Skip to main content

Advertisement

Log in

Use of DXA-Based Technology for Detection and Assessment of Risk of Vertebral Fracture in Rheumatology Practice

  • Osteoporosis and Metabolic Bone Disease (KG Saag, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is the recommended method for diagnosis of osteoporosis and assessment of future fracture risk. However, most patients who will suffer fractures do not have osteoporosis by DXA (T-score of −2.5 or less). Bone strength, which is most closely associated with resistance to fracture, is a composite of both bone density and bone quality, and the latter is not measured by DXA. Thus, other technology is needed for non-invasive and inexpensive assessment of bone strength and fracture risk. Vertebral fractures, the most common clinical fracture in the general population, are of even greater importance in rheumatoid arthritis and other rheumatic disorders. Vertebral fracture assessment (VFA) and trabecular bone scores (TBS), two techniques which can aid prediction of future fracture risk, can be used with currently available DXA machines. Description of these techniques and their potential application to clinical rheumatology practice will be the focus of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. NIH consensus development panel on osteoporosis prevention, diagnosis and therapy. Osteoporosis prevention diagnosis and therapy JAMA. 2001;285(6):785–96.

  2. Kanis JA, Melton III LJ, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9:1137–41.

    Article  CAS  PubMed  Google Scholar 

  3. Boutroy S, Bouxsein ML, Munoz F, et al. In vivo assessment of bone microstructure by high resolution peripheral computed tomography. J Clin Endocrinol Metab. 2005;90(12):6508–15.

    Article  CAS  PubMed  Google Scholar 

  4. Phan CM, Matsura M, Bauer JS, et al. Trabecular bone structure of the calcaneus: comparison of MR images at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology. 2006;488–96.

  5. Lam SCB, Wald MJ, Rajapkse CS, et al. Performance of the MRI-Based virtual bone biopsy in the distal radius: serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations. Bone. 2001;39(4):895–903.

    Google Scholar 

  6. Naylor KE, McClosky EV, Eastell R, et al. Use of DXA based finite element analysis of the proximal femur in a longitudinal study of hip fracture. J Bone Miner Res. 2013;28:1014–21.

    Article  PubMed  Google Scholar 

  7. Kanis JA, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical report. Geneva: World Health Organization; 2007.

    Google Scholar 

  8. Ross PD, Davis JW, Epstein RS, et al. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Arch Int Med. 1991;114:919–23.

    CAS  Google Scholar 

  9. Melton LJ, Atkinson EJ, Cooper C, et al. Vertebral fractures predict subsequent fractures. Osteoporos Int. 1999;10:214–21.

    Article  PubMed  Google Scholar 

  10. Cauley JA, Hochberg MC, Lui LY, et al. Long-term risk of incident vertebral fractures. JAMA. 2007;298(23):2761–8.

    Article  CAS  PubMed  Google Scholar 

  11. Ensrud KE, Thompson DE, Cauley JA, et al. Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. J Am Geriatr Soc. 2000;48:241–9.

    CAS  PubMed  Google Scholar 

  12. Fink HA, Milavetz DL, Palermo L, et al. What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa. J Bone Miner Res. 2005;20(7):1216–22.

    Article  PubMed  Google Scholar 

  13. Orstavik RE, Haugeberg G, Mowinckel P, et al. Vertebral deformities of rheumatoid arthritis: a comparison with population based controls. Arch Int Med. 2004;164:420–5.

    Article  Google Scholar 

  14. Van Staa TP, Guesens P, Bijlsma JW, et al. Clinical assessment of long-term risk of fracture and patients with rheumatoid arthritis. Arthritis Rheum. 2006;54:3104–12.

    Article  PubMed  Google Scholar 

  15. de Nijs RNJ, Jacobs JWG, Bijlsma JWJ, et al. Prevalence of vertebral deformities and symptomatic vertebral fractures in corticosteroid treated patients with rheumatoid arthritis. Rheumatology. 2001;40:1375–83.

    Article  PubMed  Google Scholar 

  16. Orstavik RE, Haugeberg G, Uhlig T, et al. Incidence of vertebral deformities and 225 female rheumatoid arthritis patients measured by morphometric X-ray absorptiometry. Osteoporos Int. 2005;16:35–42.

    Article  PubMed  Google Scholar 

  17. Pell NF, Moore DJ, Barrington NA, et al. Risk of vertebral fracture and relation to bone mineral density in steroid treated patients with rheumatoid arthritis. Ann Rheum Dis. 1995;54:801–6.

    Article  Google Scholar 

  18. Lodder MC, Haugeberg G, Lems WF, et al. Radiographic damage associated with low bone mineral density and vertebral deformities and rheumatoid arthritis. The Oslo-Trulo-Amsterdam (OSTRA) collaborative study. Arthritis Rheum. 2003;49:209–15.

    Article  PubMed  Google Scholar 

  19. Wright NC, Lisse JR, Wallit BT, et al. Arthritis increases the risk for fractures-results from the Women’s Health Initiative. J Rheumatol. 2011;38(8):1680–8.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Brennan SL, Toomey L, Kotowicz M, et al. Rheumatoid arthritis and incident fracture in women: a case–control study. BMC Musculoskelet Disord.

  21. Vis M, Haavardsholm EA, Boyesen P, et al. High incidence of vertebral and non-vertebral fractures in the OSTRA cohort study: a 5 year follow-up study in postmenopausal women with rheumatoid arthritis. Osteoporos Int. 2011;22:2413–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48.

    Article  CAS  PubMed  Google Scholar 

  23. Dirven L, van den Broek M, van Groenendael JHLM, et al. Prevalence of vertebral fractures in a disease activity steered cohort of patients with early active rheumatoid arthritis. BMC Musculoskelet Disord. 2012;13:125–32.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lewiecki EM. Bone densitometry and vertebral fracture assessment. Curr Osteoporos Rep. 2010;8:123–30.

    Article  PubMed  Google Scholar 

  26. Greenspan SL, von Stetten E, Emond SK, et al. Instant vertebral assessment: a noninvasive dual X-ray absorptiometry technique to avoid misclassification and clinical mismanagement of. J Clin Densitom. 2001;3:373–80.

    Article  Google Scholar 

  27. Genant HK, Li J, Wu CY, et al. Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom. 2000;3:281–90.

    Article  CAS  PubMed  Google Scholar 

  28. Schousboe JT, DeBold CR. Reliability and accuracy of vertebral fracture assessment with densitometry compared to radiography in clinical practice. Osteoporos Int. 2006;17:281–9.

    Article  PubMed  Google Scholar 

  29. Binkley N, Krueger D, Gangnon R, et al. Lateral vertebral assessment: a valuable technique to assess clinically significant vertebral fractures. Osteoporos Int. 2005;16:1513–8.

    Article  PubMed  Google Scholar 

  30. National Osteoporosis Foundation. Clinicians guide to prevention and treatment of osteoporosis. Washington, DC: National Osteoporosis Foundation; 2008.

    Google Scholar 

  31. WanWan X, Subashan P, Medich D, et al. Height loss, vertebral fractures and the misclassification of osteoporosis. Bone. 2011;48(2):307–11.

    Article  Google Scholar 

  32. Jager PL, Jonkman S, Koolhas W, et al. Combined vertebral fracture assessment and bone mineral density measurement: a new standard in the diagnosis of osteoporosis in academic populations. Osteoporos Int. 2011;22:1059–68. Large study of 2,424 patients undergoing both DXA and VFA demonstrating the benefit of VFA in changing diagnostic classification by diagnosing asymptomatic vertebral fractures.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. McCloskey EV, Vasireddy S, Threkeld J, et al. Vertebral fracture assessment (VFA) with a densitometer predict future fractures in elderly women unselected for osteoporosis. J Bone Miner Res. 2008;23:1561–8.

    Article  PubMed  Google Scholar 

  34. Ghazi M, Kolta S, Briot K, et al. Prevalence of vertebral fractures in patients with rheumatoid arthritis: revisiting the role of glucocorticoids. Osteoporos Int. 2012;23:581–7. Study demonstrating a 16 % prevalence of vertebral fractures by VFA in rheumatoid arthritis patients with osteopenia.

    Article  CAS  PubMed  Google Scholar 

  35. Genant HK, Mitlak BH, Myers S, et al. Radiographic fracture grade is related to clinical disease severity. Results from the rPTH (1–34) fracture prevention study. Arthritis Rheum. 2000;43:S383.

    Google Scholar 

  36. Roux C, Fechtenbaum J, Kolta S, et al. Mild prevalent and incident fractures are risk factors for new fractures. Osteoporos Int. 2007;18:1617–24.

    Article  CAS  PubMed  Google Scholar 

  37. Lee JH, Cho SK, Han M, et al. Validity and role of vertebral fracture assessment in detecting prevalent vertebral fracture in patients with rheumatoid arthritis. Joint Bone Spine. 2013. doi:10.1016/j.jbspin.2013.07.003. Study demonstrating the high specificity and negative predictive value of VFA in rheumatoid arthritis patients.

    Google Scholar 

  38. Schousboe JT, McKiernan E, Fuehrer JT, et al. Use of a performance algorithm improves utilization of vertebral fracture assessment in clinical practice. Osteoporos Int. 2014;25:965–72.

    Article  CAS  PubMed  Google Scholar 

  39. Rosen HN, Vokes TJ, Malabanan AO, et al. The official positions of the International Society for Clinical Densitometry: vertebral fracture assessment. J Clin Densitom. 2013;16(4):482–8.

    Article  PubMed  Google Scholar 

  40. Grossman JR, Gordon R, Ranganath VK, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. 2010;62:1515–26.

    Article  Google Scholar 

  41. Solomon DH, Kremer J, Curtis JR, et al. Explaining the cardiovascular risk associated with rheumatoid arthritis: traditional risk factors versus markers of rheumatoid arthritis severity. Ann Rheum Dis. 2010;69:1920–5.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Peters MJ, van Halm VP, Voskuyl AE, et al. Does rheumatoid arthritis equal diabetes mellitus as an independent risk factor for cardiovascular disease? A prospective study. Arthritis Rheum. 2009;61:1571–9.

    Article  PubMed  Google Scholar 

  43. Schousboe JT, Taylor BC, Kiel DP, et al. Abdominal aortic calcification detected on lateral spine images from a bone densitometer predicts incident myocardial infarction or stroke in elderly women. J Bone Miner Res. 2008;23:409–16.

    Article  PubMed  Google Scholar 

  44. Mohammad A, Lohan D, Bergin D, et al. Vertebral fracture assessment-detected abdominal aortic calcification and cardiovascular disease in rheumatoid arthritis. Semin Arthritis Rheum. 2013. doi:10.1016/j.semarthrit.2013.09.007. Recent study demonstrating the association of cardiovascular disease with abdominal aortic calcification detected by VFA in rheumatoid arthritis patients.

    PubMed  Google Scholar 

  45. Bousson V, Bergot C, Sutter B, et al. Trabecular bone score (TBS): available knowledge, clinical relevance and future prospects. Osteoporos Int. 2012;23:1489–501.

    Article  CAS  PubMed  Google Scholar 

  46. Silva BC, Leslie WD, Resch H, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29:518–30. Comprehensive recent review of trabecular bone score (TBS) including the scientific background and review of studies correlating TBS with prediction of future fracture risk.

    Article  PubMed  Google Scholar 

  47. Pothuaud L, Carceller P, Hans D. Correlations between gray-level projections in 2D images (TBS) and 3D microarchitecture: applications in the study of human bone trabecular microarchitecture. Bone. 2008;42:775–87.

    Article  PubMed  Google Scholar 

  48. Briot K, Paternotte S, Kolta S, et al. Added value of trabecular bone score to bone mineral density for the prediction of osteoporotic fractures in postmenopausal women: the OPUS study. Bone. 2013;57(1):232–6.

    Article  PubMed  Google Scholar 

  49. Winzenrieth R, Dufour R, Pothuaud L, et al. A retrospective case–control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds f vertebral fracture. Calcif Tissue Int. 2010;86(2):104–9.

    Article  CAS  PubMed  Google Scholar 

  50. DelRio LM, Winzenrieth R, Cormier C, et al. Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case–control study. Osteoporos Int. 2013;24(3):991–8.

    Article  CAS  Google Scholar 

  51. Krueger D, Fidler E, Libber J, et al. Spine trabecular bone score subsequent to bone mineral density improves fracture risk discrimination in women. J Clin Densitom. 2014;17(1):60–5.

    Article  PubMed  Google Scholar 

  52. Hans D, Goertzen AL, Kreig MA, et al. Bone microarchitecture assed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res. 2011;26(11):2761–8. Large study of 29,307 patients demonstrating the ability of TBS to predict incident fracture risk.

    Article  Google Scholar 

  53. Leslie WD, Aubrey-Rozier B, Lamy O, et al. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013;98(2):602–9.

    Article  CAS  PubMed  Google Scholar 

  54. Breban S, Briot K, Kolta S, et al. Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom. 2012;15(3):260–6.

    Article  PubMed  Google Scholar 

  55. Colson E, Picar A, Rabier B, et al. Trabecular bone microarchitecture alteration in glucocorticoid treated women in clinical routine a TBS evaluation. J Bone Miner Res. 2009;24(Suppl 1):Abstract

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Michael Maricic declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Maricic.

Additional information

This article is part of the Topical Collection on Osteoporosis and Metabolic Bone Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maricic, M. Use of DXA-Based Technology for Detection and Assessment of Risk of Vertebral Fracture in Rheumatology Practice. Curr Rheumatol Rep 16, 436 (2014). https://doi.org/10.1007/s11926-014-0436-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-014-0436-5

Keywords

Navigation