Skip to main content
Log in

What Is Next in Robotic Urology?

  • Invited Commentary
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

The application of robotic technology in surgical practice was developed during the past three decades, but its clinical application has made a significant impact during the last 10 years. Urologists have embraced surgical robots throughout their evolution, and robot-assisted urologic surgeries have matured into everyday clinical practice in many parts of the world. Long-term data from robot-assisted radical prostatectomies (RARP), an early robotic urologic surgery, has shown that the results are comparable to contemporary open radical prostatectomy (ORP) cohorts. Robot-assisted partial nephrectomy (RAPN) is largely restricted to high-volume academic centers; comparative studies have demonstrated significant advantages in favor of RAPN over laparoscopic partial nephrectomy (LPN) to achieve adequate warm ischemia time, surgical margins free of cancer cells, and no peri-operative complications. Robot-assisted radical cystectomy shows results that are comparable to contemporary open radical cystectomy. Several authors have reported the feasibility of robotic intracorporeal urinary diversion. The available long-term outcomes of robot-assisted urological surgeries are comparable to conventional open surgical methods and are associated with fewer complications. Surgical robots continue to evolve, and robotic engineers alongside surgeons strive hard to synthesize and evaluate novel robotic platforms, downsize hardware, and develop flexible instruments and newer technologies. Robotic applications available at this point represent the infancy of this technology. Future developments in robotics are profoundly limited to human imagination and can potentially scale to unimaginable heights. We would expect robots coupled with imaging and energies, aiming to provide accurate and reliable treatments which will be finely targeted by biogenetic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novara G, Ficarra V, Mocellin S, et al. Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur Urol. 2012;62(3):382–404.

    Article  PubMed  Google Scholar 

  2. Diaz M, Peabody JO, Kapoor V, et al. Oncologic outcomes at 10 years following robotic radical prostatectomy. Eur Urol. 2014. doi:10.1016/j.eururo.2014.06.025.

    Google Scholar 

  3. Novara G, Ficarra V, Rosen RC, et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur Urol. 2012;62(3):431–52.

    Article  PubMed  Google Scholar 

  4. Tewari A, Sooriakumaran P, Bloch DA, et al. Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubic, laparoscopic, and robotic prostatectomy. Eur Urol. 2012;62(1):1–15.

    Article  PubMed  Google Scholar 

  5. Ficarra V, Novara G, Rosen RC, et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol. 2012;62(3):405–17.

    Article  PubMed  Google Scholar 

  6. Ficarra V, Novara G, Ahlering TE, et al. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol. 2012;62(3):418–30.

    Article  PubMed  Google Scholar 

  7. Tanagho YS, Kaouk JH, Allaf ME, et al. Perioperative complications of robot-assisted partial nephrectomy: analysis of 886 patients at 5 United States centers. Urology. 2013;81(3):573–9.

    Article  PubMed  Google Scholar 

  8. Khalifeh A, Kaouk JH, Bhayani S, et al. Positive surgical margins in robot-assisted partial nephrectomy: a multi-institutional analysis of oncologic outcomes (leave no tumor behind). J Urol. 2013;190(5):1674–9.

    Article  PubMed  Google Scholar 

  9. Khalifeh A, Autorino R, Eyraud R, et al. Three-year oncologic and renal functional outcomes after robot-assisted partial nephrectomy. Eur Urol. 2013;64(5):744–50.

    Article  PubMed  Google Scholar 

  10. Masson-Lecomte A, Bensalah K, Seringe E, et al. A prospective comparison of surgical and pathological outcomes obtained after robot-assisted or pure laparoscopic partial nephrectomy in moderate to complex renal tumours: results from a French multicentre collaborative study. BJU Int. 2013;111(2):256–63.

    Article  PubMed  Google Scholar 

  11. Kaczmarek BF, Tanagho YS, Hillyer SP, et al. Off-clamp robot-assisted partial nephrectomy preserves renal function: a multi-institutional propensity score analysis. Eur Urol. 2013;64(6):988–93.

    Article  PubMed  Google Scholar 

  12. Masson-Lecomte A, Yates DR, Bensalah K, et al. Robot-assisted laparoscopic nephron sparing surgery for tumors over 4 cm: operative results and preliminary oncologic outcomes from a multicentre French study. Eur J Surg Oncol. 2013;39(7):799–803.

    Article  CAS  PubMed  Google Scholar 

  13. Eyraud R, Long JA, Snow-Lisy D, et al. Robot-assisted partial nephrectomy for hilar tumors: perioperative outcomes. Urology. 2013;81(6):1246–51.

    Article  PubMed  Google Scholar 

  14. Hillyer SP, Bhayani SB, Allaf ME, et al. Robotic partial nephrectomy for solitary kidney: a multi-institutional analysis. Urology. 2013;81(1):93–7.

    Article  PubMed  Google Scholar 

  15. Panumatrassamee K, Autorino R, Laydner H, et al. Robotic versus laparoscopic partial nephrectomy for tumor in a solitary kidney: a single institution comparative analysis. Int J Urol. 2013;20(5):484–91.

    Article  PubMed  Google Scholar 

  16. Abreu AL, Berger AK, Aron M, et al. Minimally invasive partial nephrectomy for single versus multiple renal tumors. J Urol. 2013;189(2):462–7.

    Article  PubMed  Google Scholar 

  17. Kumar RK, Sammon JD, Kaczmarek BF, et al. Robot-assisted partial nephrectomy in patients with baseline chronic kidney disease: a multi-institutional propensity score-matched analysis. Eur Urol. 2014;65(6):1205–10.

    Article  PubMed  Google Scholar 

  18. Autorino R, Khalifeh A, Laydner H, et al. Repeat robot-assisted partial nephrectomy (RAPN): feasibility and early outcomes. BJU Int. 2013;111(5):767–72.

    Article  PubMed  Google Scholar 

  19. Menon M, Hemal AK, Tewari A, Shrivastava A, Shoma AM, El-Tabey NA, et al. Nerve-sparing robot-assisted radical cystoprostatectomy and urinary diversion. BJU Int. 2003;92:232–6.

    Article  CAS  PubMed  Google Scholar 

  20. Hayn MH, Hussain A, Mansour AM, Andrews PE, Carpentier P, Castle E, et al. The learning curve of robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium. Eur Urol. 2010;58:197–202.

    Article  PubMed  Google Scholar 

  21. Johar RS, Hayn MH, Stegemann AP, Ahmed K, Agarwal P, Balbay MD, et al. Complications after robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium. Eur Urol. 2013;64:52–7.

    Article  PubMed  Google Scholar 

  22. Collins JW, Sooriakumaran P, Sanchez-Salas R, et al. Robot-assisted radical cystectomy with intracorporeal neobladder diversion: the Karolinska experience. Indian J Urol. 2014;30(3):307–13.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Abreu AL, Chopra S, Azhar RA, et al. Robotic radical cystectomy and intracorporeal urinary diversion: the USC technique. Indian J Urol. 2014;30(3):300–6.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bogue R. Robots in healthcare. Ind Robot. 2011;38:218–23.

    Article  Google Scholar 

  25. Hagn U, Nickl M, Jo¨rg S, et al. The DLR MIRO: a versatile lightweight robot for surgical applications. Ind Robot. 2008;35:324–36.

    Article  Google Scholar 

  26. Wei G-Q, Arbter K, Hirzinger G. Real-time visual serving for laparoscopic surgery. Controlling robot motion with color image segmentation. Eng Med Biol Mag. 1997;16:40–5.

    Article  CAS  Google Scholar 

  27. Lum MJH, Friedman DCW, Sankaranarayanan G, et al. The raven: design and validation of a telesurgery system. Int J Robot Res. 2009;28:1183–97.

    Article  Google Scholar 

  28. Lum MJH, Friedman DCW, Sankaranarayanan G, et al. Objective assessment of telesurgical robot systems: telerobotic FLS. Stud Health Technol Inform. 2008;132:263.

    PubMed  Google Scholar 

  29. Rosen J, Lum MJH, Sinanan MN, et al. Raven: developing a surgical robot from a concept to a transatlantic teleoperation experiment. In: Surgical robotics, systems, applications, and visions. Springer; 2011. p. 159–97.

  30. Roan PR, Wright AS, Lendvay TS, et al. An instrumented minimally invasive surgical tool: design and calibration. Appl Bionics Biomech. 2011;8:173–90.

    Google Scholar 

  31. Borisov SM, Klimant I. Optical nanosensorsVsmart tools in bioanalytics. Analyst. 2008;133:1302–7.

    Article  CAS  PubMed  Google Scholar 

  32. Sutherland GR, Wolfsberger S, Lama S, et al. The evolution of NeuroArm. Neurosurgery. 2013;72 Suppl 1:27–32. doi:10.1227/NEU.0b013e318270da19.

    Article  PubMed  Google Scholar 

  33. Satoh Y, Hayashi S, Yamazaki H, et al. Ultra powered stapling system for general lung surgery. Kyobu Geka. 2014;67(3):225–8.

    PubMed  Google Scholar 

  34. Samarasekera D, Kaouk JH. Robotic single port surgery: current status and future considerations. Indian J Urol. 2014;30(3):326–32. doi:10.4103/0970-1591.128504.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Clark J, Noonan DP, Vitiello V et al. A novel flexible hyper-redundant surgical robot: prototype evaluation using a single incision flexible access pelvic application as a clinical exemplar. Surg Endosc. 2014.

  36. Zygomalas A, Kehagias I, Giokas K, Koutsouris D. Miniature surgical robots in the era of NOTES and LESS: dream or reality? Surg Innov. 2014.

  37. Payne CJ, Yang GZ. Hand-held medical robots. Ann Biomed Eng. 2014;42(8):1594–605. doi:10.1007/s10439-014-1042-4.

    Article  PubMed  Google Scholar 

  38. Eljamel S, Petersen M, Valentine R, et al. Comparison of intraoperative fluorescence and MRI image guided neuronavigation in malignant brain tumours, a prospective controlled study. Photodiagnosis Photodyn Ther. 2013;10(4):356–61.

    Article  PubMed  Google Scholar 

  39. Xie HW, Wang DM, Yuan QG. The utility of neuronavigation in the microsurgery for cerebral cavernous malformations. Zhonghua Wai Ke Za Zhi. 2011;49(8):712–5.

    PubMed  Google Scholar 

  40. Goldman RE, Bajo A, MacLachlan LS, et al. Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention. IEEE Trans Biomed Eng. 2013;60(4):918–25. doi:10.1109/TBME.2012.2226031.

    Article  PubMed  Google Scholar 

  41. Micali S, Virgili G, Vannozzi E, et al. Feasibility of telementoring between Baltimore (USA) and Rome (Italy): the first five cases. J Endourol. 2000;14(6):493–6.

    Article  CAS  PubMed  Google Scholar 

  42. Kaye DR, Stoianovici D, Han M. Robotic ultrasound and needle guidance for prostate cancer management: review of the contemporary literature. Curr Opin Urol. 2014;24(1):75–80. doi:10.1097/MOU.0000000000000011.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Xavier Cathelineau is an editorial board member for Current Urology Reports.

Dr. Rafael Sanchez-Salas and Dr. Arjun Sivaraman each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Cathelineau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cathelineau, X., Sanchez-Salas, R. & Sivaraman, A. What Is Next in Robotic Urology?. Curr Urol Rep 15, 460 (2014). https://doi.org/10.1007/s11934-014-0460-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-014-0460-z

Keywords

Navigation