Skip to main content

Advertisement

Log in

Lipid-lowering Therapies in Myositis

  • Inflammatory Muscle Disease (L Diederichsen and H Chinoy, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The use of lipid-lowering therapies in patients with idiopathic inflammatory myopathies (IIM) is complicated and there are no guidelines for diagnosing, monitoring, or treating atherosclerotic cardiovascular disease (ASCVD) in this group of patients.

Recent Findings

The use of lipid-lowering therapies, especially statins, is recommended in patients with increased risk for ASCVD, which includes patients with inflammatory diseases, based on recent American College of Cardiology/American Heart Association (ACC/AHA) guidelines for ASCVD management.

Summary

There is accumulating evidence that patients with IIM are at increased risk for ASCVD, similar to other inflammatory diseases. Lipid-lowering therapies have side effects that may be pronounced or confounding in myositis patients, potentially limiting their use. Statins are specifically contraindicated in patients with anti 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) antibodies. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have been shown to be safe and potentially beneficial in patients with IIM. Here, we propose a framework for (1) ASCVD risk assessment and treatment based on ACC/AHA ASCVD primary prevention guidelines; (2) myositis disease monitoring while undergoing lipid-lowering therapy; and (3) management of statin intolerance, including, indications for the use of PCSK9 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The Charlson Comorbidity Index (CCI) is a validated predictor of increased risk for 1-year mortality [55], based on a weighted composite score for the presence of diagnosis in the following categories: cardiovascular, endocrine, pulmonary, neurologic, renal, hepatic, gastrointestinal, and neoplastic diseases. Higher CCI scores are associated with higher comorbidity.

  2. The SAMS-CI is an instrument developed by the National Lipid Association to assess the likelihood that muscle symptoms are attributable to statin use. It incorporates information about muscle symptom patterns, location, and chronology with respect to statin use, including response to statin de-challenge and re-challenge [90]. The SAMS-CI has been validated for use in the general population with sensitivity 85.7% and specificity 76.3% for SAMS [91].

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mariampillai K, Granger B, Amelin D, Guiguet M, Hachulla E, Maurier F, et al. Development of a new classification system for idiopathic inflammatory myopathies based on clinical manifestations and myositis-specific autoantibodies. JAMA Neurol. 2018;75(12):1528–37.

    PubMed  PubMed Central  Google Scholar 

  2. Ungprasert P, Suksaranjit P, Spanuchart I, Leeaphorn N, Permpalung N. Risk of coronary artery disease in patients with idiopathic inflammatory myopathies: a systematic review and meta-analysis of observational studies. Semin Arthritis Rheum. 2014;44(1):63–7.

    PubMed  Google Scholar 

  3. Rai SK, Choi HK, Sayre EC, Aviña-Zubieta JA. Risk of myocardial infarction and ischaemic stroke in adults with polymyositis and dermatomyositis: a general population-based study. Rheumatology (Oxford). 2016;55(3):461–9.

    Google Scholar 

  4. Agca R, Heslinga SC, Rollefstad S, Heslinga M, McInnes IB, Peters MJL, et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017;76(1):17–28.

    PubMed  CAS  Google Scholar 

  5. Cardiovascular Disease [Internet]. The Myositis Association. [cited 2020 Jun 27]. Available from: https://www.myositis.org/about-myositis/complications/cardiovascular-disease/.

  6. Berman AN, Blankstein R. Optimizing dyslipidemia management for the prevention of cardiovascular disease: a focus on risk assessment and therapeutic options. Curr Cardiol Rep. 2019;21(9):110.

    PubMed  Google Scholar 

  7. Baigent C, Keech A, Kearney P, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised controlled trials of statins (vol 366, pg 1267, 2005). LANCET. 2008;371(9630):2084.

    Google Scholar 

  8. Colantonio LD, Kent ST, Huang L, Chen L, Monda KL, Serban M-C, et al. Algorithms to identify statin intolerance in Medicare Administrative Claim Data. Cardiovasc Drugs Ther. 2016 Oct 1;30(5):525–33.

    PubMed  Google Scholar 

  9. De Vera MA, Choi H, Abrahamowicz M, Kopec J, Lacaille D. Impact of statin discontinuation on mortality in patients with rheumatoid arthritis: a population-based study. Arthritis Care Res. 2012;64(6):809–16.

    Google Scholar 

  10. •• Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–646 This study provides a thorough description of the latest recommendations by the ACC/AHA regarding management of patients with or at risk of developing CVD.

    PubMed  PubMed Central  Google Scholar 

  11. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2016;37(39):2999–3058.

    PubMed  Google Scholar 

  12. Banegas JR, López-García E, Dallongeville J, Guallar E, Halcox JP, Borghi C, et al. Achievement of treatment goals for primary prevention of cardiovascular disease in clinical practice across Europe: the EURIKA study. Eur Heart J. 2011;32(17):2143–52.

    PubMed  PubMed Central  Google Scholar 

  13. Chamberlain AM, Yan G, McAuliffe SK, Jiang B, Wen-Liang S, MacRae F L, et al. PCSK9 inhibitor use in the real world: data from the National Patient-Centered Research Network. J Am Heart Assoc. 2019;8(9):e011246.

    PubMed  PubMed Central  Google Scholar 

  14. • Zhao Z, Du S, Shen S, Luo P, Ding S, Wang G, et al. Comparative efficacy and safety of lipid-lowering agents in patients with hypercholesterolemia: a frequentist network meta-analysis. Medicine (Baltimore). 2019;98(6):e14400 This meta-analysis demonstrated the efficacy and safety of PCSK9 inhibitors.

    CAS  Google Scholar 

  15. Kashani A, Phillips CO, Foody JM, Wang Y, Mangalmurti S, Ko DT, et al. Risks associated with statin therapy. Circulation. 2006;114:2788–97.

  16. Jones PH, Davidson MH, Stein EA, Bays HE, McKenney JM, Miller E, et al. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am J Cardiol. 2003;92(2):152–60.

    PubMed  CAS  Google Scholar 

  17. Bruckert E, Hayem G, Dejager S, Yau C, Begaud B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients--the PRIMO study. Cardiovasc Drugs Ther. 2005;19(6):403–14.

    PubMed  CAS  Google Scholar 

  18. Illingworth DR, Stein EA, Mitchel YB, Dujovne CA, Frost PH, Knopp RH, et al. Comparative effects of lovastatin and niacin in primary hypercholesterolemia: a prospective trial. Arch Intern Med. 1994;154(14):1586–95.

    PubMed  CAS  Google Scholar 

  19. Wortmann RL, Tipping RW, Levine JG, Melin JM. Frequency of myopathy in patients receiving lovastatin. Am J Cardiol. 2005;95(8):983–5.

    PubMed  CAS  Google Scholar 

  20. Adams SP, Alaeiilkhchi N, Wright JM. Pitavastatin for lowering lipids. Cochrane Database Syst Rev. 2020;6:CD012735.

    PubMed  Google Scholar 

  21. da Silva PM. Are all statins the same? Focus on the efficacy and tolerability of pitavastatin. Am J Cardiovasc Drugs. 2011;11(2):93–107.

    PubMed  Google Scholar 

  22. Sasaki J, Ikeda Y, Kuribayashi T, Kajiwara K, Biro S, Yamamoto K, et al. A 52-week, randomized, open-label, parallel-group comparison of the tolerability and effects of pitavastatin and atorvastatin on high-density lipoprotein cholesterol levels and glucose metabolism in Japanese patients with elevated levels of low-density lipoprotein cholesterol and glucose intolerance. Clin Ther. 2008;30(6):1089–101.

    PubMed  CAS  Google Scholar 

  23. Strauss WE, Lapsley D, Gaziano JM. Comparative efficacy and tolerability of low-dose pravastatin versus lovastatin in patients with hypercholesterolemia. Am Heart J. 1999 Mar;137(3):458–62.

    PubMed  CAS  Google Scholar 

  24. Yusuf S, Bosch J, Dagenais G, Zhu J, Xavier D, Liu L, et al. Cholesterol lowering in intermediate-risk persons without cardiovascular disease. N Engl J Med. 2016;374:2021–31.

  25. Bullano MF, Wertz DA, Yang GW, Kamat S, Borok GM, Gandhi S, et al. Effect of rosuvastatin compared with other statins on lipid levels and National Cholesterol Education Program goal attainment for low-density lipoprotein cholesterol in a usual care setting. Pharmacotherapy. 2006;26(4):469–78.

    PubMed  CAS  Google Scholar 

  26. Zhang X, Xing L, Jia X, Pang X, Xiang Q, Zhao X, et al. Comparative lipid-lowering/increasing efficacy of 7 statins in patients with dyslipidemia, cardiovascular diseases, or diabetes mellitus: systematic review and network meta-analyses of 50 randomized controlled trials. Cardiovasc Ther. 2020;2020:3987065.

    PubMed  PubMed Central  Google Scholar 

  27. Athyros VG, Tziomalos K, Kakafika AI, Koumaras H, Karagiannis A, Mikhailidis DP. Effectiveness of ezetimibe alone or in combination with twice a week atorvastatin (10 mg) for statin intolerant high-risk patients. Am J Cardiol. 2008;101(4):483–5.

    PubMed  CAS  Google Scholar 

  28. Nissen SE, Stroes E, Dent-Acosta RE, Rosenson RS, Lehman SJ, Sattar N, et al. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA. 2016;315(15):1580–90.

    PubMed  CAS  Google Scholar 

  29. Moriarty PM, Jacobson TA, Bruckert E, Thompson PD, Guyton JR, Baccara-Dinet MT, et al. Efficacy and safety of alirocumab, a monoclonal antibody to PCSK9, in statin-intolerant patients: design and rationale of ODYSSEY ALTERNATIVE, a randomized phase 3 trial. J Clin Lipidol. 2014;8(6):554–61.

    PubMed  Google Scholar 

  30. Davidson MH, Donovan JM, Misir S, Jones MR. A 50-week extension study on the safety and efficacy of colesevelam in adults with primary hypercholesterolemia. Am J Cardiovasc Drugs. 2010;10(5):305–14.

    PubMed  CAS  Google Scholar 

  31. Egom EE-A, Pharithi RB, Hesse S, Starr N, Armstrong R, Sulaiman HM, et al. Latest updates on lipid management. High Blood Press Cardiovasc Prevent. 2019;26(2):85–100.

    Google Scholar 

  32. Alsheikh-Ali AA, Karas RH. Safety of lovastatin/extended release niacin compared with lovastatin alone, atorvastatin alone, pravastatin alone, and simvastatin alone (from the United States Food and Drug Administration adverse event reporting system). Am J Cardiol. 2007;99(3):379–81.

    PubMed  CAS  Google Scholar 

  33. Sacks FM, Carey VJ, Fruchart J-C. Combination lipid therapy in type 2 diabetes. N Engl J Med. 2010;363(7):692–4 author reply 694-695.

    PubMed  CAS  Google Scholar 

  34. Davidson MH, Armani A, McKenney JM, Jacobson TA. Safety considerations with fibrate therapy. Am J Cardiol. 2007;99(6):S3–18.

    Google Scholar 

  35. Sano K, Nakamura T, Hirano M, Kitta Y, Kobayashi T, Fujioka D, et al. Comparative study of bezafibrate and pravastatin in patients with coronary artery disease and high levels of remnant lipoprotein. Circ J. 2010;74(8):1644–50.

    PubMed  CAS  Google Scholar 

  36. Rustemeijer C, Schouten JA, Voerman HJ, Hensgens HE, Donker AJ, Heine RJ. Pravastatin compared to bezafibrate in the treatment of dyslipidemia in insulin-treated patients with type 2 diabetes mellitus. Diabetes Metab Res Rev. 2000;16(2):82–7.

    PubMed  CAS  Google Scholar 

  37. Molokhia M, McKeigue P, Curcin V, Majeed A. Statin induced myopathy and myalgia: time trend analysis and comparison of risk associated with statin class from 1991–2006. PLoS One. 2008;3(6).

  38. Hansen KE, Hildebrand JP, Ferguson EE, Stein JH. Outcomes in 45 patients with statin-associated myopathy. Arch Intern Med. 2005;165(22):2671–6.

  39. Christopher-Stine L, Basharat P. Statin-associated immune-mediated myopathy: biology and clinical implications. Current Opinion in Lipidology [Internet]. 2017;28(2). Available from: https://journals.lww.com/co-lipidology/Fulltext/2017/04000/Statin_associated_immune_mediated_myopathy_.14.aspx.

  40. Silva M, Matthews ML, Jarvis C, Nolan NM, Belliveau P, Malloy M, et al. Meta-analysis of drug-induced adverse events associated with intensive-dose statin therapy. Clin Ther. 2007;29(2):253–60.

    PubMed  CAS  Google Scholar 

  41. Silva MA, Swanson AC, Gandhi PJ, Tataronis GR. Statin-related adverse events: a meta-analysis. Clin Ther. 2006;28(1):26–35.

    PubMed  CAS  Google Scholar 

  42. Schwartz T, Diederichsen LP, Lundberg IE, Sjaastad I, Sanner H. Cardiac involvement in adult and juvenile idiopathic inflammatory myopathies. RMD Open. 2016;2(2):e000291.

    PubMed  PubMed Central  Google Scholar 

  43. Xiao Y, Luo H, Liu S, Duan L, You Y, Zhao H, et al. Is it cardiac involvement mimicking acute myocardial infarction in idiopathic inflammatory myopathy? Exp Ther Med. 2017;14(1):349–54.

    PubMed  PubMed Central  Google Scholar 

  44. Charles-Schoeman C, Amjadi SS, Paulus HE. Treatment of dyslipidemia in idiopathic inflammatory myositis: results of the International Myositis Assessment and Clinical Studies Group survey. Clin Rheumatol. 2012;31(8):1163–8.

    PubMed  Google Scholar 

  45. Sanjadi M, Rezvanie Sichanie Z, Totonchi H, Karami J, Rezaei R, Aslani S. Atherosclerosis and autoimmunity: a growing relationship. Int J Rheum Dis. 2018 May;21(5):908–21.

    PubMed  Google Scholar 

  46. Crowson CS, Gabriel SE, Semb AG, van Riel PLCM, Karpouzas G, Dessein PH, et al. Rheumatoid arthritis-specific cardiovascular risk scores are not superior to general risk scores: a validation analysis of patients from seven countries. Rheumatology (Oxford). 2017;56(7):1102–10.

    CAS  Google Scholar 

  47. Urowitz MB, Ibañez D, Su J, Gladman DD. Modified Framingham risk factor score for systemic lupus erythematosus. J Rheumatol. 2016;43(5):875–9.

    PubMed  Google Scholar 

  48. Corrales A, Parra JA, Gonzalez-Juanatey C, Rueda-Gotor J, Blanco R, Llorca J, et al. Cardiovascular risk stratification in rheumatic diseases: carotid ultrasound is more sensitive than Coronary Artery Calcification Score to detect subclinical atherosclerosis in patients with rheumatoid arthritis. Ann Rheum Dis. 2013;72(11):1764–70.

    PubMed  CAS  Google Scholar 

  49. Blaha MJ, Cainzos-Achirica M, Greenland P, McEvoy JW, Blankstein R, Budoff MJ, et al. Role of coronary artery calcium score of zero and other negative risk markers for cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2016;133(9):849–58.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Fent GJ, Greenwood JP, Plein S, Buch MH. The role of non-invasive cardiovascular imaging in the assessment of cardiovascular risk in rheumatoid arthritis: where we are and where we need to be. Ann Rheum Dis. 2017;76(7):1169–75.

    PubMed  Google Scholar 

  51. Diederichsen LP, Diederichsen ACP, Simonsen JA, Junker P, Søndergaard K, Lundberg IE, et al. Traditional cardiovascular risk factors and coronary artery calcification in adults with polymyositis and dermatomyositis: a Danish multicenter study. Arthritis Care Res. 2015;67(6):848–54.

    Google Scholar 

  52. Bazzani C, Cavazzana I, Ceribelli A, Vizzardi E, Dei Cas L, Franceschini F. Cardiological features in idiopathic inflammatory myopathies. J Cardiovasc Med (Hagerstown). 2010;11(12):906–11.

    Google Scholar 

  53. Diederichsen LP, Simonsen JA, Diederichsen ACP, Kim WY, Hvidsten S, Hougaard M, et al. Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies. Clin Exp Rheumatol. 2015;33(5):706–14.

    PubMed  Google Scholar 

  54. Limaye VS, Lester S, Blumbergs P, Roberts-Thomson PJ. Idiopathic inflammatory myositis is associated with a high incidence of hypertension and diabetes mellitus. Int J Rheum Dis. 2010;13(2):132–7.

    PubMed  Google Scholar 

  55. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83.

    PubMed  CAS  Google Scholar 

  56. • Opinc AH, Makowski MA, Lukasik ZM, Makowska JS. Cardiovascular complications in patients with idiopathic inflammatory myopathies: does heart matter in idiopathic inflammatory myopathies? Heart Fail Rev. 2019. This study demonstrates the increased mortality and morbidity in IIM associated with cardiovascular disease.

  57. Peters MJL, Symmons DPM, McCarey D, Dijkmans BAC, Nicola P, Kvien TK, et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann Rheum Dis. 2010;69(2):325–31.

    PubMed  CAS  Google Scholar 

  58. Makris UE, Alvarez CA, Mortensen EM, Mansi IA. Association of statin use with increased risk of musculoskeletal conditions: a retrospective cohort study. Drug Saf. 2018;41(10):939–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Mansi I, Frei CR, Pugh MJ, Makris U, Mortensen EM. Statins and musculoskeletal conditions, arthropathies, and injuries. JAMA Intern Med. 2013;173(14):1–10.

    PubMed  Google Scholar 

  60. Stroes ES, Thompson PD, Corsini A, Vladutiu GD, Raal FJ, Ray KK, et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment. Aetiol Manag Eur Heart J. 2015;36(17):1012–22.

    CAS  Google Scholar 

  61. Cohen JD, Brinton EA, Ito MK, Jacobson TA. Understanding statin use in America and Gaps in Patient Education (USAGE): an internet-based survey of 10,138 current and former statin users. J Clin Lipidol. 2012;6(3):208–15.

    PubMed  Google Scholar 

  62. Mancini GBJ, Tashakkor AY, Baker S, Bergeron J, Fitchett D, Frohlich J, et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian Working Group consensus update. Can J Cardiol. 2013;29(12):1553–68.

    PubMed  Google Scholar 

  63. Bitzur R, Cohen H, Kamari Y, Harats D. Intolerance to statins: Mechanisms and management. Diabetes Care. 2013;36 Suppl 2(Suppl 2):S325–30.

    PubMed  Google Scholar 

  64. Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1 – executive summary. J Clin Lipidol. 2014;8(5):473–88.

    PubMed  Google Scholar 

  65. Wilson Peter WF, Polonsky TS, Miedema MD, Amit K, Kosinski Andrzej S, Kuvin Jeffrey T. Systematic review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139(25):e1144–61.

    PubMed  CAS  Google Scholar 

  66. Alagona P Jr. Pitavastatin: evidence for its place in treatment of hypercholesterolemia. Core Evid. 2010;5:91.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Gudzune KA, Monroe AK, Sharma R, Ranasinghe PD, Chelladurai Y, Robinson KA. Effectiveness of combination therapy with statin and another lipid-modifying agent compared with intensified statin monotherapy: a systematic review. Ann Intern Med. 2014;160(7):468–76.

    PubMed  Google Scholar 

  68. Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD, DePalma SM, et al. 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk. J Am Coll Cardiol. 2016;68(1):92.

    PubMed  Google Scholar 

  69. Wilson PWF, Polonsky TS, Miedema MD, Khera A, Kosinski AS, Kuvin JT. Systematic review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2019;73(24):3210–27.

    PubMed  Google Scholar 

  70. Toth PP, Patti AM, Giglio RV, Nikolic D, Castellino G, Rizzo M, et al. Management of statin intolerance in 2018: still more questions than answers. Am J Cardiovasc Drugs. 2018;18(3):157–73.

    PubMed  PubMed Central  Google Scholar 

  71. McConnachie A, Walker A, Robertson M, Marchbank L, Peacock J, Packard CJ, et al. Long-term impact on healthcare resource utilization of statin treatment, and its cost effectiveness in the primary prevention of cardiovascular disease: a record linkage study. Eur Heart J. 2013;35(5):290–8.

    PubMed  PubMed Central  Google Scholar 

  72. FDA U. FDA drug safety communication: new restrictions, contraindications, and dose limitations for Zocor (simvastatin) to reduce the risk of muscle injury. Silver Spring: Food and Drug Administration; 2011.

    Google Scholar 

  73. Graham DJ, Staffa JA, Shatin D, Andrade SE, Schech SD, La Grenade L, et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA. 2004;292(21):2585–90.

    PubMed  CAS  Google Scholar 

  74. Eriksson M, Budinski D, Hounslow N. Long-term efficacy of pitavastatin versus simvastatin. Adv Ther. 2011;28(9):799–810.

    PubMed  CAS  Google Scholar 

  75. Catapano A. Statin-induced myotoxicity: pharmacokinetic differences among statins and the risk of rhabdomyolysis, with particular reference to pitavastatin. Curr Vasc Pharmacol. 2012;10:257–67.

    PubMed  CAS  Google Scholar 

  76. Schick BA, Laaksonen R, Frohlich JJ, Päivä H, Lehtimäki T, Humphries KH, et al. Decreased skeletal muscle mitochondrial DNA in patients treated with high-dose simvastatin. Clin Pharmacol Ther. 2007;81(5):650–3.

    PubMed  CAS  Google Scholar 

  77. Hu M, Cheung BMY, Tomlinson B. Safety of statins: an update. Ther Adv Drug Saf. 2012;3(3):133–44.

    PubMed  PubMed Central  Google Scholar 

  78. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–42.

    PubMed  CAS  Google Scholar 

  79. Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581–90.

    PubMed  CAS  Google Scholar 

  80. Björnsson E, Jacobsen EI, Kalaitzakis E. Hepatotoxicity associated with statins: reports of idiosyncratic liver injury post-marketing. J Hepatol. 2012;56(2):374–80.

    PubMed  Google Scholar 

  81. • Ward NC, Watts GF, Eckel Robert H. Statin toxicity. Circ Res. 2019;124(2):328–50 This article reviews the pathogenesis and management options for statin toxicity.

    PubMed  CAS  Google Scholar 

  82. Banach M, Rizzo M, Toth PP, Farnier M, Davidson MH, Al-Rasadi K, et al. Statin intolerance - an attempt at a unified definition. Position paper from an international lipid expert panel. Expert Opin Drug Saf. 2015;14(6):935–55.

    PubMed  CAS  Google Scholar 

  83. Ganga HV, Slim HB, Thompson PD. A systematic review of statin-induced muscle problems in clinical trials. Am Heart J. 2014;168(1):6–15.

  84. • Gupta A, Thompson D, Whitehouse A, Collier T, Dahlof B, Poulter N, et al. Adverse events associated with unblinded, but not with blinded, statin therapy in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid-Lowering Arm (ASCOT-LLA): a randomised double-blind placebo-controlled trial and its non-randomised non-blind extension phase. Lancet. 2017;389(10088):2473–81 This study demonstrates the “nocebo” effect.

    PubMed  CAS  Google Scholar 

  85. Wei MY, Ito MK, Cohen JD, Brinton EA, Jacobson TA. Predictors of statin adherence, switching, and discontinuation in the USAGE survey: understanding the use of statins in America and gaps in patient education. J Clin Lipidol. 2013;7(5):472–83.

    PubMed  Google Scholar 

  86. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388(10059):2532–61.

    PubMed  CAS  Google Scholar 

  87. Phillips PS, Haas RH, Bannykh S, Hathaway S, Gray NL, Kimura BJ, et al. Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med. 2002;137(7):581–5.

    PubMed  Google Scholar 

  88. McClure DL, Valuck RJ, Glanz M, Hokanson JE. Systematic review and meta-analysis of clinically relevant adverse events from HMG CoA reductase inhibitor trials worldwide from 1982 to present. Pharmacoepidemiol Drug Saf. 2007;16(2):132–43.

    PubMed  CAS  Google Scholar 

  89. Omar MA, Wilson JP, Cox TS. Rhabdomyolysis and HMG-CoA reductase inhibitors. Ann Pharmacother. 2001;35(9):1096–107.

    PubMed  CAS  Google Scholar 

  90. • Rosenson RS, Miller K, Bayliss M, Sanchez RJ, Baccara-Dinet MT, Chibedi-De-Roche D, et al. The Statin-Associated Muscle Symptom Clinical Index (SAMS-CI): revision for clinical use, content validation, and inter-rater reliability. Cardiovasc Drugs Ther. 2017;31(2):179–86 This article reviews the definition of SAMS and methods for optimizing lipid-lowering in the setting of SAMS.

    PubMed  PubMed Central  Google Scholar 

  91. Taylor BA, Sanchez RJ, Jacobson TA, Chibedi-De-Roche D, Manvelian G, Baccara-Dinet MT, et al. Application of the statin-associated muscle symptoms-clinical index to a randomized trial on statin myopathy. J Am Coll Cardiol. 2017;70(13):1680–1.

    PubMed  Google Scholar 

  92. Rosenson RS, Baker S, Banach M, Borow KM, Braun LT, Bruckert E, et al. Optimizing cholesterol treatment in patients with muscle complaints. J Am Coll Cardiol. 2017;70(10):1290–301.

    PubMed  Google Scholar 

  93. Werner JL, Christopher-Stine L, Ghazarian SR, Pak KS, Kus JE, Daya NR, et al. Antibody levels correlate with creatine kinase levels and strength in anti-3-hydroxy-3-methylglutaryl-coenzyme a reductase-associated autoimmune myopathy. Arthritis Rheum. 2012;64(12):4087–93.

  94. Tiniakou E, Pinal-Fernandez I, Lloyd TE, Albayda J, Paik J, Werner JL, et al. More severe disease and slower recovery in younger patients with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Rheumatology (Oxford). 2017;56(5):787–94.

    CAS  Google Scholar 

  95. Christopher-Stine L, Casciola-Rosen LA, Hong G, Chung T, Corse AM, Mammen AL. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 2010;62(9):2757–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Needham M, Fabian V, Knezevic W, Panegyres P, Zilko P, Mastaglia FL. Progressive myopathy with up-regulation of MHC-I associated with statin therapy. Neuromuscul Disord. 2007;17(2):194–200.

    PubMed  Google Scholar 

  97. Grable-Esposito P, Katzberg HD, Greenberg SA, Srinivasan J, Katz J, Amato AA. Immune-mediated necrotizing myopathy associated with statins. Muscle Nerve. 2010;41(2):185–90.

    PubMed  CAS  Google Scholar 

  98. Meriggioli MN, Barboi AC, Rowin J, Cochran EJ. HMG-CoA reductase inhibitor myopathy: clinical, electrophysiological, and pathologic data in five patients. J Clin Neuromuscul Dis. 2001;2(3):129–34.

    PubMed  CAS  Google Scholar 

  99. Selva-O’Callaghan A, Alvarado-Cardenas M, Pinal-Fernández I, Trallero-Araguás E, Milisenda JC, Martínez MÁ, et al. Statin-induced myalgia and myositis: an update on pathogenesis and clinical recommendations. Expert Rev Clin Immunol. 2018;14(3):215–24.

    PubMed  PubMed Central  Google Scholar 

  100. Paganoni S, Amato A. Electrodiagnostic evaluation of myopathies. Phys Med Rehabil Clin N Am. 2013;24(1):193–207.

    PubMed  Google Scholar 

  101. Mammen AL. Statin-associated autoimmune myopathy. N Engl J Med. 2016;17;374(7):664–9.

  102. de Jong HJI, Klungel OH, van Dijk L, Vandebriel RJ, Leufkens HGM, van der Laan JW, et al. Use of statins is associated with an increased risk of rheumatoid arthritis. Ann Rheum Dis. 2012;71(5):648–54.

    PubMed  Google Scholar 

  103. de Jong HJI, Saldi SRF, Klungel OH, Vandebriel RJ, Souverein PC, Meyboom RHB, et al. Statin-associated polymyalgia rheumatica. An analysis using WHO global individual case safety database: a case/non-case approach. PLoS One. 2012;7(7):e41289.

    PubMed  PubMed Central  Google Scholar 

  104. Moulis G, Béné J, Sommet A, Sailler L, Lapeyre-Mestre M, Montastruc J-L. Statin-induced lupus: a case/non-case study in a nationwide pharmacovigilance database. Lupus. 2012;21(8):885–9.

    PubMed  CAS  Google Scholar 

  105. Nguyen KA, Li L, Lu D, Yazdanparast A, Wang L, Kreutz RP, et al. A comprehensive review and meta-analysis of risk factors for statin-induced myopathy. Eur J Clin Pharmacol. 2018;74(9):1099–109.

    PubMed  CAS  Google Scholar 

  106. Roberts CGP, Guallar E, Rodriguez A. Efficacy and safety of statin monotherapy in older adults: a meta-analysis. J Gerontol A Biol Sci Med Sci. 2007;62(8):879–87.

    PubMed  Google Scholar 

  107. Michalska-Kasiczak M, Sahebkar A, Mikhailidis DP, Rysz J, Muntner P, Toth PP, et al. Analysis of vitamin D levels in patients with and without statin-associated myalgia - a systematic review and meta-analysis of 7 studies with 2420 patients. Int J Cardiol. 2015;178:111–6.

    PubMed  Google Scholar 

  108. Muntean DM, Thompson PD, Catapano AL, Stasiolek M, Fabis J, Muntner P, et al. Statin-associated myopathy and the quest for biomarkers: can we effectively predict statin-associated muscle symptoms? Drug Discov Today. 2017;22(1):85–96.

    PubMed  CAS  Google Scholar 

  109. Sinzinger H, O’Grady J. Professional athletes suffering from familial hypercholesterolaemia rarely tolerate statin treatment because of muscular problems. Br J Clin Pharmacol. 2004;57(4):525–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Needham M, Mastaglia FL. Statin myotoxicity: a review of genetic susceptibility factors. Neuromuscul Disord. 2014;24(1):4–15.

    PubMed  CAS  Google Scholar 

  111. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med. 2008;359(8):789–99.

    PubMed  CAS  Google Scholar 

  112. Xiang Q, Chen S-Q, Ma L-Y, Hu K, Zhang Z, Mu G-Y, et al. Association between SLCO1B1 T521C polymorphism and risk of statin-induced myopathy: a meta-analysis. Pharm J. 2018;18(6):721–9.

    CAS  Google Scholar 

  113. Kitas GD, Nightingale P, Armitage J, Sattar N, Belch JJF, Symmons DPM. A multicenter, randomized, placebo-controlled trial of atorvastatin for the primary prevention of cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheum. 2019;71(9):1437–49.

    CAS  Google Scholar 

  114. Buettner C, Rippberger MJ, Smith JK, Leveille SG, Davis RB, Mittleman MA. Statin use and musculoskeletal pain among adults with and without arthritis. Am J Med. 2012;125(2):176–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Rallidis LS. A practical algorithm for the management of patients with statin-associated muscle symptoms. Hell J Cardiol 2019.

  116. Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207.

    PubMed  CAS  Google Scholar 

  117. Ruisinger JF, Backes JM, Gibson CA, Moriarty PM. Once-a-week rosuvastatin (2.5 to 20 mg) in patients with a previous statin intolerance. Am J Cardiol. 2009;103(3):393–4.

    PubMed  CAS  Google Scholar 

  118. Cheng JWM, Frishman WH, Aronow WS. Updates on cytochrome P450-mediated cardiovascular drug interactions. Am J Ther. 2009;16(2):155–63.

    PubMed  Google Scholar 

  119. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S1–45.

    PubMed  Google Scholar 

  120. Thomas S, Dieter L, Annette K, Michael I, Tribble DL, Sukrut S, et al. Inhibition of intestinal cholesterol absorption by Ezetimibe in humans. Circulation. 2002;106(15):1943–8.

    Google Scholar 

  121. Scott R, O’Brien R, Fulcher G, Pardy C, D’Emden M, Tse D, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Morrone D, Weintraub WS, Toth PP, Hanson ME, Lowe RS, Lin J, et al. Lipid-altering efficacy of ezetimibe plus statin and statin monotherapy and identification of factors associated with treatment response: a pooled analysis of over 21,000 subjects from 27 clinical trials. Atherosclerosis. 2012;223(2):251–61.

    PubMed  CAS  Google Scholar 

  123. Ballantyne CM, Weiss R, Moccetti T, Vogt A, Eber B, Sosef F, et al. Efficacy and safety of rosuvastatin 40 mg alone or in combination with Ezetimibe in patients at high risk of cardiovascular disease (results from the EXPLORER study). Am J Cardiol. 2007;99(5):673–80.

    PubMed  CAS  Google Scholar 

  124. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.

    PubMed  CAS  Google Scholar 

  125. Giugliano RP, Cannon CP, Blazing MA, Nicolau JC, Ramón C, Jindřich Š, et al. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus. Circulation. 2018;137(15):1571–82.

    PubMed  CAS  Google Scholar 

  126. Bohula EA, Giugliano RP, Cannon CP, Zhou J, Murphy SA, White JA, et al. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity. Circulation. 2015;132(13):1224–33.

    PubMed  CAS  Google Scholar 

  127. Stein EA, Mellis S, Yancopoulos GD, Stahl N, Logan D, Smith WB, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366(12):1108–18.

    PubMed  CAS  Google Scholar 

  128. Henry CA, Lyon RA, Ling H. Clinical efficacy and safety of evolocumab for low-density lipoprotein cholesterol reduction. Vasc Health Risk Manag. 2016;12:163–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–107.

    PubMed  CAS  Google Scholar 

  130. • Tiniakou E, Rivera E, Mammen AL, Christopher-Stine L. Use of proprotein convertase subtilisin/kexin type 9 inhibitors in statin-associated immune-mediated necrotizing myopathy: a case series. Arthritis Rheum. 2019;71(10):1723–6 This study demonstrates the safety and potential therapeutic benefit of PCSK9 inhibitors in HMGCR-associated myositis.

    CAS  Google Scholar 

  131. Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML, Yang J, et al. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2531–40.

    PubMed  CAS  Google Scholar 

  132. McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand A-C, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59(25):2344–53.

    PubMed  CAS  Google Scholar 

  133. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9.

    PubMed  CAS  Google Scholar 

  134. McDonagh M, Peterson K, Holzhammer B, Fazio S. A systematic review of PCSK9 inhibitors alirocumab and evolocumab. J Manag Care Spec Pharm. 2016;22(6):641–653q.

    PubMed  Google Scholar 

  135. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2018 executive summary. Endocr Pract. 2018;24(1):91–120.

    PubMed  Google Scholar 

  136. Bays H, Dujovne C. Colesevelam HCl: a non-systemic lipid-altering drug. Expert Opin Pharmacother. 2003;4(5):779–90.

    PubMed  Google Scholar 

  137. Rivers S, Kane M, Busch R, Bakst G, Hamilton R. Colesevelam hydrochloride-ezetimibe combination lipid-lowering therapy in patients with diabetes or metabolic syndrome and a history of statin intolerance. Endocr Pract. 2007;13(1):11–6.

    PubMed  Google Scholar 

  138. Grundy SM, Vega GL, Yuan Z, Battisti WP, Brady WE, Palmisano J. Effectiveness and tolerability of simvastatin plus fenofibrate for combined hyperlipidemia (the SAFARI trial). Am J Cardiol. 2005;95(4):462–8.

    PubMed  CAS  Google Scholar 

  139. Ooi CP, Loke SC. Colesevelam for type 2 diabetes mellitus: an abridged Cochrane review. Diabet Med. 2014;31(1):2–14.

    PubMed  CAS  Google Scholar 

  140. Aggarwal S, Loomba RS, Arora RR. Efficacy of colesevelam on lowering glycemia and lipids. J Cardiovasc Pharmacol. 2012;59(2). Available from: https://journals.lww.com/cardiovascularpharm/Fulltext/2012/02000/Efficacy_of_Colesevelam_on_Lowering_Glycemia_and.13.aspx.

  141. Oh TH, Brumfield KA, Hoskin TL, Stolp KA, Murray JA, Bassford JR. Dysphagia in inflammatory myopathy: clinical characteristics, treatment strategies, and outcome in 62 patients. Mayo Clin Proc. 2007;82(4):441–7.

    PubMed  Google Scholar 

  142. Kamanna VS, Kashyap ML. Mechanism of action of niacin. Am J Cardiol. 2008;101(8):S20–6.

    Google Scholar 

  143. Brown BG, Zhao X-Q, Chait A, Fisher LD, Cheung MC, Morse JS, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med. 2001;345(22):1583–92.

    PubMed  CAS  Google Scholar 

  144. Canner PL, Berge KG, Wenger NK, Stamler J, Friedman L, Prineas RJ, et al. Fifteen year mortality in coronary drug project patients: long-term benefit with niacin. J Am Coll Cardiol. 1986;8(6):1245–55.

    PubMed  CAS  Google Scholar 

  145. Taylor AJ, Sullenberger LE, Lee HJ, Lee JK, Grace KA. Arterial biology for the investigation of the treatment effects of reducing cholesterol (ARBITER) 2. Circulation. 2004;110(23):3512–7.

    PubMed  CAS  Google Scholar 

  146. Canner PL, Furberg CD, McGovern ME. Benefits of niacin in patients with versus without the metabolic syndrome and healed myocardial infarction (from the coronary drug project). Am J Cardiol. 2006;97(4):477–9.

    PubMed  CAS  Google Scholar 

  147. Canner PL, Furberg CD, Terrin ML, McGovern ME. Benefits of niacin by glycemic status in patients with healed myocardial infarction (from the coronary drug project). Am J Cardiol. 2005;95(2):254–7.

    PubMed  CAS  Google Scholar 

  148. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011 Nov 15;365(24):2255–67.

  149. D’Andrea E, Hey SP, Ramirez CL, Kesselheim AS. Assessment of the role of niacin in managing cardiovascular disease outcomes: a systematic review and meta-analysis. JAMA Netw Open. 2019;2(4):e192224.

    PubMed  PubMed Central  Google Scholar 

  150. Fazio S, Linton MF. The role of fibrates in managing hyperlipidemia: mechanisms of action and clinical efficacy. Curr Atheroscler Rep. 2004;6(2):148–57.

    PubMed  Google Scholar 

  151. Haak T, Haak E, Kusterer K, Weber A, Kohleisen M, Usadel K. Fenofibrate improves microcirculation in patients with hyperlipidemia. Eur J Med Res. 1998;3(1–2):50–4.

    PubMed  CAS  Google Scholar 

  152. Maki KC, Bays HE, Dicklin MR. Treatment options for the management of hypertriglyceridemia: strategies based on the best-available evidence. J Clin Lipidol. 2012;6(5):413–26.

    PubMed  Google Scholar 

  153. Zhu L, Hayen A, Bell KJL. Legacy effect of fibrate add-on therapy in diabetic patients with dyslipidemia: a secondary analysis of the ACCORDION study. Cardiovasc Diabetol. 2020;19(1):28.

    PubMed  PubMed Central  Google Scholar 

  154. Ginsberg HN, Elam MB, Lovato LC, Crouse JR III, Leiter LA, Linz P, et al. Effects of combination lipid therapy in type 2 diabetes mellitus (vol 362, pg 1563, 2010). N Engl J Med. 2010;362(18):1748.

    Google Scholar 

  155. Elam MB, Ginsberg HN, Lovato LC, Corson M, Largay J, Leiter LA, et al. Association of fenofibrate therapy with long-term cardiovascular risk in statin-treated patients with type 2 diabetes. JAMA Cardiol. 2017;2(4):370–80.

    PubMed  Google Scholar 

  156. Damci T, Tatliagac S, Osar Z, Ilkova H. Fenofibrate treatment is associated with better glycemic control and lower serum leptin and insulin levels in type 2 diabetic patients with hypertriglyceridemia. Eur J Intern Med. 2003;14(6):357–60.

    PubMed  CAS  Google Scholar 

  157. Tenenbaum A, Fisman EZ, Boyko V, Benderly M, Tanne D, Haim M, et al. Attenuation of progression of insulin resistance in patients with coronary artery disease by bezafibrate. Arch Intern Med. 2006;166(7):737–41.

    PubMed  CAS  Google Scholar 

  158. • Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2019;41(1):111–88 This is an up-to-date guideline for ASCVD risk stratification and management. This study demonstrated the association of higher CAC scores with increased ASCVD risk and suggests that CAC scores may have a role in risk stratification in specific populations.

    Google Scholar 

  159. Bohan A, Peter JB. Polymyositis and dermatomyositis. N Engl J Med. 1975;292(7):344–7.

    PubMed  CAS  Google Scholar 

  160. Plotz PH, Rider LG, Targoff IN, Raben N, O’Hanlon TP, Miller FW. Myositis: immunologic contributions to understanding cause, pathogenesis, and therapy. Ann Intern Med. 1995;122(9):715–24.

    PubMed  CAS  Google Scholar 

  161. Medsger TA Jr, Dawson WN Jr, Masi AT. The epidemiology of polymyositis. Am J Med. 1970;48(6):715–23.

    PubMed  Google Scholar 

  162. Maeda K, Kimura R, Komuta K, Igarashi T. Cyclosporine treatment for polymyositis/dermatomyositis: is it possible to rescue the deteriorating cases with interstitial pneumonitis? Scand J Rheumatol. 1997;26(1):24–9.

    PubMed  CAS  Google Scholar 

  163. Cayot A, Laroche D, Disson-Dautriche A, Arbault A, Maillefert J-F, Ornetti P. Cytochrome P450 interactions and clinical implication in rheumatology. Clin Rheumatol. 2014;33(9):1231–8.

    PubMed  Google Scholar 

Download references

Funding

MCM was supported by NIH Grant Number T32-AR048522. ET was supported by the Jerome L Greene Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marisa C. Mizus or Eleni Tiniakou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Inflammatory Muscle Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizus, M.C., Tiniakou, E. Lipid-lowering Therapies in Myositis. Curr Rheumatol Rep 22, 70 (2020). https://doi.org/10.1007/s11926-020-00942-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-020-00942-3

Keywords

Navigation