Skip to main content

Advertisement

Log in

Production of Urothelium from Pluripotent Stem Cells for Regenerative Applications

  • Regenerative Medicine (A Atala, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

As bladder reconstruction strategies evolve, a feasible and safe source of transplantable urothelium becomes a major consideration for patients with advanced bladder disease, particularly cancer. Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are attractive candidates from which to derive urothelium as they renew and proliferate indefinitely in vitro and fulfill the non-autologous and/or non-urologic criteria, respectively, that is required for many patients. This review presents the latest advancements in differentiating urothelium from pluripotent stem cells in vitro in the context of current bladder tissue engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol. 2009;297(6):F1477–501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Wu XR et al. Uroplakins in urothelial biology, function, and disease. Kidney Int. 2009;75(11):1153–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hu P et al. Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am J Physiol Renal Physiol. 2002;283(6):F1200–7.

    CAS  PubMed  Google Scholar 

  4. Tanrikut C, McDougal WS. Acid-base and electrolyte disorders after urinary diversion. World J Urol. 2004;22(3):168–71.

    Article  PubMed  Google Scholar 

  5. Yoo JJ et al. Regenerative medicine strategies for treating neurogenic bladder. Int Neurourol J. 2011;15(3):109–19.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Oberpenning F et al. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999;17(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  7. Yoo JJ et al. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998;51(2):221–5.

    Article  CAS  PubMed  Google Scholar 

  8. Jayo MJ et al. Early cellular and stromal responses in regeneration versus repair of a mammalian bladder using autologous cell and biodegradable scaffold technologies. J Urol. 2008;180(1):392–7.

    Article  PubMed  Google Scholar 

  9. Sutherland RS et al. Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J Urol. 1996;156(2 Pt 2):571–7.

    Article  CAS  PubMed  Google Scholar 

  10. Probst M et al. Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol. 1997;79(4):505–15.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y. Bladder reconstruction by tissue engineering—with or without cells? J Urol. 2008;180(1):10–1.

    Article  PubMed  Google Scholar 

  12. Joseph DB et al. Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida. J Urol. 2014;191(5):1389–95.

    Article  CAS  PubMed  Google Scholar 

  13. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5(1):121–43.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Frimberger D et al. Human embryoid body-derived stem cells in bladder regeneration using rodent model. Urology. 2005;65(4):827–32.

    Article  PubMed  Google Scholar 

  15. Zhang Y et al. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int. 2005;96(7):1120–5.

    Article  CAS  PubMed  Google Scholar 

  16. Sharma AK et al. Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films. Biomaterials. 2010;31(24):6207–17.

    Article  CAS  PubMed  Google Scholar 

  17. Tian H et al. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering. Biomaterials. 2010;31(5):870–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhu WD et al. Bladder reconstruction with adipose-derived stem cell-seeded bladder acellular matrix grafts improve morphology composition. World J Urol. 2010;28(4):493–8.

    Article  CAS  PubMed  Google Scholar 

  19. Sharma AK et al. A nonhuman primate model for urinary bladder regeneration using autologous sources of bone marrow-derived mesenchymal stem cells. Stem Cells. 2011;29(2):241–50.

    Article  CAS  PubMed  Google Scholar 

  20. Kim JH, Lee HJ, Song YS. Treatment of bladder dysfunction using stem cell or tissue engineering technique. Korean J Urol. 2014;55(4):228–38.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Sharma AK et al. Cotransplantation with specific populations of spina bifida bone marrow stem/progenitor cells enhances urinary bladder regeneration. Proc Natl Acad Sci U S A. 2013;110(10):4003–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Subramaniam R et al. Tissue engineering potential of urothelial cells from diseased bladders. J Urol. 2011;186(5):2014–20.

    Article  CAS  PubMed  Google Scholar 

  23. Castillo-Martin M et al. Molecular pathways of urothelial development and bladder tumorigenesis. Urol Oncol. 2010;28(4):401–8.

    Article  CAS  PubMed  Google Scholar 

  24. Duggan BJ et al. Oligoclonality in bladder cancer: the implication for molecular therapies. J Urol. 2004;171(1):419–25.

    Article  PubMed  Google Scholar 

  25. Denzinger S et al. Improved clonality analysis of multifocal bladder tumors by combination of histopathologic organ mapping, loss of heterozygosity, fluorescence in situ hybridization, and p53 analyses. Hum Pathol. 2006;37(2):143–51.

    Article  CAS  PubMed  Google Scholar 

  26. Hafner C et al. Evidence for oligoclonality and tumor spread by intraluminal seeding in multifocal urothelial carcinomas of the upper and lower urinary tract. Oncogene. 2001;20(35):4910–5.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang M et al. The differentiation of human adipose-derived stem cells towards a urothelium-like phenotype in vitro and the dynamic temporal changes of related cytokines by both paracrine and autocrine signal regulation. PLoS One. 2014;9(4):e95583.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Bharadwaj S et al. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng Part A. 2011;17(15–16):2123–32.

    Article  PubMed  Google Scholar 

  29. Ning J et al. Bone marrow mesenchymal stem cells differentiate into urothelial cells and the implications for reconstructing urinary bladder mucosa. Cytotechnology. 2011;63(5):531–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kang HH et al. Urothelial differentiation of human amniotic fluid stem cells by urothelium specific conditioned medium. Cell Biol Int. 2014;38(4):531–7.

    Article  CAS  PubMed  Google Scholar 

  31. Chung SS, Koh CJ. Bladder cancer cell in co-culture induces human stem cell differentiation to urothelial cells through paracrine FGF10 signaling. In Vitro Cell Dev Biol Anim. 2013;49(10):746–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wu S et al. Urothelial differentiation of human umbilical cord-derived mesenchymal stromal cells in vitro. Anal Cell Pathol (Amst). 2013;36(3–4):63–9.

    Article  CAS  Google Scholar 

  33. Oottamasathien S et al. Directed differentiation of embryonic stem cells into bladder tissue. Dev Biol. 2007;304(2):556–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kinebuchi Y et al. Direct induction of layered tissues from mouse embryonic stem cells: potential for differentiation into urinary tract tissue. Cell Tissue Res. 2008;331(3):605–15.

    Article  CAS  PubMed  Google Scholar 

  35. Mauney JR et al. All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms. PLoS One. 2010;5(7):e11513. This seminal work described the first in vitro induction of urothelium from mouse embryonic stem cells, while further defining the important role of retinoic acid in urothelial cell specification.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Franck D et al. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells. PLoS One. 2013;8(2):e56237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Osborn SL, et al. Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Transl Med. 2014. This is the first report to describe the induction of human urothelium from ESCs and iPSCs using a developmentally directed culture system, where urothelium is induced through a definitive endoderm step. The system efficiently differentiated urothelium through a process that appeared to mimic development of the bladder epithelium during embryogenesis.

  38. Kang M, Kim HH, Han YM. Generation of bladder urothelium from human pluripotent stem cells under chemically defined serum- and feeder-free system. Int J Mol Sci. 2014;15(5):7139–57. This article describes the induction of urothelium from pluripotent stem cells using a chemically defined culture system, with the intent on production for clinical application. The urothelium was also induced through a definitive endoderm step.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Moad M et al. A novel model of urinary tract differentiation, tissue regeneration, and disease: reprogramming human prostate and bladder cells into induced pluripotent stem cells. Eur Urol. 2013;64(5):753–61. This was the first report on the differentiation of urothelium from iPSCs. The authors directly differentiated iPSCs into urothelium using conditioned medium, which produced a mixed-phenotype urothelial/stromal cell culture.

    Article  PubMed Central  PubMed  Google Scholar 

  40. D’Amour KA et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12):1534–41. This manuscript was a seminal report on the in vitro-directed differentiation of human ESCs to definitive endoderm and subsequent endodermal lineages in vivo.

    Article  PubMed  Google Scholar 

  41. Varley CL et al. FOXA1 and IRF-1 intermediary transcriptional regulators of PPARgamma-induced urothelial cytodifferentiation. Cell Death Differ. 2009;16(1):103–14.

    Article  CAS  PubMed  Google Scholar 

  42. Yu Z et al. The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation. EMBO J. 2009;28(13):1890–903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Batourina E et al. Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet. 2005;37(10):1082–9.

    Article  CAS  PubMed  Google Scholar 

  44. Wilson JG, Warkany J. Malformations in the genito-urinary tract induced by maternal vitamin A deficiency in the rat. Am J Anat. 1948;83(3):357–407.

    Article  CAS  PubMed  Google Scholar 

  45. Villa-Diaz LG et al. Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells. 2013;31(1):1–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Vallier L. Serum-free and feeder-free culture conditions for human embryonic stem cells. Methods Mol Biol. 2011;690:57–66.

    Article  CAS  PubMed  Google Scholar 

  47. Southgate J et al. Normal human urothelial cells in vitro: proliferation and induction of stratification. Lab Invest. 1994;71(4):583–94.

    CAS  PubMed  Google Scholar 

  48. Cilento BG et al. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol. 1994;152(2 Pt 2):665–70.

    CAS  PubMed  Google Scholar 

  49. Freeman MR et al. Heparin-binding EGF-like growth factor is an autocrine growth factor for human urothelial cells and is synthesized by epithelial and smooth muscle cells in the human bladder. J Clin Invest. 1997;99(5):1028–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Varley CL et al. Role of PPARgamma and EGFR signalling in the urothelial terminal differentiation programme. J Cell Sci. 2004;117(Pt 10):2029–36.

    Article  CAS  PubMed  Google Scholar 

  51. Truschel ST et al. Primary uroepithelial cultures. A model system to analyze umbrella cell barrier function. J Biol Chem. 1999;274(21):15020–9.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao J et al. Transdifferentiation of autologous bone marrow cells on a collagen-poly(epsilon-caprolactone) scaffold for tissue engineering in complete lack of native urothelium. J R Soc Interface. 2014;11(96):20140233.

    Article  CAS  PubMed  Google Scholar 

  53. Shi JG, et al. Transdifferentiation of human adipose-derived stem cells into urothelial cells: potential for urinary tract tissue engineering. Cell Tissue Res. 2012;347(3):737–746.

  54. Li X et al. Urothelial transdifferentiation to prostate epithelia is mediated by paracrine TGF-beta signaling. Differentiation. 2009;77(1):95–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Stephanie L. Osborn and Dr. Eric A. Kurzrock each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Kurzrock.

Additional information

This article is part of the Topical Collection on Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osborn, S.L., Kurzrock, E.A. Production of Urothelium from Pluripotent Stem Cells for Regenerative Applications. Curr Urol Rep 16, 466 (2015). https://doi.org/10.1007/s11934-014-0466-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-014-0466-6

Keywords

Navigation