Skip to main content

Advertisement

Log in

Radiation-Associated Cardiac Disease: From Molecular Mechanisms to Clinical Management

  • Valvular Heart Disease (J Dal-Bianco, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Radiation-associated cardiac disease (RACD) is an increasingly recognized latent manifestation of chest and mediastinal radiation therapy. The delayed presentation reflects increased survival rates from malignancies successfully treated decades previously. However, individuals are now presenting with multiple coexistent manifestations of RACD and pulmonary disease as a consequence of high-dose radiation administered prior to the routine institution of modern dose-modulating regimens. Increased awareness of RACD is critical for implementation of appropriate screening algorithms and for specific management strategies involving the timing and strategies of intervention in these patients.

Recent findings

Recent advances in multimodality cardiac imaging have demonstrated pathognomonic findings of RACD, which can predict outcomes including mortality. Accurate diagnosis of these typically concurrent manifestations is critical and should prompt referral to a center experienced in managing RACD as surgical risk is significantly increased for this patient cohort, particularly for those undergoing redo operation.

Summary

The latent effect of RACD and its unique combination of manifestations means that these patients will increasingly present with challenging management issues, resulting in increased rates of morbidity and mortality. Timing of treatment intervention must be carefully considered, although percutaneous options may provide alternative future strategies for this higher risk cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Desai MY, Jellis CL, Kotecha R, Johnston DR, Griffin BP. Radiation-associated cardiac disease: a practical approach to diagnosis and management. JACC Cardiovasc Imaging. 2018;11:1132–49. https://doi.org/10.1016/j.jcmg.2018.04.028. Current comprehensive updated review of the topic.

    PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30. https://doi.org/10.3322/caac.21387.

    Article  Google Scholar 

  3. • Donnellan E, Phelan D, Mccarthy CP, Collier P, Desai M, Griffin B. Radiation-induced heart disease: a practical guide to diagnosis and management. Cleve Clin J Med. 2016;83(12):914–22. https://doi.org/10.3949/ccjm.83a.15104. Guide to management of radiation heart disease geared to clinicians.

    Article  Google Scholar 

  4. Galper SL, Yu JB, Mauch PM, Strasser JF, Silver B, LaCasce A, et al. Clinically significant cardiac disease in patients with Hodgkin lymphoma treated with mediastinal irradiation. Blood. 2011;117:412–8. https://doi.org/10.1182/blood-2010-06-291328.

    Article  CAS  PubMed  Google Scholar 

  5. Emami B, Lyman J, Brown A, Cola L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22. https://doi.org/10.1016/0360-3016(91)90171-Y.

    Article  CAS  PubMed  Google Scholar 

  6. Amromin GD, Gildenhorn HL, Solomon RD, Nadkarni BB, Jacobs ML. The synergism of X-irradiation and cholesterol-fat feeding on the development of coronary artery lesions. J Atheroscler Res. 1964;4:325–34. https://doi.org/10.1016/S0368-1319(64)80043-0.

    Article  CAS  PubMed  Google Scholar 

  7. Hayashi T, Morishita Y, Kubo Y, Kusunoki Y, Hayashi I, Kasagi F, et al. Long-term effects of radiation dose on inflammatory markers in atomic bomb survivors. Am J Med. 2005;118:83–6. https://doi.org/10.1016/j.amjmed.2004.06.045.

    Article  PubMed  Google Scholar 

  8. Gagliardi G, Constine LS, Moiseenko V, Correa C, Pierce LJ, Allen AM, et al. Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys. 2010;76:S77–85. https://doi.org/10.1016/j.ijrobp.2009.04.093.

    Article  PubMed  Google Scholar 

  9. Rutqvist LE, Lax I, Fornander T, Johansson H. Cardiovascular mortality in a randomized trial of adjuvant radiation therapy versus surgery alone in primary breast cancer. Int J Radiat Oncol Biol Phys. 1992;22:887–96. https://doi.org/10.1016/0360-3016(92)90784-F.

    Article  CAS  PubMed  Google Scholar 

  10. Meyer RM, Gospodarowicz MK, Connors JM, Pearcey RG, Wells WA, Winter JN, et al. ABVD alone versus radiation-based therapy in limited-stage Hodgkin’s lymphoma. N Engl J Med. 2012;366:399–408. https://doi.org/10.1056/NEJMoa1111961.

    Article  CAS  PubMed  Google Scholar 

  11. • Hancock SL, Donaldson SS, Hoppe RT. Cardiac disease following treatment of Hodgkin’s disease in children and adolescents. J Clin Oncol. 1993;11:1208–15. https://doi.org/10.1200/JCO.1993.11.7.1208. Seminal paper on impact of radiation for Hodgkin's disease on cardiac function and outcome.

    Article  CAS  Google Scholar 

  12. •• Lancellotti P, Nkomo VT, Badano LP, Bergler-Klein J, Bogaert J, Davin L, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14:721–40. https://doi.org/10.1093/ehjci/jet123. US and European Consensus Guidelines for evaluation and management of radiation induced heart disease.

    Article  Google Scholar 

  13. Veinot JP, Edwards WD. Pathology of radiation-induced heart disease: a surgical and autopsy study of 27 cases. Hum Pathol. 1996;27:766–73. https://doi.org/10.1016/S0046-8177(96)90447-5.

    Article  CAS  PubMed  Google Scholar 

  14. Carver JR, Shapiro CL, Ng A, Jacobs L, Schwartz C, Virgo KS, et al. American society of clinical oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol. 2007;25:3991–4008. https://doi.org/10.1200/JCO.2007.10.9777.

    Article  CAS  PubMed  Google Scholar 

  15. Carmel RJ, Kaplan HS. Mantle irradiation in Hodgkin’s disease. An analysis of technique, tumor eradication, and complications. Cancer. 1976. https://doi.org/10.1002/1097-0142(197606)37:6<2813::AID-CNCR2820370637>3.0.CO;2-S

  16. Morton DL, Glancy DL, Joseph WL, Adkins PC. Management of patients with radiation induced pericarditis with effusion: a note on the development of aortic regurgitation in two of them. Chest. 1973;64:291–7. https://doi.org/10.1378/chest.64.3.291.

    Article  CAS  PubMed  Google Scholar 

  17. Arsenian MA. Cardiovascular sequelae of therapeutic thoracic radiation. Prog Cardiovasc Dis. 1991;33:299–311. https://doi.org/10.1016/0033-0620(91)90022-E.

    Article  CAS  PubMed  Google Scholar 

  18. Imazio M, Brucato A, Mayosi BM, Derosa FG, Lestuzzi C, Macor A, et al. Medical therapy of pericardial diseases: part II: noninfectious pericarditis, pericardial effusion and constrictive pericarditis. J Cardiovasc Med. 2010;11:712–22. https://doi.org/10.2459/JCM.0b013e3283340b97.

    Article  Google Scholar 

  19. • Bertog SC, Thambidorai SK, Parakh K, Schoenhagen P, Ozduran V, Houghtaling PL, et al. Constrictive pericarditis: etiology and cause-specific survival after pericardiectomy. J Am Coll Cardiol. 2004;43:1445–52. https://doi.org/10.1016/j.jacc.2003.11.048. Paper detailing poor outcomes for pericardiectomy in radiation induced constriction compared to other causes of constrictive pericarditis.

    Article  Google Scholar 

  20. Burns RJ, Bar-Shlomo BZ, Druck MN, Herman JG, Gilbert BW, Perrault DJ, et al. Detection of radiation cardiomyopathy by gated radionuclide angiography. Am J Med. 1983;74:297–302. https://doi.org/10.1016/0002-9343(83)90631-9.

    Article  CAS  PubMed  Google Scholar 

  21. Constine LS, Schwartz RG, Savage DE, King V, Muhs A. Cardiac function, perfusion, and morbidity in irradiated long-term survivors of Hodgkin’s disease. Int J Radiat Oncol Biol Phys. 1997;39:897–906. https://doi.org/10.1016/S0360-3016(97)00467-7.

    Article  CAS  PubMed  Google Scholar 

  22. Heidenreich PA, Hancock SL, Vagelos RH, Lee BK, Schnittger I. Diastolic dysfunction after mediastinal irradiation. Am Heart J. 2005;150:977–82. https://doi.org/10.1016/j.ahj.2004.12.026.

    Article  PubMed  Google Scholar 

  23. Saxena P, Joyce LD, Daly RC, Kushwaha SS, Schirger JA, Rosedahl J, et al. Cardiac transplantation for radiation-induced cardiomyopathy: the Mayo Clinic experience. Ann Thorac Surg. 2014;98:2115–21. https://doi.org/10.1016/j.athoracsur.2014.06.056.

    Article  PubMed  Google Scholar 

  24. Tamura A, Takahara Y, Mogi K, Katsumata M. Radiation-induced valvular disease is the logical consequence of irradiation. Gen Thorac Cardiovasc Surg. 2007;55(2):53–6. https://doi.org/10.1007/s11748-006-0070-x.

    Article  PubMed  Google Scholar 

  25. Brand MD, Abadi CA, Aurigemma GP, Dauerman HL, Meyer TE. Radiation-associated valvular heart disease in Hodgkin’s disease is associated with characteristic thickening and fibrosis of the aortic-mitral curtain. J Heart Valve Dis. 2001.

  26. • Desai MY, Wu W, Masri A, Popovic ZB, Agarwal S, Smedira NG, et al. Increased aorto-mitral curtain thickness independently predicts mortality in patients with radiation-associated cardiac disease undergoing cardiac surgery. Ann Thorac Surg. 2014;97(4):1348–55. https://doi.org/10.1016/j.athoracsur.2013.12.029. Relationship between echocardiographically measured radiation changes in the mitral valve and poorer outcomes in radiation heart disease patients.

    Article  Google Scholar 

  27. Nadlonek NA, Weyant MJ, Yu JA, Cleveland JC Jr, Reece TB, Meng X, et al. Radiation induces osteogenesis in human aortic valve interstitial cells. J Thorac Cardiovasc Surg. 2012;144:1466–70. https://doi.org/10.1016/j.jtcvs.2012.08.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hull MC, Morris CG, Pepine CJ, Mendenhall NP. Valvular dysfunction and carotid , subclavian , and coronary artery disease treated with radiation therapy. JAMA. 2003;290:2831–7. https://doi.org/10.1001/jama.290.21.2831.

    Article  CAS  PubMed  Google Scholar 

  29. Heidenreich PA, Hancock SL, Lee BK, Mariscal CS, Schnittger I. Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol. 2003;42:743–9. https://doi.org/10.1016/S0735-1097(03)00759-9.

    Article  PubMed  Google Scholar 

  30. Gharagozloo F, Clements IP, Mullany CJ. Use of the internal mammary artery for myocardial revascularization in a patient with radiation-induced coronary artery disease. Mayo Clin Proc. 1992;67:1081–4. https://doi.org/10.1016/S0025-6196(12)61124-0.

    Article  CAS  PubMed  Google Scholar 

  31. Crestanello JA, McGregor CGA, Danielson GK, et al. Mitral and tricuspid valve repair in patients with previous mediastinal radiation therapy. Ann Thorac Surg. 2004;78:826–31. https://doi.org/10.1016/j.athoracsur.2004.04.008.

    Article  PubMed  Google Scholar 

  32. •• Wu W, Masri A, Popovic ZB, Smedira NG, Lytle BW, Marwick TH, et al. Long-term survival of patients with radiation heart disease undergoing cardiac surgery: a cohort study. Circulation. 2013;127(14):1476–84. https://doi.org/10.1161/CIRCULATIONAHA.113.001435. Seminal paper highlighting poor outcomes in patients with radiation induced heart disease undergoing corrective cardiac surgery compared to those undergoing similar procedures who did not have prior radiation exposure.

    Article  Google Scholar 

  33. •• Donnellan E, Masri A, Johnston DR et al Long-term outcomes of patients with mediastinal radiation-associated severe aortic stenosis and subsequent surgical aortic valve replacement: a matched cohort study. J Am Heart Assoc. 2017;6(5). https://doi.org/10.1161/JAHA.116.005396Paper illustrating poorer outcomes in radiation associated aortic valve disease patients undergoing aortic valve replacement as compared to those without prior radiation exposure.

  34. • Donnellan E, Griffin BP, Johnston DR, Popovic ZB, Alashi A, Kapadia SR, et al. Rate of progression of aortic stenosis and its impact on outcomes in patients with radiation-associated cardiac disease: a matched cohort study. JACC Cardiovasc Imaging. 2018;11:1072–80. https://doi.org/10.1016/j.jcmg.2018.04.019. Radiation associated aortic stenosis does not progress at a faster rate than that not associated with radiation but leads to earlier surgical presentation nevertheless.

    PubMed  Google Scholar 

  35. •• Donnellan E, Krishnaswamy A, Hutt-Centero E, et al. Outcomes of patients with mediastinal radiation-associated severe aortic stenosis undergoing transcatheter aortic valve replacement. Circulation. 2018;138:1752–4. https://doi.org/10.1161/CIRCULATIONAHA.118.035514.Important comparison of outcomes in radiation induced AS for percutaneous vs surgical approach to aortic valve replacement.

  36. Cheng RK, Lee MS, Seki A, Shemin RJ, Cruz D, Lluri G, et al. Radiation coronary arteritis refractory to surgical and percutaneous revascularization culminating in orthotopic heart transplantation. Cardiovasc Pathol. 2013;22:303–8. https://doi.org/10.1016/j.carpath.2012.12.005.

    Article  PubMed  Google Scholar 

  37. Hendry JH. Threshold doses and circulatory disease risks. Ann ICRP. 2015;44:69–75. https://doi.org/10.1177/0146645314560688.

    Article  CAS  PubMed  Google Scholar 

  38. Stewart FA. Mechanisms and dose-response relationships for radiation-induced cardiovascular disease. Ann ICRP. 2012;41:72–9. https://doi.org/10.1016/j.icrp.2012.06.031.

    Article  CAS  PubMed  Google Scholar 

  39. • Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98. https://doi.org/10.1056/NEJMoa1209825. Seminal paper on influence of radiation on subsequent prevalence of CAD in women radiated for breast cancer.

    Article  CAS  Google Scholar 

  40. Rademaker J, Schöder H, Ariaratnam NS, Strauss HW, Yahalom J, Steingart R, et al. Coronary artery disease after radiation therapy for Hodgkin’s lymphoma: coronary CT angiography findings and calcium scores in nine asymptomatic patients. Am J Roentgenol. 2008;191:32–7. https://doi.org/10.2214/AJR.07.3112.

    Article  Google Scholar 

  41. Reed GW, Masri A, Griffin BP, Kapadia SR, Ellis SG, Desai MY. Long-term mortality in patients with radiation-associated coronary artery disease treated with percutaneous coronary intervention. Circ Cardiovasc Interv. 2016;9. https://doi.org/10.1161/CIRCINTERVENTIONS.115.003483.

  42. Fender EA, Liang JJ, Sio TT, Stulak JM, Lennon RJ, Slusser JP, et al. Percutaneous revascularization in patients treated with thoracic radiation for cancer. Am Heart J. 2017;187:98–103. https://doi.org/10.1016/j.ahj.2017.02.014.

    Article  PubMed  Google Scholar 

  43. Desai MY, Karunakaravel K, Wu W, Agarwal S, Smedira NG, Lytle BW, et al. Pulmonary fibrosis on multidetector computed tomography and mortality in patients with radiation-associated cardiac disease undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2014;148:475–481.e3. https://doi.org/10.1016/j.jtcvs.2013.08.087.

    Article  PubMed  Google Scholar 

  44. Daitoku K, Fukui K, Ichinoseki I, Munakata M, Takahashi S, Fukuda I. Radiotherapy-induced aortic valve disease associated with porcelain aorta. Japanese J Thorac Cardiovasc Surg. 2004;52:349–52. https://doi.org/10.1007/s11748-004-0069-0.

    Article  Google Scholar 

  45. Adams MJ, Lipshultz SE, Schwartz C, Fajardo LF, Coen V, Constine LS. Radiation-associated cardiovascular disease: manifestations and management. In: Seminars in Radiation Oncology. 2003. https://doi.org/10.1016/S1053-4296(03)00026-2.

    Article  Google Scholar 

  46. Orzan F, Brusca A, Gaita F, Giustetto C, Figliomeni MC, Libero L. Associated cardiac lesions in patients with radiation-induced complete heart block. Int J Cardiol. 1993;39:151–6. https://doi.org/10.1016/0167-5273(93)90027-E.

    Article  CAS  PubMed  Google Scholar 

  47. Larsen RL, Jakacki RI, Vetter VL, Meadows AT, Silber JH, Barber G. Electrocardiographic changes and arrhythmias after cancer therapy in children and young adults. Am J Cardiol. 1992;70:73–7. https://doi.org/10.1016/0002-9149(92)91393-I.

    Article  CAS  PubMed  Google Scholar 

  48. Shapiro CL, Hardenbergh PH, Gelman R, Blanks D, Hauptman P, Recht A, et al. Cardiac effects of adjuvant doxorubicin and radiation therapy in breast cancer patients. J Clin Oncol. 1998;16:3493–501. https://doi.org/10.1200/JCO.1998.16.11.3493.

    Article  CAS  PubMed  Google Scholar 

  49. Maraldo MV, Ng AK. Minimizing cardiac risks with contemporary radiation therapy for Hodgkin lymphoma. J Clin Oncol. 2016;34:208–10. https://doi.org/10.1200/JCO.2015.64.6588.

    Article  CAS  PubMed  Google Scholar 

  50. Maraldo MV, Brodin NP, Vogelius IR, et al. Risk of developing cardiovascular disease after involved node radiotherapy versus mantle field for Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2012;526:54–8. https://doi.org/10.1016/j.physb.2017.09.069.

    Article  CAS  Google Scholar 

  51. Maraldo MV, Specht L. A decade of comparative dose planning studies for early-stage hodgkin lymphoma: what can we learn? Int J Radiat Oncol Biol Phys. 2014;90:1126–35. https://doi.org/10.1016/j.ijrobp.2014.06.069.

    Article  PubMed  Google Scholar 

  52. Hoppe BS, Flampouri S, Su Z, et al. Consolidative involved-node proton therapy for stage IA-IIIB mediastinal hodgkin lymphoma: preliminary dosimetric outcomes from a phase II study. In: International Journal of Radiation Oncology Biology Physics. 2012. doi:https://doi.org/10.1016/j.ijrobp.2011.06.1959.

    Article  Google Scholar 

  53. Petersen PM, Aznar MC, Berthelsen AK, Loft A, Schut DA, Maraldo M, et al. Prospective phase II trial of image-guided radiotherapy in Hodgkin lymphoma: benefit of deep inspiration breath-hold. Acta Oncol (Madr). 2015;54:60–6. https://doi.org/10.3109/0284186X.2014.932435.

    Article  CAS  Google Scholar 

  54. Aznar MC, Maraldo MV, Schut DA, Lundemann M, Brodin NP, Vogelius IR, et al. Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both? Int J Radiat Oncol Biol Phys. 2015;92:169–74. https://doi.org/10.1016/j.ijrobp.2015.01.013.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Griffin MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Valvular Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donnellan, E., Jellis, C.L. & Griffin, B.P. Radiation-Associated Cardiac Disease: From Molecular Mechanisms to Clinical Management. Curr Treat Options Cardio Med 21, 22 (2019). https://doi.org/10.1007/s11936-019-0726-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-019-0726-3

Keywords

Navigation