Skip to main content

Advertisement

Log in

Athletes and the Aorta: Normal Adaptations and the Diagnosis and Management of Pathology

  • Sports Cardiology (M Emery, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Over a hundred years ago, physicians first recognized that participation in regular, vigorous training resulted in enlargement of the heart. Since that time, the term “athlete’s heart” has entered the medical lexicon as a global expression encompassing the electrical, functional, and morphological adaptations that develop in response to physical training. Exercise-induced adaptations of the aorta, which is also exposed to large hemodynamic stresses during prolonged endurance exercise or resistance training, are less well recognized. Young athletes tend to have slightly larger aortas than their sedentary counterparts; however, this rarely exceeds normal ranges for the general population. A systematic approach is advised when presented with an athlete with aortic enlargement. The size of the aorta needs to be first put in the context of the athlete’s age, sex, size, and sporting endeavors; however, even in the largest young athletes, the aortic root rarely exceeds 4 cm in men or 3.4 cm in women. A comprehensive evaluation is advised which includes a detailed family history and a thorough physical examination evaluating for signs of any defined connective tissue disorder associated with aortopathy. Downstream testing is then tailored for the individual and may include further tomographic imaging, opthalmology review, and genetic testing. This should ideally be performed at a specialist center. Management of athletes with an aortopathy includes tailoring athletic activity, medical management with strict impulse control, and, in some cases, prophylactic surgery. The issue of sporting eligibility should be individualized and if disqualification is necessary, this should be undertaken by a sports cardiologist or an expert in aortic disease with experience in dealing with an athletic population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Darling E. The effects of training: a study of the Harvard University crews. Boston Med and Surg Jour. 1899;141:205–9.

    Article  Google Scholar 

  2. D EA. The effects of training: a study of the Harvard University crews. Boston Med and Surg Jour. 1899;141:205–9.

    Article  Google Scholar 

  3. Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82(4):521–4.

    Article  CAS  PubMed  Google Scholar 

  4. Finocchiaro G, Papadakis M, Robertus JL, et al. Etiology of sudden death in sports: insights from a United Kingdom regional registry. J Am Coll Cardiol. 2016;67(18):2108–15.

    Article  PubMed  Google Scholar 

  5. Maron BJ, Haas TS, Murphy CJ, Ahluwalia A, Rutten-Ramos S. Incidence and causes of sudden death in US college athletes. J Am Coll Cardiol. 2014;63(16):1636–43.

    Article  PubMed  Google Scholar 

  6. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349(11):1064–75.

    Article  CAS  PubMed  Google Scholar 

  7. Chandra N, Bastiaenen R, Papadakis M, Sharma S. Sudden cardiac death in young athletes: practical challenges and diagnostic dilemmas. J Am Coll Cardiol. 2013;61(10):1027–40.

    Article  PubMed  Google Scholar 

  8. Pape LA, Awais M, Woznicki EM, et al. Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the International Registry of Acute Aortic Dissection. J Am Coll Cardiol. 2015;66(4):350–8.

    Article  PubMed  Google Scholar 

  9. Arslan-Kirchner M, Arbustini E, Boileau C, et al. Clinical utility gene card for: Marfan syndrome type 1 and related phenotypes [FBN1]. Eur J Hum Genet. 2010; (18). https://doi.org/10.1038/ejhg.2010.42

  10. Gray JR, Bridges AB, Faed MJ, et al. Ascertainment and severity of Marfan syndrome in a Scottish population. J Med Genet. 1994;31(1):51–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murdoch JL, Walker BA, Halpern BL, Kuzma JW, McKusick VA. Life expectancy and causes of death in the Marfan syndrome. N Engl J Med. 1972;286(15):804–8.

    Article  CAS  PubMed  Google Scholar 

  12. • Isselbacher EM, Bonaca MP, Di Eusanio M, et al. Recurrent aortic dissection: observations from the international registry of aortic dissection. Circulation. 2016;134(14):1013–24. Isselbacher and colleagues expertly describe the disproportionate role of Marfan Syndrome in the international burden of recurrent aortic dissection as collected in the International Registry of Aortic Dissection (IRAD).

    Article  PubMed  Google Scholar 

  13. Hurst JW, Fuster V, Walsh RA, Harrington RA. Hurst's the heart. 13th ed. New York: McGraw-Hill Medical; 2011.

    Google Scholar 

  14. Huntington K, Hunter AG, Chan KL. A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol. 1997;30(7):1809–12.

    Article  CAS  PubMed  Google Scholar 

  15. Clementi M, Notari L, Borghi A, Tenconi R. Familial congenital bicuspid aortic valve: a disorder of uncertain inheritance. Am J Med Genet. 1996;62(4):336–8.

    Article  CAS  PubMed  Google Scholar 

  16. Tutar E, Ekici F, Atalay S, Nacar N. The prevalence of bicuspid aortic valve in newborns by echocardiographic screening. Am Heart J. 2005;150(3):513–5.

    Article  PubMed  Google Scholar 

  17. Basso C, Boschello M, Perrone C, et al. An echocardiographic survey of primary school children for bicuspid aortic valve. Am J Cardiol. 2004;93(5):661–3.

    Article  PubMed  Google Scholar 

  18. Beroukhim RS, Kruzick TL, Taylor AL, Gao D, Yetman AT. Progression of aortic dilation in children with a functionally normal bicuspid aortic valve. Am J Cardiol. 2006;98(6):828–30.

    Article  PubMed  Google Scholar 

  19. Tadros TM, Klein MD, Shapira OM. Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation. 2009;119(6):880–90.

    Article  PubMed  Google Scholar 

  20. Galanti G, Stefani L, Toncelli L, Vono MC, Mercuri R, Maffulli N. Effects of sports activity in athletes with bicuspid aortic valve and mild aortic regurgitation. Br J Sports Med. 2010;44(4):275–9.

    Article  CAS  PubMed  Google Scholar 

  21. Michelena HI, Della Corte A, Prakash SK, Milewicz DM, Evangelista A, Enriquez-Sarano M. Bicuspid aortic valve aortopathy in adults: incidence, etiology, and clinical significance. Int J Cardiol. 2015;201:400–7.

    Article  PubMed  Google Scholar 

  22. Van Hemelrijk C, Renard M, Loeys B. The Loeys-Dietz syndrome: an update for the clinician. Curr Opin Cardiol. 2010;25(6):546–51.

    Article  PubMed  Google Scholar 

  23. Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342(10):673–80.

    Article  CAS  PubMed  Google Scholar 

  24. •• Braverman AC, Harris KM, Kovacs RJ, Maron BJ. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 7: aortic diseases, including Marfan syndrome: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2398–405. These 2015 multi-society recommendations represent the current guidelines for clinicians caring for athletes who possess, or may possess, aortic pathology and/or precipitating conditions.

    Article  PubMed  Google Scholar 

  25. Rogers IS, Massaro JM, Truong QA, et al. Distribution, determinants, and normal reference values of thoracic and abdominal aortic diameters by computed tomography (from the Framingham Heart Study). Am J Cardiol. 2013;111(10):1510–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kalsch H, Lehmann N, Mohlenkamp S, et al. Body-surface adjusted aortic reference diameters for improved identification of patients with thoracic aortic aneurysms: results from the population-based Heinz Nixdorf Recall study. Int J Cardiol. 2013;163(1):72–8.

    Article  PubMed  Google Scholar 

  27. Wolak A, Gransar H, Thomson LE, et al. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. JACC Cardiovasc Imaging. 2008;1(2):200–9.

    Article  PubMed  Google Scholar 

  28. Campens L, Demulier L, De Groote K, et al. Reference values for echocardiographic assessment of the diameter of the aortic root and ascending aorta spanning all age categories. Am J Cardiol. 2014;114(6):914–20.

    Article  PubMed  Google Scholar 

  29. Roman MJ, Devereux RB, Kramer-Fox R, O'Loughlin J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol. 1989;64(8):507–12.

    Article  CAS  PubMed  Google Scholar 

  30. Engel DJ, Schwartz A, Homma S. Athletic cardiac remodeling in US professional basketball players. JAMA Cardiol. 2016;1(1):80–7.

    Article  PubMed  Google Scholar 

  31. Boraita A, Heras ME, Morales F, et al. Reference values of aortic root in male and female white elite athletes according to sport. Circ Cardiovasc Imaging. 2016; 9:e005292. https://doi.org/10.1161/CIRCIMAGING.116.005292.

  32. Pelliccia A, Di Paolo FM, Quattrini FM. Aortic root dilatation in athletic population. Prog Cardiovasc Dis. 2012;54(5):432–7.

    Article  PubMed  Google Scholar 

  33. Kinoshita N, Mimura J, Obayashi C, Katsukawa F, Onishi S, Yamazaki H. Aortic root dilatation among young competitive athletes: echocardiographic screening of 1929 athletes between 15 and 34 years of age. Am Heart J. 2000;139(4):723–8.

    Article  CAS  PubMed  Google Scholar 

  34. D'Andrea A, Cocchia R, Riegler L, et al. Aortic root dimensions in elite athletes. Am J Cardiol. 2010;105(11):1629–34.

    Article  PubMed  Google Scholar 

  35. Mitchell JH, Haskell W, Snell P, Van Camp SP. Task Force 8: classification of sports. J Am Coll Cardiol. 2005;45(8):1364–7.

    Article  PubMed  Google Scholar 

  36. D'Andrea A, Cocchia R, Riegler L, et al. Aortic stiffness and distensibility in top-level athletes. J Am Soc Echocardiogr. 2012;25(5):561–7.

    Article  PubMed  Google Scholar 

  37. Mayerick C, Carre F, Elefteriades J. Aortic dissection and sport: physiologic and clinical understanding provide an opportunity to save young lives. J Cardiovasc Surg. 2010;51(5):669–81.

    CAS  Google Scholar 

  38. Kasikcioglu E, Oflaz H, Akhan H, et al. Left ventricular remodeling and aortic distensibility in elite power athletes. Heart Vessel. 2004;19(4):183–8.

    Article  Google Scholar 

  39. Erol MK, Yilmaz M, Oztasyonar Y, Sevimli S, Senocak H. Aortic distensibility is increasing in elite athletes. Am J Cardiol. 2002;89(8):1002–4.

    Article  PubMed  Google Scholar 

  40. Kasikcioglu E, Kayserilioglu A, Oflaz H, Akhan H. Aortic distensibility and left ventricular diastolic functions in endurance athletes. Int J Sports Med. 2005;26(3):165–70.

    Article  CAS  PubMed  Google Scholar 

  41. Gentry J CD, Joshi P, Maroules C, Ayers C, Aagaard P, Hachamovitch R, Dunn R, Alexander K, Lincoln A, Tucker A, Phelan D. Ascending Aortic Dimensions in Former National Football League Athletes. Paper presented at: American College of Cardiology Scientific Sessions. 2017.

  42. Loeys BL, Dietz HC, Braverman AC, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7):476–85.

    Article  CAS  PubMed  Google Scholar 

  43. National Collegiate Athletic Association: Student-Athlete Participation. www.ncaapublications.com/productdownloads/PR1516.pdf. Accessed 12 June 2017.

  44. Maron BJ, Haas TS, Ahluwalia A, Murphy CJ, Garberich RF. Demographics and epidemiology of sudden deaths in young competitive athletes: from the United States National Registry. Am J Med. 2016;129(11):1170–7.

    Article  PubMed  Google Scholar 

  45. Shores J, Berger KR, Murphy EA, Pyeritz RE. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med. 1994;330(19):1335–41.

    Article  CAS  PubMed  Google Scholar 

  46. Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC 3rd. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med. 2008;358(26):2787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ahimastos AA, Aggarwal A, D'Orsa KM, et al. Effect of perindopril on large artery stiffness and aortic root diameter in patients with Marfan syndrome: a randomized controlled trial. JAMA. 2007;298(13):1539–47.

    Article  CAS  PubMed  Google Scholar 

  48. Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Catheter Cardiovasc Interv. 2010; 76(2):E43–E86.

  49. Masri A, Kalahasti V, Svensson LG, et al. Aortic cross-sectional area/height ratio and outcomes in patients with a trileaflet aortic valve and a dilated aorta. Circulation. 2016;134(22):1724–37.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dermot Phelan MD, PhD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sports Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stephen Hedley, J., Phelan, D. Athletes and the Aorta: Normal Adaptations and the Diagnosis and Management of Pathology. Curr Treat Options Cardio Med 19, 88 (2017). https://doi.org/10.1007/s11936-017-0586-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0586-7

Keywords

Navigation