012;125(25):3182–90.

    PubMed  Google Scholar 

  11. Olin JW, Gornik HL, Bacharach JM, et al. Fibromuscular dysplasia: state of the science and critical unanswered questions: a scientific statement from the American Heart Association. Circulation. 2014;129(9):1048–78.

    PubMed  Google Scholar 

  12. Mettinger KL. Fibromuscular dysplasia and the brain. II. Current concept of the disease. Stroke. 1982;13(1):53–8.

    PubMed  CAS  Google Scholar 

  13. Talarowska P, Dobrowolski P, Klisiewicz A, et al. High incidence and clinical characteristics of fibromuscular dysplasia in patients with spontaneous cervical artery dissection: the ARCADIA-POL study. Vasc Med. 2019;24(2):112–9.

    PubMed  Google Scholar 

  14. •• Gornik HL, Persu A, Adlam D, et al. First International Consensus on the diagnosis and management of fibromuscular dysplasia. Vasc Med. 2019;24(2):164–89 This is the first international consensus report that puts together very clinically useful diagnostic and treatment related guidelines for the management of FMD.

    PubMed  Google Scholar 

  15. Harriott AM, Zimmerman E, Singhal AB, Jaff MR, Lindsay ME, Rordorf GA. Cerebrovascular fibromuscular dysplasia: the MGH cohort and literature review. Neurol Clin Pract. 2017;7(3):225–36.

    PubMed  PubMed Central  Google Scholar 

  16. Plouin PF, Baguet JP, Thony F, et al. High prevalence of multiple arterial bed lesions in patients with fibromuscular dysplasia: the ARCADIA Registry (Assessment of Renal and Cervical Artery Dysplasia). Hypertension. 2017;70(3):652–8.

    PubMed  CAS  Google Scholar 

  17. Persu A, Touze E, Mousseaux E, Barral X, Joffre F, Plouin PF. Diagnosis and management of fibromuscular dysplasia: an expert consensus. Eur J Clin Investig. 2012;42(3):338–47.

    Google Scholar 

  18. Joux J, Chausson N, Jeannin S, et al. Carotid-bulb atypical fibromuscular dysplasia in young Afro-Caribbean patients with stroke. Stroke. 2014;45(12):3711–3.

    PubMed  Google Scholar 

  19. Stanley JC, Gewertz BL, Bove EL, Sottiurai V, Fry WJ. Arterial fibrodysplasia. Histopathologic character and current etiologic concepts. Arch Surg. 1975;110(5):561–6.

    PubMed  CAS  Google Scholar 

  20. Silhol F, Sarlon-Bartoli G, Daniel L, et al. Intranuclear expression of progesterone receptors in smooth muscle cells of renovascular fibromuscular dysplasia: a pilot study. Ann Vasc Surg. 2015;29(4):830–5.

    PubMed  Google Scholar 

  21. Bogousslavsky J, Van Melle G, Regli F. The Lausanne Stroke Registry: analysis of 1,000 consecutive patients with first stroke. Stroke. 1988;19(9):1083–92.

    PubMed  CAS  Google Scholar 

  22. Shah RS, Cole JW. Smoking and stroke: the more you smoke the more you stroke. Expert Rev Cardiovasc Ther. 2010;8(7):917–32.

    PubMed  PubMed Central  Google Scholar 

  23. Rushton AR. The genetics of fibromuscular dysplasia. Arch Intern Med. 1980;140(2):233–6.

    PubMed  CAS  Google Scholar 

  24. Schievink WI, Meyer FB, Parisi JE, Wijdicks EF. Fibromuscular dysplasia of the internal carotid artery associated with alpha1-antitrypsin deficiency. Neurosurgery. 1998;43(2):229–33 discussion 233-224.

    PubMed  CAS  Google Scholar 

  25. Ganesh SK, Morissette R, Xu Z, et al. Clinical and biochemical profiles suggest fibromuscular dysplasia is a systemic disease with altered TGF-beta expression and connective tissue features. FASEB J. 2014;28(8):3313–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Poloskey SL, Kim E, Sanghani R, et al. Low yield of genetic testing for known vascular connective tissue disorders in patients with fibromuscular dysplasia. Vasc Med. 2012;17(6):371–8.

    PubMed  Google Scholar 

  27. Pilz P, Hartjes HJ. Fibromuscular dysplasia and multiple dissecting aneurysms of intracranial arteries. A further cause of Moyamoya syndrome. Stroke. 1976;7(4):393–8.

    PubMed  CAS  Google Scholar 

  28. Kaneko K, Someya T, Ohtaki R, et al. Congenital fibromuscular dysplasia involving multivessels in an infant with fatal outcome. Eur J Pediatr. 2004;163(4-5):241–4.

    PubMed  Google Scholar 

  29. Mukerji SS, Buchbinder BR, Singhal A. Reversible cerebral vasoconstriction syndrome with reversible renal artery stenosis. Neurology. 2015;85(2):201–2.

    PubMed  PubMed Central  Google Scholar 

  30. Topcuoglu MA, Kursun O, Singhal AB. Coexisting vascular lesions in reversible cerebral vasoconstriction syndrome. Cephalalgia. 2017;37(1):29–35.

    PubMed  Google Scholar 

  31. Adlam D, Olson TM, Combaret N, et al. Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection. J Am Coll Cardiol. 2019;73(1):58–66.

    PubMed  CAS  Google Scholar 

  32. Debette S, Kamatani Y, Metso TM, et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat Genet. 2015;47(1):78–83.

    PubMed  CAS  Google Scholar 

  33. Kiando SR, Tucker NR, Castro-Vega LJ, et al. PHACTR1 is a genetic susceptibility locus for fibromuscular dysplasia supporting its complex genetic pattern of inheritance. PLoS Genet. 2016;12(10):e1006367.

    PubMed  PubMed Central  Google Scholar 

  34. Research Committee on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Willis; Health Labour Sciences Research Grant for Research on Measures for Infractable Diseases. Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis). Neurol Med Chir (Tokyo). 2012;52(5):245–66.

    Google Scholar 

  35. Huang S, Guo ZN, Shi M, Yang Y, Rao M. Etiology and pathogenesis of Moyamoya disease: an update on disease prevalence. Int J Stroke. 2017;12(3):246–53.

    PubMed  Google Scholar 

  36. Kronenburg A, Braun KP, van der Zwan A, Klijn CJ. Recent advances in Moyamoya disease: pathophysiology and treatment. Curr Neurol Neurosci Rep. 2014;14(1):423.

    PubMed  Google Scholar 

  37. Deng X, Ge P, Wang S, et al. Treatment of Moyamoya disease. Neurosurgery. 2018;65(CN_suppl_1):62–5.

    PubMed  Google Scholar 

  38. Riordan CP, Storey A, Cote DJ, Smith ER, Scott RM. Results of more than 20 years of follow-up in pediatric patients with moyamoya disease undergoing pial synangiosis. J Neurosurg Pediatr. 2019;1–7.

  39. Kim JS. Moyamoya disease: epidemiology, clinical features, and diagnosis. J Stroke. 2016;18(1):2–11.

    PubMed  PubMed Central  Google Scholar 

  40. Herve D, Ibos-Auge N, Calviere L, et al. Predictors of clinical or cerebral lesion progression in adult moyamoya angiopathy. Neurology. 2019;93(4):e388–97.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Kang S, Liu X, Zhang D, et al. Natural course of Moyamoya disease in patients with prior hemorrhagic stroke. Stroke. 2019;50(5):1060–6.

    PubMed  Google Scholar 

  42. Federau C, Christensen S, Zun Z, et al. Cerebral blood flow, transit time, and apparent diffusion coefficient in moyamoya disease before and after acetazolamide. Neuroradiology. 2017;59(1):5–12.

    PubMed  Google Scholar 

  43. Suzuki J, Takaku A. Cerebrovascular "Moyamoya" disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969;20(3):288–99.

    PubMed  CAS  Google Scholar 

  44. Zhang H, Zheng L, Feng L. Epidemiology, diagnosis and treatment of Moyamoya disease. Exp Ther Med. 2019;17(3):1977–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Kamada F, Aoki Y, Narisawa A, et al. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet. 2011;56(1):34–40.

    PubMed  CAS  Google Scholar 

  46. Zheng J, Yu LB, Dai KF, Zhang Y, Wang R, Zhang D. Clinical features, surgical treatment, and long-term outcome of a multicenter cohort of pediatric Moyamoya. Front Neurol. 2019;10:14.

    PubMed  PubMed Central  Google Scholar 

  47. Sanchez-Alvarez C, Mertz LE, Thomas CS, Cochuyt JJ, Abril A. Demographic, clinical, and radiologic characteristics of a cohort of patients with Takayasu arteritis. Am J Med. 2019;132(5):647–51.

    PubMed  Google Scholar 

  48. Comarmond C, Biard L, Lambert M, et al. Long-term outcomes and prognostic factors of complications in Takayasu arteritis: a multicenter study of 318 patients. Circulation. 2017;136(12):1114–22.

    PubMed  Google Scholar 

  49. Bond KM, Nasr D, Lehman V, Lanzino G, Cloft HJ, Brinjikji W. Intracranial and extracranial neurovascular manifestations of Takayasu arteritis. AJNR Am J Neuroradiol. 2017;38(4):766–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Hata A, Noda M, Moriwaki R, Numano F. Angiographic findings of Takayasu arteritis: new classification. Int J Cardiol. 1996;54(Suppl):S155–63.

    PubMed  Google Scholar 

  51. • Hellmich B, Agueda A, Monti S, et al. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2019. The European League Against Rheumatism (EULAR) provides a detailed update and practical guide for the diagnosis and treatment of Takayasu and giant cell arteritis.

  52. Seyahi E. Takayasu arteritis: an update. Curr Opin Rheumatol. 2017;29(1):51–6.

    PubMed  Google Scholar 

  53. Grayson PC, Alehashemi S, Bagheri AA, et al. (18) F-Fluorodeoxyglucose-positron emission tomography as an imaging biomarker in a prospective, longitudinal cohort of patients with large vessel vasculitis. Arthritis Rheum. 2018;70(3):439–49.

    Google Scholar 

  54. Gornik HL, Creager MA. Aortitis. Circulation. 2008;117(23):3039–51.

    PubMed  PubMed Central  Google Scholar 

  55. Terao C, Yoshifuji H, Matsumura T, et al. Genetic determinants and an epistasis of LILRA3 and HLA-B*52 in Takayasu arteritis. Proc Natl Acad Sci U S A. 2018;115(51):13045–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Salvarani C, Cantini F, Boiardi L, Hunder GG. Polymyalgia rheumatica and giant-cell arteritis. N Engl J Med. 2002;347(4):261–71.

    PubMed  Google Scholar 

  57. Karassa FB, Matsagas MI, Schmidt WA, Ioannidis JP. Meta-analysis: test performance of ultrasonography for giant-cell arteritis. Ann Intern Med. 2005;142(5):359–69.

    PubMed  Google Scholar 

  58. Schauble B, Wijman CA, Koleini B, Babikian VL. Ophthalmic artery microembolism in giant cell arteritis. J Neuroophthalmol. 2000;20(4):273–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Harriott MD, PhD.

Ethics declarations

Conflict of Interest

Andrea Harriott reports consulting fees from Bristol Myers Squibb and funding support from electroCore.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cerebrovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harriott, A. Idiopathic Non-atherosclerotic Carotid Artery Disease. Curr Treat Options Cardio Med 21, 64 (2019). https://doi.org/10.1007/s11936-019-0780-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-019-0780-x

Keywords

Navigation