Skip to main content

Advertisement

Log in

Anti-neutrophil Cytoplasmic Antibodies (ANCA) as Disease Activity Biomarkers in a “Personalized Medicine Approach” in ANCA-Associated Vasculitis

  • Vasculitis (LR Espinoza, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

ANCA-associated vasculitides (AAV) are a group of rare diseases characterized by blood vessel inflammation and the presence of circulating anti-neutrophil cytoplasmic antibodies recognizing proteinase-3 (PR3) (PR3-ANCA) or myeloperoxidase (MPO), MPO-ANCA.

Recent Findings

Historically, ANCAs have been used as biomarkers for disease associations and increases of ANCA levels as predictors of relapse in patients with AAV.

Summary

In this review, we will summarize and highlight the most recent developments for using ANCA as predictive biomarkers and review some of the important disease-specific features in patients with AAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hilhorst M, et al. Proteinase 3-ANCA vasculitis versus myeloperoxidase-ANCA vasculitis. J Am Soc Nephrol. 2015;26(10):2314–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jennette JC, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11.

    CAS  PubMed  Google Scholar 

  3. Heeringa P, Tervaert JW. Pathophysiology of ANCA-associated vasculitides: are ANCA really pathogenic? Kidney Int. 2004;65(5):1564–7.

    CAS  PubMed  Google Scholar 

  4. Slot MC, et al. Renal survival and prognostic factors in patients with PR3-ANCA associated vasculitis with renal involvement. Kidney Int. 2003;63(2):670–7.

    PubMed  Google Scholar 

  5. Cohen Tervaert JW, Damoiseaux J. Antineutrophil cytoplasmic autoantibodies: how are they detected and what is their use for diagnosis, classification and follow-up? Clin Rev Allergy Immunol. 2012;43(3):211–9.

    CAS  PubMed  Google Scholar 

  6. Cohen Tervaert JW. Should proteinase-3 and myeloperoxidase anti-neutrophil cytoplasmic antibody vasculitis be treated differently: part 2. Nephrol Dial Transplant. 2019;34(3):384–7.

    PubMed  Google Scholar 

  7. Lionaki S, et al. Classification of antineutrophil cytoplasmic autoantibody vasculitides: the role of antineutrophil cytoplasmic autoantibody specificity for myeloperoxidase or proteinase 3 in disease recognition and prognosis. Arthritis Rheum. 2012;64(10):3452–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fussner LA, et al. Factors determining the clinical utility of serial measurements of antineutrophil cytoplasmic antibodies targeting proteinase 3. Arthritis Rheumatol. 2016;68(7):1700–10.

    CAS  PubMed  Google Scholar 

  9. Mourguet M, et al. Increased ischemic stroke, acute coronary artery disease and mortality in patients with granulomatosis with polyangiitis and microscopic polyangiitis. J Autoimmun. 2019;96:134–41.

    CAS  PubMed  Google Scholar 

  10. Berti A, et al. Incidence, prevalence, mortality and chronic renal damage of anti-neutrophil cytoplasmic antibody-associated glomerulonephritis in a 20-year population-based cohort. Nephrol Dial Transplant. 2018.

  11. Cohen Tervaert JW. Cardiovascular disease due to accelerated atherosclerosis in systemic vasculitides. Best Pract Res Clin Rheumatol. 2013;27(1):33–44.

    PubMed  Google Scholar 

  12. Schulte-Pelkum J, et al. Novel clinical and diagnostic aspects of antineutrophil cytoplasmic antibodies. J Immunol Res. 2014;2014:185416.

    PubMed  PubMed Central  Google Scholar 

  13. Hazebroek MR, et al. Prevalence and prognostic relevance of cardiac involvement in ANCA-associated vasculitis: eosinophilic granulomatosis with polyangiitis and granulomatosis with polyangiitis. Int J Cardiol. 2015;199:170–9.

    CAS  PubMed  Google Scholar 

  14. Petermann Smits DR, et al. Metabolic syndrome in ANCA-associated vasculitis. Rheumatology (Oxford). 2013;52(1):197–203.

    Google Scholar 

  15. Miyake CNH, et al. Increased insulin resistance and glucagon levels in mild/inactive systemic lupus erythematosus patients despite normal glucose tolerance. Arthritis Care Res (Hoboken). 2018;70(1):114–24.

    CAS  Google Scholar 

  16. Moncao CSA, et al. Incidence of cardiovascular risk factors in female patients with systemic lupus erythematosus: a 3-year follow-up cohort. Lupus. 2018;27(11):1790–8.

    CAS  PubMed  Google Scholar 

  17. Miloslavsky EM, et al. Reducing glucocorticoid duration in ANCA-associated vasculitis: A pilot trial. Semin Arthritis Rheum. 2018;48(2):288–92.

    CAS  PubMed  Google Scholar 

  18. Pepper RJ, et al. A novel glucocorticoid-free maintenance regimen for anti-neutrophil cytoplasm antibody-associated vasculitis. Rheumatology (Oxford). 2019;58(2):373.

    Google Scholar 

  19. Kemna MJ, et al. ANCA as a predictor of relapse: useful in patients with renal involvement but not in patients with nonrenal disease. J Am Soc Nephrol. 2015;26(3):537–42.

    CAS  PubMed  Google Scholar 

  20. Heeringa P, Little MA. In vivo approaches to investigate ANCA-associated vasculitis: lessons and limitations. Arthritis Res Ther. 2011;13(1):204.

    PubMed  PubMed Central  Google Scholar 

  21. Hilhorst M, et al. HLA-DPB1 as a risk factor for relapse in antineutrophil cytoplasmic antibody-associated vasculitis: a cohort study. Arthritis Rheumatol. 2016;68(7):1721–30.

    CAS  PubMed  Google Scholar 

  22. Slot MC, et al. Immunoregulatory gene polymorphisms are associated with ANCA-related vasculitis. Clin Immunol. 2008;128(1):39–45.

    CAS  PubMed  Google Scholar 

  23. Carr EJ, et al. Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis. BMC Med Genet. 2009;10:121.

    PubMed  PubMed Central  Google Scholar 

  24. Wilde B, et al. Aberrant expression of the negative costimulator PD-1 on T cells in granulomatosis with polyangiitis. Rheumatology (Oxford). 2012;51(7):1188–97.

    CAS  Google Scholar 

  25. Tervaert JW, Stegeman CA, Kallenberg CG. Silicon exposure and vasculitis. Curr Opin Rheumatol. 1998;10(1):12–7.

    CAS  PubMed  Google Scholar 

  26. Cohen Tervaert JW, Ye C, Yacyshyn E. Adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(12):1164–5.

    PubMed  Google Scholar 

  27. Fousteri G, et al. The protein tyrosine phosphatase PTPN22 controls forkhead box protein 3 T regulatory cell induction but is dispensable for T helper type 1 cell polarization. Clin Exp Immunol. 2014;178(1):178–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lyons PA, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367(3):214–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017;18(5):488–98.

    CAS  PubMed  Google Scholar 

  30. Dromparis P, et al. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension. Circ Res. 2013;113(2):126–36.

    CAS  PubMed  Google Scholar 

  31. Andersen G, et al. The frequent UCP2 -866G > A polymorphism protects against insulin resistance and is associated with obesity: a study of obesity and related metabolic traits among 17 636 Danes. Int J Obes (Lond). 2013;37(2):175–81.

    CAS  Google Scholar 

  32. Yu X, et al. Association of UCP2 -866 G/A polymorphism with chronic inflammatory diseases. Genes Immun. 2009;10(6):601–5.

    CAS  PubMed  Google Scholar 

  33. Vogler S, et al. Uncoupling protein 2 has protective function during experimental autoimmune encephalomyelitis. Am J Pathol. 2006;168(5):1570–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Salmela A, et al. Chronic nasal Staphylococcus aureus carriage identifies a subset of newly diagnosed granulomatosis with polyangiitis patients with high relapse rate. Rheumatology (Oxford). 2017;56(6):965–72.

    CAS  Google Scholar 

  35. Stegeman CA, et al. Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener’s granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N Engl J Med. 1996;335(1):16–20.

    CAS  PubMed  Google Scholar 

  36. Hellmich B, et al. EULAR recommendations for conducting clinical studies and/or clinical trials in systemic vasculitis: focus on anti-neutrophil cytoplasm antibody-associated vasculitis. Ann Rheum Dis. 2007;66(5):605–17.

    CAS  PubMed  Google Scholar 

  37. Stone JH, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363(3):221–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tervaert JW, et al. Association between active Wegener’s granulomatosis and anticytoplasmic antibodies. Arch Intern Med. 1989;149(11):2461–5.

    CAS  PubMed  Google Scholar 

  39. McClure ME, et al. Evaluation of PR3-ANCA Status after rituximab for ANCA-associated vasculitis. J Clin Rheumatol. 2019.

  40. Tervaert JW, et al. Prevention of relapses in Wegener’s granulomatosis by treatment based on antineutrophil cytoplasmic antibody titre. Lancet. 1990;336(8717):709–11.

    CAS  PubMed  Google Scholar 

  41. van der Woude FJ, et al. Autoantibodies against neutrophils and monocytes: tool for diagnosis and marker of disease activity in Wegener’s granulomatosis. Lancet. 1985;1(8426):425–9.

    PubMed  Google Scholar 

  42. Tervaert JW, van der Woude FJ, Kallenberg CG. Analysis of symptoms preceding the diagnosis of Wegener’s disease. Ned Tijdschr Geneeskd. 1987;131(32):1391–4.

    CAS  PubMed  Google Scholar 

  43. Han WK, et al. Serial ANCA titers: useful tool for prevention of relapses in ANCA-associated vasculitis. Kidney Int. 2003;63(3):1079–85.

    PubMed  Google Scholar 

  44. Charles P, et al. Comparison of individually tailored versus fixed-schedule rituximab regimen to maintain ANCA-associated vasculitis remission: results of a multicentre, randomised controlled, phase III trial (MAINRITSAN2). Ann Rheum Dis. 2018;77(8):1143–9.

    PubMed  Google Scholar 

  45. Jinam TA, et al. HLA-DPB1*04:01 allele is associated with non-obstructive azoospermia in Japanese patients. Hum Genet. 2013;132(12):1405–11.

    CAS  PubMed  Google Scholar 

  46. Watts RA, et al. Renal vasculitis in Japan and the UK--are there differences in epidemiology and clinical phenotype? Nephrol Dial Transplant. 2008;23(12):3928–31.

    PubMed  Google Scholar 

  47. Yamaguchi M, et al. Increase of antimyeloperoxidase antineutrophil cytoplasmic antibody (ANCA) in patients with renal ANCA-associated vasculitis: association with risk to relapse. J Rheumatol. 2015;42(10):1853–60.

    CAS  PubMed  Google Scholar 

  48. Boomsma MM, et al. Prediction of relapses in Wegener’s granulomatosis by measurement of antineutrophil cytoplasmic antibody levels: a prospective study. Arthritis Rheum. 2000;43(9):2025–33.

    CAS  PubMed  Google Scholar 

  49. Damoiseaux J, et al. A novel enzyme-linked immunosorbent assay using a mixture of human native and recombinant proteinase-3 significantly improves the diagnostic potential for antineutrophil cytoplasmic antibody-associated vasculitis. Ann Rheum Dis. 2009;68(2):228–33.

    CAS  PubMed  Google Scholar 

  50. Rao NV, et al. Biosynthesis and processing of proteinase 3 in U937 cells. Processing pathways are distinct from those of cathepsin G. J Biol Chem. 1996;271(6):2972–8.

    CAS  PubMed  Google Scholar 

  51. Specks U. What you should know about PR3-ANCA. Conformational requirements of proteinase 3 (PR3) for enzymatic activity and recognition by PR3-ANCA. Arthritis Res. 2000;2(4):263–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sommarin Y, Rasmussen N, Wieslander J. Characterization of monoclonal antibodies to proteinase-3 and application in the study of epitopes for classical anti-neutrophil cytoplasm antibodies. Exp Nephrol. 1995;3(4):249–56.

    CAS  PubMed  Google Scholar 

  53. Bini P, et al. Antineutrophil cytoplasmic autoantibodies in Wegener’s granulomatosis recognize conformational epitope(s) on proteinase 3. J Immunol. 1992;149(4):1409–15.

    CAS  PubMed  Google Scholar 

  54. Szymkowiak CH, et al. Expression of the human autoantigen of Wegener’s granulomatosis (PR3) in a baculovirus expression system. Biochem Biophys Res Commun. 1996;219(2):283–9.

    CAS  PubMed  Google Scholar 

  55. Kemna MJ, et al. The avidity of PR3-ANCA in patients with granulomatosis with polyangiitis during follow-up. Clin Exp Immunol. 2016;185(2):141–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kemna MJ, et al. Galactosylation and sialylation levels of IgG predict relapse in patients with PR3-ANCA associated vasculitis. EBioMedicine. 2017;17:108–18.

    PubMed  PubMed Central  Google Scholar 

  57. Xu PC, et al. Influence of variable domain glycosylation on anti-neutrophil cytoplasmic autoantibodies and anti-glomerular basement membrane autoantibodies. BMC Immunol. 2012;13:10.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lardinois OM, et al. Immunoglobulins G from patients with ANCA-associated vasculitis are atypically glycosylated in both the Fc and Fab regions and the relation to disease activity. PLoS One. 2019;14(2):e0213215.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Espy C, et al. Sialylation levels of anti-proteinase 3 antibodies are associated with the activity of granulomatosis with polyangiitis (Wegener’s). Arthritis Rheum. 2011;63(7):2105–15.

    CAS  PubMed  Google Scholar 

  60. Quast I, et al. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J Clin Invest. 2015;125(11):4160–70.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Willem Cohen Tervaert.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vasculitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, M.S., Tervaert, J.W.C. Anti-neutrophil Cytoplasmic Antibodies (ANCA) as Disease Activity Biomarkers in a “Personalized Medicine Approach” in ANCA-Associated Vasculitis. Curr Rheumatol Rep 21, 76 (2019). https://doi.org/10.1007/s11926-019-0872-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-019-0872-3

Keywords

Navigation