Skip to main content

Advertisement

Log in

Update on Biologic Therapies for Systemic Lupus Erythematosus

  • Systemic Lupus Erythematosus (A Saxena, Guest Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a chronic multisystemic autoimmune disease driven by genetic, hormonal, and environmental factors. Despite the advances in diagnostic and therapeutic approaches in the last decades, SLE still leads to significant morbidity and increased mortality. Although a cure for SLE is still unknown, treatment is required to control acute disease exacerbation episodes (flares), decrease the frequency and severity of subsequent lupus flares, address comorbidities, and prevent end-organ damage. While conventional SLE pharmacotherapy may exhibit suboptimal efficacy and substantial toxicity, a growing knowledge of the disease pathogenesis enabled the research on novel therapeutic agents directed at specific disease-related targets. In this paper, we review the recent progress in the clinical investigation of biologic agents targeting B cells, T cells, cytokines, innate immunity, and other immunologic or inflammatory pathways. Although many investigational agents exhibited insufficient efficacy or inadequate safety in clinical trials, one of them, belimumab, fulfilled the efficacy and safety regulatory requirements and was approved for the treatment of SLE in Europe and the USA, which confirms that, despite all difficulties, advances in this field are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Abbas AK, Lichtman AH, Pillai S. Imunologia celular e molecular. Rio de Janeiro: Elsevier; 2008. p. 564.

    Google Scholar 

  2. Achour A, Mankaï A, Thabet Y, Sakly W, Braham F, Kechrid C, et al. Systemic lupus erythematosus in the elderly. Rheumatol Int. 2012;32:1225–9.

    Article  CAS  PubMed  Google Scholar 

  3. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008;358:929–39.

    Article  CAS  PubMed  Google Scholar 

  4. Manson JJ, Rahman A. Systemic lupus erythematosus. Orphanet J Rare Dis. 2006;1:6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chng HH. Management of systemic lupus erythematosus in the coming decade: potentials and challenges. APLAR J Rheumatol. 2006;9:419–24.

    Article  Google Scholar 

  6. Fu SM, Deshmukh US, Gaskin F. Pathogenesis of systemic lupus erythematosus revisited 2011: end organ resistance to damage, autoantibody initiation and diversification, and HLA-DR. J Autoimmun. 2011;37:104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lateef A, Petri M. Unmet medical needs in systemic lupus erythematosus. Arthritis Res Ther. 2012;14 Suppl 4:S4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Robson MG, Walport MJ. Pathogenesis of systemic lupus erythematosus (SLE). Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2001;31:678–85.

    Article  CAS  Google Scholar 

  9. Postal M, Costallat LT, Appenzeller S. Biological therapy in systemic lupus erythematosus. Int J Rheumatol. 2012;2012:578641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365:2110–21.

    Article  CAS  PubMed  Google Scholar 

  11. Fortuna G, Brennan MT. Systemic lupus erythematosus: epidemiology, pathophysiology, manifestations, and management. Dent Clin N Am. 2013;57:631–55. This paper provides an extensive review on SLE, especially on the pathophysiology of the disease, which is highly relevant to understand the mechanisms of action and the targets of the biologic agents addressed in the present study.

    Article  PubMed  Google Scholar 

  12. Mok CC, Lau CS. Pathogenesis of systemic lupus erythematosus. J Clin Pathol. 2003;56:481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Connolly DJ, O’Neill LAJ. New developments in Toll-like receptor targeted therapeutics. Curr Opin Pharmacol. 2012;12:510–8.

    Article  CAS  PubMed  Google Scholar 

  14. Reynolds JM, Martinez GJ, Chung Y, Dong C. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A. 2012;109:13064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hahn BH. Targeted therapies in systemic lupus erythematosus: successes, failures and future. Ann Rheum Dis. 2011;70 Suppl 1:i64–6.

    Article  CAS  PubMed  Google Scholar 

  16. Cervera R, Abarca-Costalago M, Abramovicz D, Allegri F, Annunziata P, Aydintug AO, et al. Systemic lupus erythematosus in Europe at the change of the millennium: lessons from the “Euro-Lupus Project”. Autoimmun Rev. 2006;5:180–6.

    Article  PubMed  Google Scholar 

  17. Tan EM, Cohen AS, Fries JF, Masi AT, Mcshane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25:1271–7.

    Article  CAS  PubMed  Google Scholar 

  18. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.

    Article  CAS  PubMed  Google Scholar 

  19. Petri M, Orbai A-M, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–86.

    Article  PubMed  PubMed Central  Google Scholar 

  20. O’Neill SG, Schrieber L. Immunotherapy of systemic lupus erythematosus. Autoimmun Rev. 2005;4:395–402.

    Article  PubMed  CAS  Google Scholar 

  21. Bertsias G, Ioannidis JPA, Boletis J, Bombardieri S, Cervera R, Dostal C, et al. Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics EULAR recommendations for the management of systemic lupus erythematosus. Report of a Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics. Ann Rheum Dis. 2008;67:195–205.

    Article  CAS  PubMed  Google Scholar 

  22. Pego-Reigosa JM, Cobo-Ibáñez T, Calvo-Alén J, Loza-Santamaría E, Rahman A, Muñoz-Fernández S, et al. Efficacy and safety of nonbiologic immunosuppressants in the treatment of nonrenal systemic lupus erythematosus: a systematic review. Arthritis Care Res. 2013;65:1775–85.

    Article  CAS  Google Scholar 

  23. Boumpas DT, Austin HA, Vaughn EM, Klippel JH, Steinberg AD, Yarboro CH, et al. Controlled trial of pulse methylprednisolone versus two regimens of pulse cyclophosphamide in severe lupus nephritis. Lancet Lond Engl. 1992;340:741–5.

    Article  CAS  Google Scholar 

  24. Houssiau FA, Vasconcelos C, D’Cruz D, Sebastiani GD, Garrido Ed E. De R, Danieli MG, et al. Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum. 2002;46:2121–31.

    Article  CAS  PubMed  Google Scholar 

  25. Appel GB, Contreras G, Dooley MA, Ginzler EM, Isenberg D, Jayne D, et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol. 2009;20(5):1103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chan TM. Treatment of severe lupus nephritis: the new horizon. Nat Rev Nephrol. 2015;11:46–61. This paper includes current data on the treatment of lupus nephritis, including also non-biologic drugs.

    Article  CAS  PubMed  Google Scholar 

  27. Costedoat-Chalumeau N, Dunogué B, Leroux G, Morel N, Jallouli M, Le Guern V, et al. A critical review of the effects of hydroxychloroquine and chloroquine on the eye. Clin Rev Allergy Immunol. 2015.

  28. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med. 2005;353:1711–23.

    Article  CAS  PubMed  Google Scholar 

  29. Lutalo PMK, Jordan N, D’Cruz DP. Which dose of steroids and which cytotoxics for severe lupus? Presse Médicale Paris Fr 1983. 2014;43:e157–65.

    Google Scholar 

  30. Trager J, Ward MM. Mortality and causes of death in systemic lupus erythematosus. Curr Opin Rheumatol. 2001;13:345–51.

    Article  CAS  PubMed  Google Scholar 

  31. Bernatsky S, Boivin J-F, Joseph L, Manzi S, Ginzler E, Gladman DD, et al. Mortality in systemic lupus erythematosus. Arthritis Rheum. 2006;54:2550–7.

    Article  CAS  PubMed  Google Scholar 

  32. Xia Y, Pawar RD, Nakouzi AS, Herlitz L, Broder A, Liu K, et al. The constant region contributes to the antigenic specificity and renal pathogenicity of murine anti-DNA antibodies. J Autoimmun. 2012;39:398–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rekvig OP. The anti-DNA antibody: origin and impact, dogmas and controversies. Nat Rev Rheumatol. 2015;11:530–40.

    Article  CAS  PubMed  Google Scholar 

  34. Horowitz DM, Furie RA. Abetimus sodium: a medication for the prevention of lupus nephritis flares. Expert Opin Pharmacother. 2009;10:1501–7.

    Article  CAS  PubMed  Google Scholar 

  35. Furie RA, Cash JM, Cronin ME, Katz RS, Weisman MH, Aranow C, et al. Treatment of systemic lupus erythematosus with LJP 394. J Rheumatol. 2001;28:257–65.

    CAS  PubMed  Google Scholar 

  36. Alarcón-Segovia D, Tumlin JA, Furie RA, McKay JD, Cardiel MH, Strand V, et al. LJP 394 investigator consortium LJP 394 for the prevention of renal flare in patients with systemic lupus erythematosus: results from a randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2003;48:442–54.

    Article  PubMed  CAS  Google Scholar 

  37. Cardiel MH, Tumlin JA, Furie RA, Wallace DJ, Joh T, Linnik MD. LJP 394-90-09 investigator consortium abetimus sodium for renal flare in systemic lupus erythematosus: results of a randomized, controlled phase III trial. Arthritis Rheum. 2008;58:2470–80.

    Article  CAS  PubMed  Google Scholar 

  38. Linnik MD, Hu JZ, Heilbrunn KR, Strand V, Hurley FL, Joh T. LJP 394 investigator consortium relationship between anti-double-stranded DNA antibodies and exacerbation of renal disease in patients with systemic lupus erythematosus. Arthritis Rheum. 2005;52:1129–37.

    Article  CAS  PubMed  Google Scholar 

  39. Study of LJP 394 in lupus patients with history of renal disease—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT00089804 (accessed on 7 Sept 2015).

  40. Cogollo E, Cogollo E, Silva MA, Isenberg D. Profile of atacicept and its potential in the treatment of systemic lupus erythematosus. Drug Des Devel Ther. 2015;9:1331–9.

    PubMed  PubMed Central  Google Scholar 

  41. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature. 2000;404:995–9.

    Article  CAS  PubMed  Google Scholar 

  42. Dall’era M, Chakravarty E, Wallace D, Genovese M, Weisman M, Kavanaugh A, et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 2007;56:4142–50.

    Article  PubMed  CAS  Google Scholar 

  43. Pena-Rossi C, Nasonov E, Stanislav M, Yakusevich V, Ershova O, Lomareva N, et al. An exploratory dose-escalating study investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of intravenous atacicept in patients with systemic lupus erythematosus. Lupus. 2009;18:547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ginzler EM, Wax S, Rajeswaran A, Copt S, Hillson J, Ramos E, et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res Ther. 2012;14:R33:1–7.

    Article  CAS  Google Scholar 

  45. Isenberg D, Gordon C, Licu D, Copt S, Rossi CP, Wofsy D. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann Rheum Dis. 2014; 0:1–0:10. doi:10.1136/annrheumdis–2013–205067.

  46. Long-term safety and tolerability of atacicept (long-term follow-up of patients who participated in ADDRESS II)—Tabular View—ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02070978 (accessed on 06 Apr 2016).

  47. Yurasov S, Wardemann H, Hammersen J, Tsuiji M, Meffre E, Pascual V, et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med. 2005;201:703–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2006;6:859–66.

    Article  CAS  Google Scholar 

  49. Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, Oates JC, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 2010;62:222–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, et al. LUNAR investigator group efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012;64:1215–26.

    Article  CAS  PubMed  Google Scholar 

  51. Jónsdóttir T, Zickert A, Sundelin B, Henriksson EW, van Vollenhoven RF, Gunnarsson I. Long-term follow-up in lupus nephritis patients treated with rituximab—clinical and histopathological response. Rheumatol Oxf Engl. 2013;52:847–55.

    Article  CAS  Google Scholar 

  52. Stohl W. Future prospects in biologic therapy for systemic lupus erythematosus. Nat Rev Rheumatol. 2013;9:705–20.

    Article  CAS  PubMed  Google Scholar 

  53. A study to evaluate two doses of ocrelizumab in patients with active systemic lupus erythematosus (BEGIN)—Tabular View—ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/record/NCT00539838 (accessed on 25 Oct 2015).

  54. Mysler EF, Spindler AJ, Guzman R, Bijl M, Jayne D, Furie RA, et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum. 2013;65:2368–79.

    Article  CAS  PubMed  Google Scholar 

  55. Jacobi AM, Goldenberg DM, Hiepe F, Radbruch A, Burmester GR, Dörner T. Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann Rheum Dis. 2008;67:450–7.

    Article  CAS  PubMed  Google Scholar 

  56. Dörner T, Shock A, Goldenberg DM, Lipsky PE. The mechanistic impact of CD22 engagement with epratuzumab on B cell function: implications for the treatment of systemic lupus erythematosus. Autoimmun Rev. 2015. doi:10.1016/j.autrev.2015.07.013.

    PubMed  Google Scholar 

  57. Dörner T, Kaufmann J, Wegener WA, Teoh N, Goldenberg DM, Burmester GR. Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res Ther. 2006;8:R74:1–R74:11.

    Article  CAS  Google Scholar 

  58. Wallace DJ, Gordon C, Strand V, Hobbs K, Petri M, Kalunian K, et al. Efficacy and safety of epratuzumab in patients with moderate/severe flaring systemic lupus erythematosus: results from two randomized, double-blind, placebo-controlled, multicentre studies (ALLEVIATE) and follow-up. Rheumatol Oxf Engl. 2013;52:1313–22.

    Article  CAS  Google Scholar 

  59. Strand V, Petri M, Kalunian K, Gordon C, Wallace DJ, Hobbs K, et al. Epratuzumab for patients with moderate to severe flaring SLE: health-related quality of life outcomes and corticosteroid use in the randomized controlled ALLEVIATE trials and extension study SL0006. Rheumatol Oxf Engl. 2014;53:502–11.

    Article  CAS  Google Scholar 

  60. Wallace DJ, Kalunian K, Petri MA, Strand V, Houssiau FA, Pike M, et al. Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann Rheum Dis. 2014;73:183–90.

    Article  CAS  PubMed  Google Scholar 

  61. Study of epratuzumab versus placebo in subjects with moderate to severe general systemic lupus erythematosus—Tabular View—ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/record/NCT01262365?term=epratuzumab&rank=7&show_locs=Y (accessed on 13 Oct 2015).

  62. Study of epratuzumab versus placebo in subjects with moderate to severe general systemic lupus erythematosus (SLE)—Tabular View—ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/record/NCT01261793?term=epratuzumab&rank=8&show_locs=Y (accessed on 13 Oct 2015).

  63. News | UCB http://www.ucb.com/presscenter/News/article/UCB-announces-Phase-3-clinical-trial-program-for-epratuzumab-in-Systemic-Lupus-Erythematosus-did-not-meet-primary-endpoint-nbsp (accessed on 13 Oct 2015).

  64. Do RK, Hatada E, Lee H, Tourigny MR, Hilbert D, Chen-Kiang S. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J Exp Med. 2000;192:953–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baker KP. BLyS—an essential survival factor for B cells: basic biology, links to pathology and therapeutic target. Autoimmun Rev. 2004;3:368–75.

    Article  CAS  PubMed  Google Scholar 

  66. Press Announcements. FDA approves Benlysta to treat lupus http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm246489.htm (accessed on 18 Sep 2015).

  67. Benlysta : EPAR—product information http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002015/WC500110150.pdf (accessed on 22 Sep 2015).

  68. Furie R, Stohl W, Ginzler EM, Becker M, Mishra N, Chatham W, et al. Belimumab study group biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther. 2008;10:R109:1–R109:15.

    Article  CAS  Google Scholar 

  69. Wallace DJ, Stohl W, Furie RA, Lisse JR, McKay JD, Merrill JT, et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 2009;61:1168–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Furie RA, Petri MA, Wallace DJ, Ginzler EM, Merrill JT, Stohl W, et al. Novel evidence-based systemic lupus erythematosus responder index. Arthritis Rheum. 2009;61:1143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Navarra SV, Guzmán RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, et al. BLISS-52 study group efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet Lond Engl. 2011;377:721–31.

    Article  CAS  Google Scholar 

  72. Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzová D, et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63:3918–30.

    Article  CAS  PubMed  Google Scholar 

  73. van Vollenhoven RF, Petri MA, Cervera R, Roth DA, Ji BN, Kleoudis CS, et al. Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann Rheum Dis. 2012;71:1343–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Stohl W, Merrill JT, Looney RJ, Buyon J, Wallace DJ, Weisman MH, et al. Treatment of systemic lupus erythematosus patients with the BAFF antagonist “peptibody” blisibimod (AMG 623/A-623): results from randomized, double-blind phase 1a and phase 1b trials. Arthritis Res Ther. 2015;17:215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Furie RA, Leon G, Thomas M, Petri MA, Chu AD, Hislop C, et al. A phase 2, randomised, placebo-controlled clinical trial of blisibimod, an inhibitor of B cell activating factor, in patients with moderate-to-severe systemic lupus erythematosus, the PEARL-SC study. Ann Rheum Dis. 2015;74:1667–75.

    Article  CAS  PubMed  Google Scholar 

  76. Isenberg DA, Petri M, Kalunian K, Tanaka Y, Urowitz MB, Hoffman RW, et al. Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2015. doi:10.1136/annrheumdis-2015-207653.

    Google Scholar 

  77. Merrill JT, van Vollenhoven RF, Buyon JP, Furie RA, Stohl W, Morgan-Cox M, et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2015. doi:10.1136/annrheumdis-2015-207654.

    Google Scholar 

  78. Oakes K. Tabalumab development for lupus stops because of mixed phase III results. Rheumatol News Digital Network. 2015.

  79. Vasilevko V, Ghochikyan A, Holterman MJ, Agadjanyan MG. CD80 (B7-1) and CD86 (B7-2) are functionally equivalent in the initiation and maintenance of CD4+ T-cell proliferation after activation with suboptimal doses of PHA. DNA Cell Biol. 2002;21:137–49.

    Article  CAS  PubMed  Google Scholar 

  80. Daikh DI, Wofsy D. Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide. J Immunol Baltim Md 1950. 2001;166:2913–6.

    CAS  Google Scholar 

  81. Schiffer L, Sinha J, Wang X, Huang W, von Gersdorff G, Schiffer M, et al. Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J Immunol Baltim Md 1950. 2003;171:489–97.

    CAS  Google Scholar 

  82. Merrill JT, Burgos-Vargas R, Westhovens R, Chalmers A, D’Cruz D, Wallace DJ, et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010;62:3077–87.

    Article  CAS  PubMed  Google Scholar 

  83. Furie R, Nicholls K, Cheng T-T, Houssiau F, Burgos-Vargas R, Chen S-L, et al. Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol Hoboken NJ. 2014;66:379–89.

    Article  CAS  Google Scholar 

  84. Wofsy D, Hillson JL, Diamond B. Abatacept for lupus nephritis: alternative definitions of complete response support conflicting conclusions. Arthritis Rheum. 2012;64:3660–5.

    Article  CAS  PubMed  Google Scholar 

  85. Wofsy D, Hillson JL, Diamond B. Comparison of alternative primary outcome measures for use in lupus nephritis clinical trials. Arthritis Rheum. 2013;65:1586–91. This paper addresses how the choice of the primary outcome measures in clinical trials may influence the ability to detect therapeutic benefit in lupus nephritis studies, which is an important issue in the context of biologic agents’ efficacy evaluation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. ACCESS. Trial Group Treatment of lupus nephritis with abatacept: the Abatacept and Cyclophosphamide Combination Efficacy and Safety Study. Arthritis Rheumatol Hoboken NJ. 2014;66:3096–104.

    Article  CAS  Google Scholar 

  87. Efficacy and safety study of abatacept to treat lupus nephritis—Full Text View—ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/study/NCT01714817 (accessed on 9 Sep 2015).

  88. Merrill JT, Wallace DJ, Petri M, Kirou KA, Yao Y, White WI, et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon α monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann Rheum Dis. 2011;70:1905–13.

    Article  CAS  PubMed  Google Scholar 

  89. Petri M, Wallace DJ, Spindler A, Chindalore V, Kalunian K, Mysler E, et al. Sifalimumab, a human anti-interferon-α monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 2013;65:1011–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Khamashta M, Merrill JT, Werth VP, Furie R, Kalunian K, Illei GG, et al. Safety and efficacy of sifalimumab, an Anti IFN-alpha monoclonal antibody, in a phase 2b study of moderate to severe systemic lupus erythematosus (SLE). [Abstract Number: L4. Presented at the ACR/ARHP Annual Meeting Late-breaking Abstracts Session, Boston, MA, USA]. 2014.

  91. Goldberg A, Geppert T, Schiopu E, Frech T, Hsu V, Simms RW, et al. Dose-escalation of human anti-interferon-α receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res Ther. 2014;16:R57.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Search of: MEDI-546 lupus—List Results—ClinicalTrials.gov https://clinicaltrials.gov/ct2/results?term=MEDI-546+lupus&Search=Search (accessed on 26 Sep 2015).

  93. AstraZeneca. Q1 2015 Results. RNS Number : 2049L. London Stock Exchange; 2015.

  94. Efficacy and safety of two doses of anifrolumab compared to placebo in adult subjects with active systemic lupus erythematosus—Tabular View—ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02446912 (accessed on 06 Apr 2016).

  95. A study of rhuMAb IFNalpha in adults with systemic lupus erythematosus—Full Text View—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/study/NCT00541749 (accessed on 22 Sep 2015).

  96. McBride JM, Jiang J, Abbas AR, Morimoto A, Li J, Maciuca R, et al. Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum. 2012;64:3666–76.

    Article  CAS  PubMed  Google Scholar 

  97. Kalunian KC, Merrill JT, Maciuca R, McBride JM, Townsend MJ, Wei X, et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2015.

  98. Zhu L-J, Yang X, Yu X-Q. Anti-TNF-alpha therapies in systemic lupus erythematosus. J Biomed Biotechnol. 2010;2010:465898.

    PubMed  PubMed Central  Google Scholar 

  99. Postal M, Appenzeller S. The role of tumor necrosis factor-alpha (TNF-α) in the pathogenesis of systemic lupus erythematosus. Cytokine. 2011;56:537–43.

    Article  CAS  PubMed  Google Scholar 

  100. Mosca M, Tani C, Filice ME, Carli L, Delle Sedie A, Vagnani S, et al. TNF-alpha inhibitors in systemic lupus erythematosus. A case report and a systematic literature review. Mod Rheumatol Jpn Rheum Assoc. 2015;25:642–5.

    Article  Google Scholar 

  101. Matsumura R, Umemiya K, Sugiyama T, Sueishi M, Umibe T, Ichikawa K, et al. Study group on nephrology at the national hospital organization of Japan anti-tumor necrosis factor therapy in patients with difficult-to-treat lupus nephritis: a prospective series of nine patients. Clin Exp Rheumatol. 2009;27:416–21.

    CAS  PubMed  Google Scholar 

  102. Tcherepanova I, Curtis M, Sale M, Miesowicz F, Nicolette C. SAT0193 results of a randomized placebo controlled phase ia study of AGS-009, a humanized anti-interferon-α monoclonal antibody in subjects with systemic lupus erythematosus. Ann Rheum Dis. 2013;71:536–7.

    Article  Google Scholar 

  103. Chen P, Vu T, Narayanan A, Sohn W, Wang J, Boedigheimer M, et al. Pharmacokinetic and pharmacodynamic relationship of AMG 811, an anti-IFN-γ IgG1 monoclonal antibody, in patients with systemic lupus erythematosus. Pharm Res. 2015;32:640–53.

    Article  CAS  PubMed  Google Scholar 

  104. Welcher AA, Boedigheimer M, Kivitz AJ, Amoura Z, Buyon J, Rudinskaya A, et al. Blockade of interferon-γ normalizes interferon-regulated gene expression and serum CXCL10 levels in patients with systemic lupus erythematosus. Arthritis Rheumatol Hoboken NJ. 2015;67:2713–22.

    Article  Google Scholar 

  105. Zagury D, Le Buanec H, Mathian A, Larcier P, Burnett R, Amoura Z, et al. IFNalpha kinoid vaccine-induced neutralizing antibodies prevent clinical manifestations in a lupus flare murine model. Proc Natl Acad Sci U S A. 2009;106:5294–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mathian A, Amoura Z, Adam E, Colaone F, Hoekman MFM, Dhellin O, et al. Active immunisation of human interferon α transgenic mice with a human interferon α Kinoid induces antibodies that neutralise interferon α in sera from patients with systemic lupus erythematosus. Ann Rheum Dis. 2011;70:1138–43.

    Article  CAS  PubMed  Google Scholar 

  107. Lauwerys BR, Hachulla E, Spertini F, Lazaro E, Jorgensen C, Mariette X, et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α-kinoid. Arthritis Rheum. 2013;65:447–56.

    Article  CAS  PubMed  Google Scholar 

  108. Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest. 1996;97:2063–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kato K, Santana-Sahagún E, Rassenti LZ, Weisman MH, Tamura N, Kobayashi S, et al. The soluble CD40 ligand sCD154 in systemic lupus erythematosus. J Clin Invest. 1999;104:947–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kalunian KC, Davis JC, Merrill JT, Totoritis MC, Wofsy D. IDEC-131 lupus study group treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46:3251–8.

    Article  CAS  PubMed  Google Scholar 

  111. Boumpas DT, Furie R, Manzi S, Illei GG, Wallace DJ, Balow JE, et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 2003;48:719–27.

    Article  CAS  PubMed  Google Scholar 

  112. Robles-Carrillo L, Meyer T, Hatfield M, Desai H, Dávila M, Langer F, et al. Anti-CD40L immune complexes potently activate platelets in vitro and cause thrombosis in FCGR2A transgenic mice. J Immunol Baltim Md 1950. 2010;185:1577–83.

    CAS  Google Scholar 

  113. Shock A, Burkly L, Wakefield I, Peters C, Garber E, Ferrant J, et al. CDP7657, an anti-CD40L antibody lacking an Fc domain, inhibits CD40L-dependent immune responses without thrombotic complications: an in vivo study. Arthritis Res Ther. 2015;17:234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Tocoian A, Buchan P, Kirby H, Soranson J, Zamacona M, Walley R, et al. First-in-human trial of the safety, pharmacokinetics and immunogenicity of a PEGylated anti-CD40L antibody fragment (CDP7657) in healthy individuals and patients with systemic lupus erythematosus. Lupus. 2015;24:1045–56.

    Article  CAS  PubMed  Google Scholar 

  115. Kow NY, Mak A. Costimulatory pathways: physiology and potential therapeutic manipulation in systemic lupus erythematosus. Clin Dev Immunol. 2013;2013:245928. Overview on the relevance of a few pathophysiologically significant costimulatory pathways in SLE, addressing also data regarding the therapeutic potential of costimulatory molecule blockades.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Sullivan B, Tsuji WH, Chindalore VL, Geppert TD, Rudinskaya A, Pardo P, et al. Administration of AMG 557, a human anti-B7RP-1 (ICOSL) antibody, leads to the selective inhibition of anti-KLH IgG responses in subjects with SLE: results of a phase 1 randomized, double blind, placebo-controlled, sequential, rising, multiple-dose study [abstract]. Arthritis Rheum. 2013;65:S740.

    Google Scholar 

  117. Crispín JC. A TWEAK in lupus nephritis. Clin Immunol Orlando Fla. 2012;145:139–40.

    Article  CAS  Google Scholar 

  118. Michaelson JS, Wisniacki N, Burkly LC, Putterman C. Role of TWEAK in lupus nephritis: a bench-to-bedside review. J Autoimmun. 2012;39:130–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wisniacki N, Amaravadi L, Galluppi GR, Zheng TS, Zhang R, Kong J, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of anti-TWEAK monoclonal antibody in patients with rheumatoid arthritis. Clin Ther. 2013;35:1137–49.

    Article  CAS  PubMed  Google Scholar 

  120. BIIB023 proof-of-concept study in participants with lupus nephritis—Tabular View—ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01499355 (accessed on 20 Oct 2015).

  121. BIIB023 long-term extension study in subjects with lupus nephritis—Tabular View—ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01930890 (accessed on 20 Oct 2015).

  122. Youinou P, Jamin C. The weight of interleukin-6 in B cell-related autoimmune disorders. J Autoimmun. 2009;32:206–10.

    Article  CAS  PubMed  Google Scholar 

  123. Illei GG, Shirota Y, Yarboro CH, Daruwalla J, Tackey E, Takada K, et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 2010;62:542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shirota Y, Yarboro C, Fischer R, Pham T-H, Lipsky P, Illei GG. Impact of anti-interleukin-6 receptor blockade on circulating T and B cell subsets in patients with systemic lupus erythematosus. Ann Rheum Dis. 2013;72:118–28.

    Article  CAS  PubMed  Google Scholar 

  125. Szepietowski JC, Nilganuwong S, Wozniacka A, Kuhn A, Nyberg F, van Vollenhoven RF, et al. Phase I, randomized, double-blind, placebo-controlled, multiple intravenous, dose-ascending study of sirukumab in cutaneous or systemic lupus erythematosus. Arthritis Rheum. 2013;65:2661–71.

    CAS  PubMed  Google Scholar 

  126. van Vollenhoven R, Aranow C, Rovin B, Wagner C, Zhou B, Gordon R, et al. OP0047 a phase 2, multicenter, randomized, double-blind, placebo-controlled, proof-of-concept study to evaluate the efficacy and safety of sirukumab in patients with active lupus nephritis. Ann Rheum Dis. 2014;73:78.

    Article  Google Scholar 

  127. Sullivan MG. Trial of sirukumab for lupus nephritis falls flat. Rheumatol News Digital Netw. 2014.

  128. Sthoeger ZM, Sharabi A, Molad Y, Asher I, Zinger H, Dayan M, et al. Treatment of lupus patients with a tolerogenic peptide, hCDR1 (Edratide): immunomodulation of gene expression. J Autoimmun. 2009;33:77–82.

    Article  CAS  PubMed  Google Scholar 

  129. Urowitz MB, Isenberg DA, Wallace DJ. Safety and efficacy of hCDR1 (Edratide) in patients with active systemic lupus erythematosus: results of phase II study. Lupus Sci Med. 2015;2, e000104.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Varrin-Doyer M, Zamvil SS, Schulze-Topphoff U. Laquinimod, an up-and-coming immunomodulatory agent for treatment of multiple sclerosis. Exp Neurol. 2014;262(Pt A):66–71.

    Article  CAS  PubMed  Google Scholar 

  131. Björk P, Björk A, Vogl T, Stenström M, Liberg D, Olsson A, et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol. 2009;7, e97.

    Article  PubMed  CAS  Google Scholar 

  132. European Medicines Agency. Nerventra : EPAR—refusal public assessment report http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002546/WC500171788.pdf (accessed on 26 Sep 2015).

  133. Lourenço EV, Wong M, Hahn BH, Palma-Diaz MF, Skaggs BJ. Laquinimod delays and suppresses nephritis in lupus-prone mice and affects both myeloid and lymphoid immune cells. Arthritis Rheumatol Hoboken NJ. 2014;66:674–85.

    Article  CAS  Google Scholar 

  134. Jayne D, Appel G, Chan TM, Barkay H, Weiss R, Wofsy D. LB0003 a randomized controlled study of laquinimod in active lupus nephritis patients in combination with standard of care [abstract]. Ann Rheum Dis. 2013;72:A164.

    Article  Google Scholar 

  135. Bengtsson AA, Sturfelt G, Lood C, Rönnblom L, van Vollenhoven RF, Axelsson B, et al. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in patients with systemic lupus erythematosus. Arthritis Rheum. 2012;64:1579–88.

    Article  CAS  PubMed  Google Scholar 

  136. Muller S, Monneaux F, Schall N, Rashkov RK, Oparanov BA, Wiesel P, et al. Spliceosomal peptide P140 for immunotherapy of systemic lupus erythematosus: results of an early phase II clinical trial. Arthritis Rheum. 2008;58:3873–83.

    Article  CAS  PubMed  Google Scholar 

  137. Zimmer R, Scherbarth HR, Rillo OL, Gomez-Reino JJ, Muller S. Lupuzor/P140 peptide in patients with systemic lupus erythematosus: a randomised, double-blind, placebo-controlled phase IIb clinical trial. Ann Rheum Dis. 2013;72:1830–5.

    Article  CAS  PubMed  Google Scholar 

  138. Hayden-Ledbetter MS, Cerveny CG, Espling E, Brady WA, Grosmaire LS, Tan P, et al. CD20-directed small modular immunopharmaceutical, TRU-015, depletes normal and malignant B cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15:2739–46.

    Article  CAS  Google Scholar 

  139. Nickerson-Nutter C, Tchistiakova L, Seth NP, Kasaian M, Sibley B, Olland S, et al. Distinct in vitro binding properties of the anti-CD20 small modular immunopharmaceutical 2LM20-4 result in profound and sustained in vivo potency in cynomolgus monkeys. Rheumatol Oxf Engl. 2011;50:1033–44.

    Article  CAS  Google Scholar 

  140. Fleischmann RM, Cohen SB, Pardo P, Shaw ML, Clowse MEB, Joannopoulos KD, et al. Evidence of peripheral B cell depletion in subjects with controlled systemic lupus erythematosus (SLE) following subcutaneous administration of SBI-087 [abstract]. Arthritis Rheum. 2010;62:S484.

    Google Scholar 

  141. Tillmanns S, Kolligs C, D’Cruz DP, Doria A, Hachulla E, Voll RE, et al. SM101, a novel recombinant, soluble, human FcγRIIB receptor, in the treatment of systemic lupus erythematosus: results of a double-blind, placebo-controlled multicenter study [abstract]. Arthritis Rheum. 2014;66:S1238.

    Google Scholar 

  142. Thanou A, Merrill JT. Treatment of systemic lupus erythematosus: new therapeutic avenues and blind alleys. Nat Rev Rheumatol. 2014;10:23–34.

    Article  CAS  PubMed  Google Scholar 

  143. Borba HHL, Wiens A, de Souza TT, Correr CJ, Pontarolo R. Efficacy and safety of biologic therapies for systemic lupus erythematosus treatment: systematic review and meta-analysis. BioDrugs Clin Immunother Biopharm Gene Ther. 2014;28:211–28.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pontarolo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Systemic Lupus Erythematosus

Helena Hiemisch Lobo Borba, Andreas Funke, Astrid Wiens, Shirley Ramos da Rosa Utiyama and Cássio Marques Perlin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borba, H.H.L., Funke, A., Wiens, A. et al. Update on Biologic Therapies for Systemic Lupus Erythematosus. Curr Rheumatol Rep 18, 44 (2016). https://doi.org/10.1007/s11926-016-0589-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-016-0589-5

Keywords

Navigation