Skip to main content

Advertisement

Log in

Ontogeny of the Dyad: the Relationship Between Maternal and Offspring Neuroendocrine Function

  • Reproductive Psychiatry and Women's Health (L Hantsoo and S Nagle-Yang, Section Editors)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We review ontogeny of the maternal-offspring neuroendocrine relationship in human pregnancy. We present bidirectional genetic, physiological, and behavioral influences that enhance or disrupt HPA activity and its end product cortisol at the individual level and within the dyad.

Recent Findings

Consistent evidence supports that maternal mood and caregiving behavior are associated with maternal and offspring cortisol levels. Select studies support the buffering effects of antidepressant use and maternal positive affect on offspring cortisol. Growing research highlights evocative effects of fetal neuroendocrine activity, antenatal gene transfer, and infant behavioral distress and risk characteristics on maternal cortisol levels and dyadic attunement.

Summary

There is potential to advance our understanding of the mother–offspring neuroendocrine relationship by consideration of other neuroactive steroids in addition to cortisol, and to consider developmental timing and measurement source in study design. Future study should emphasize in what context or for whom neuroendocrine attunement is adaptive versus maladaptive for mother and child.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Howland MA, Sandman CA, Glynn LM. Developmental origins of the human hypothalamic-pituitary-adrenal axis. Expert Rev Endocrinol Metab. 2017;12(5):321–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Costa MA. The endocrine function of human placenta: an overview. Reprod Biomed Online. 2016;32(1):14–43.

    Article  CAS  PubMed  Google Scholar 

  3. Mastorakos G, Ilias I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci. 2003;997(1):136–49.

    Article  CAS  PubMed  Google Scholar 

  4. Buss C, Entringer S, Reyes JF, Chicz-DeMet A, Sandman CA, Waffarn F, Wadhwa PD. The maternal cortisol awakening response in human pregnancy is associated with the length of gestation. Am J Obstet Gynecol. 2009;201(4):398-e1.

    Article  PubMed  CAS  Google Scholar 

  5. Bolten MI, Wurmser H, Buske-Kirschbaum A, Papoušek M, Pirke KM, Hellhammer D. Cortisol levels in pregnancy as a psychobiological predictor for birth weight. Arch Womens Ment Health. 2011;14(1):33–41.

    Article  PubMed  Google Scholar 

  6. Allolio B, Hoffmann J, Linton EA, Winkelmann W, Kusche M, Schulte HM. Diurnal salivary cortisol patterns during pregnancy and after delivery: relationship to plasma corticotrophin-releasing-hormone. Clin Endocrinol. 1990;33(2):279–89.

    Article  CAS  Google Scholar 

  7. Kivlighan KT, DiPietro JA, Costigan KA, Laudenslager ML. Diurnal rhythm of cortisol during late pregnancy: associations with maternal psychological well-being and fetal growth. Psychoneuroendocrinology. 2008;33(9):1225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kammerer M, Adams D, Von Castelberg B, Glover V. Pregnant women become insensitive to cold stress. BMC Pregnancy Childbirth. 2002;2(1):1–5.

    Article  Google Scholar 

  9. Nierop A, Bratsikas A, Klinkenberg A, Nater UM, Zimmermann R, Ehlert U. Prolonged salivary cortisol recovery in second-trimester pregnant women and attenuated salivary α-amylase responses to psychosocial stress in human pregnancy. J Clin Endocrinol Metab. 2006;91(4):1329–35.

    Article  CAS  PubMed  Google Scholar 

  10. Ng PC. The fetal and neonatal hypothalamic–pituitary–adrenal axis. Arch Dis Child Fetal Neonatal Ed. 2000;82(3):F250-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gianino A, Tronick EZ. The mutual regulation model: the infant’s self and interactive regulation and coping and defensive capacities. In: Field TM, McCabe PM, Schneiderman N, editors. Stress and coping across development. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988. p. 47–68.

    Google Scholar 

  12. Provenzi L, Scotto di Minico G, Giusti L, Guida E, Müller M. Disentangling the dyadic dance: theoretical, methodological and outcomes systematic review of mother-infant dyadic processes. Front Psychol. 2018;9:348.

  13. • Del Giudice M, Ellis BJ, Shirtcliff EA. The adaptive calibration model of stress responsivity. Neurosci Biobehav Rev. 2011;35(7):1562–92. This theoretical paper introduces the Adaptive Calibration Model of stress responsivity and its development in the prenatal and postnatal periods.

    Article  PubMed  Google Scholar 

  14. Glover V, Bergman K, Sarkar P, O’Connor TG. Association between maternal and amniotic fluid cortisol is moderated by maternal anxiety. Psychoneuroendocrinology. 2009;34(3):430–5.

    Article  CAS  PubMed  Google Scholar 

  15. Stirrat LI, Just G, Homer NZ, Andrew R, Norman JE, Reynolds RM. Glucocorticoids are lower at delivery in maternal, but not cord blood of obese pregnancies. Sci Rep. 2017;7(1):1–7.

    Article  CAS  Google Scholar 

  16. Bleker LS, Roseboom TJ, Vrijkotte TG, Reynolds RM, de Rooij SR. Determinants of cortisol during pregnancy–the ABCD cohort. Psychoneuroendocrinology. 2017;1(83):172–81.

    Article  CAS  Google Scholar 

  17. Gillespie SL, Mitchell AM, Kowalsky JM, Christian LM. Maternal parity and perinatal cortisol adaptation: the role of pregnancy-specific distress and implications for postpartum mood. Psychoneuroendocrinology. 2018;97:86–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. • Valsamakis G, Papatheodorou DC, Chalarakis N, Vrachnis N, Sidiropoulou EJ, Manolikaki M, Mantzou A, Margeli A, Papassotiriou I, Chrousos GP, Mastorakos G. In pregnancy increased maternal STAI trait stress score shows decreased insulin sensitivity and increased stress hormones. Psychoneuroendocrinology. 2017;84:11–6. This study finds that pregnant women with chronic anxiety had higher levels of both serum cortisol and CRH, highlighting the role of maternal stress in the activation of the HPA axis in pregnancy.

    Article  CAS  PubMed  Google Scholar 

  19. Valsamakis G, Papatheodorou D, Chalarakis N, Manolikaki M, Margeli A, Papassotiriou I, Barber TM, Kumar S, Kalantaridou S, Mastorakos G. Maternal chronic stress correlates with serum levels of cortisol, glucose and C-peptide in the fetus, and maternal non chronic stress with fetal growth. Psychoneuroendocrinology. 2020;114:104591.

  20. Van den Bergh BR, van den Heuvel MI, Lahti M, Braeken M, de Rooij SR, Entringer S, Hoyer D, Roseboom T, Räikkönen K, King S, Schwab M. Prenatal developmental origins of behavior and mental health: the influence of maternal stress in pregnancy. Neurosci Biobehav Rev. 2020;117:26–64.

    Article  PubMed  Google Scholar 

  21. Osborne S, Biaggi A, Chua TE, Du Preez A, Hazelgrove K, Nikkheslat N, Previti G, Zunszain PA, Conroy S, Pariante CM. Antenatal depression programs cortisol stress reactivity in offspring through increased maternal inflammation and cortisol in pregnancy: the psychiatry research and motherhood–depression (PRAM-D) study. Psychoneuroendocrinology. 2018;98:211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marceau K, Wang W, Robertson O, Shirtcliff EA. A systematic review of hair cortisol during pregnancy: reference ranges and methodological considerations. Psychoneuroendocrinology. 2020:104904.

  23. Romero-Gonzalez B, Caparros-Gonzalez RA, Gonzalez-Perez R, Delgado-Puertas P, Peralta-Ramirez MI. Newborn infants’ hair cortisol levels reflect chronic maternal stress during pregnancy. PLoS One. 2018;13(7):e0200279.

  24. Mustonen P, Karlsson L, Scheinin NM, Kortesluoma S, Coimbra B, Rodrigues AJ, Karlsson H. Hair cortisol concentration (HCC) as a measure for prenatal psychological distress—a systematic review. Psychoneuroendocrinology. 2018;92:21–8.

    Article  CAS  PubMed  Google Scholar 

  25. Seckl JR, Meaney MJ. Glucocorticoid programming. Ann N Y Acad Sci. 2004;1032(1):63–84.

    Article  CAS  PubMed  Google Scholar 

  26. Davis EP, Glynn LM, Schetter CD, Hobel C, Chicz-Demet A, Sandman CA. Prenatal exposure to maternal depression and cortisol influences infant temperament. J Am Acad Child Adolesc Psychiatry. 2007;46(6):737–46.

    Article  PubMed  Google Scholar 

  27. Liggins GC. The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev. 1994;6(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  28. Shallie PD, Naicker T. The placenta as a window to the brain: a review on the role of placental markers in prenatal programming of neurodevelopment. Int J Dev Neurosci. 2019;1(73):41–9.

    Article  CAS  Google Scholar 

  29. O’Donnell KJ, Jensen AB, Freeman L, Khalife N, O’Connor TG, Glover V. Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology. 2012;37(6):818–26.

    Article  PubMed  CAS  Google Scholar 

  30. Seth S, Lewis AJ, Saffery R, Lappas M, Galbally M. Maternal prenatal mental health and placental 11β-HSD2 gene expression: initial findings from the mercy pregnancy and emotional wellbeing study. Int J Mol Sci. 2015;16(11):27482–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Glover V. Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. InPerinatal programming of neurodevelopment 2015 (pp. 269–283). Springer, New York, NY.

  32. •• Galbally M, Watson SJ, Lappas M, de Kloet ER, van Rossum E, Wyrwoll C, Mark P, Lewis AJ. Fetal programming pathway from maternal mental health to infant cortisol functioning: the role of placental 11β-HSD2 mRNA expression. Psychoneuroendocrinology. 2021;127:105197. This study highlights a novel finding that antidepressant use during pregnancy is associated with higher placental 11β-HSD2 expression, thereby potentially shielding the fetus from higher cortisol levels associated with maternal mood disorders in pregnancy.

  33. Jahnke JR, Terán E, Murgueitio F, Cabrera H, Thompson AL. Maternal stress, placental 11β-hydroxysteroid dehydrogenase type 2, and infant HPA axis development in humans: psychosocial and physiological pathways. Placenta. 2021;104:179–87.

    Article  CAS  PubMed  Google Scholar 

  34. Voegtline KM, Costigan KA, Kivlighan KT, Laudenslager ML, Henderson JL, DiPietro JA. Concurrent levels of maternal salivary cortisol are unrelated to self-reported psychological measures in low-risk pregnant women. Arch Womens Ment Health. 2013;16:101–8.

    Article  PubMed  Google Scholar 

  35. Heron, J, O'Connor, TG, Evans, J, Golding, J, Glover, V, ALSPAC Study Team. The course of anxiety and depression through pregnancy and the postpartum in a community sample. J Affect Disord, 2004; 80: 65–73.

  36. •• Glynn LM, Howland MA, Fox M. Maternal programming: application of a developmental psychopathology perspective. Dev Psychopathol. 2018;30(3):905–19. (This comprehensive review emphasizes fetal contributions to changes in women’s brain and behavior during pregnancy, including neuroendocrine responsivity.)

    Article  PubMed  PubMed Central  Google Scholar 

  37. DiPietro JA, Irizarry RA, Costigan KA, Gurewitsch ED. The psychophysiology of the maternal–fetal relationship. Psychophysiology. 2004;41(4):510–20.

    Article  PubMed  Google Scholar 

  38. DiPietro JA. Psychological and psychophysiological considerations regarding the maternal–fetal relationship. Infant Child Dev. 2010;19(1):27–38.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gitau R, Fisk NM, Teixeira JM, Cameron A, Glover V. Fetal hypothalamic-pituitary-adrenal stress responses to invasive procedures are independent of maternal responses. J Clin Endocrinol Metab. 2001;86(1):104–9.

    CAS  PubMed  Google Scholar 

  40. DiPietro JA, Voegtline KM, Costigan KA, Aguirre F, Kivlighan K, Chen P. Physiological reactivity of pregnant women to evoked fetal startle. J Psychosom Res. 2013;75(4):321–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci. 1996;93(2):705–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DiPietro JA, Voegtline KM. The gestational foundation of sex differences in development and vulnerability. Neurosci. 2017;2017(342):4–20.

    Article  CAS  Google Scholar 

  43. Bianchi DW, Khosrotehrani K, Way SS, MacKenzie TC, Bajema I, O’Donoghue K. Forever connected: the lifelong biological consequences of fetomaternal and maternofetal microchimerism. Clin Chem. 2021;67(2):351–62.

    Article  PubMed  Google Scholar 

  44. Fjeldstad HE, Johnsen GM, Staff AC. Fetal microchimerism and implications for maternal health. Obstet Med. 2020;13(3):112–9.

    Article  PubMed  Google Scholar 

  45. Boddy AM, Fortunato A, Wilson Sayres M, Aktipis A. Fetal microchimerism and maternal health: a review and evolutionary analysis of cooperation and conflict beyond the womb. BioEssays. 2015;37(10):1106–18.

    Article  PubMed  PubMed Central  Google Scholar 

  46. • Byrd-Craven J, Clauss N. The psychobiology of family dynamics: bidirectional relationships with adrenocortical attunement. In: Harrist AW, Gardner BC, editors. Biobehavioral markers in risk and resilience research. Switzerland: Springer Nature Switzerland; 2019. p. 13–30. This is a comprehensive review of dyadic adrenocortical attunement.

  47. Duthie L, Reynolds RM. Changes in the maternal hypothalamic-pituitary-adrenal axis in pregnancy and postpartum: influences on maternal and fetal outcomes. Neuroendocrinology. 2013;98:106–15.

    Article  CAS  PubMed  Google Scholar 

  48. •• Almanza-Sepulveda ML, Fleming AS, Jonas W. Mothering revisited: A role for cortisol? Horm Behav. 2020;121:104679. This review highlights the role of the maternal hypothalamic-pituitary-adrenal (HPA) axis and its changes during pregnancy and after parturition in the adaptation to parenthood.

  49. Magiakou MA, Mastorakos G, Rabin D, Dubbert B, Gold PW, Chrousos GP. Hypothalamic corticotropin-releasing hormone suppression during the postpartum period: implications for the increase in psychiatric manifestations at this time. J Clin Endocrinol Metab. 1996;81:1912–7.

    CAS  PubMed  Google Scholar 

  50. O'Keane V, Lightman, S, Patrick, K, Marsh, M, Papadopoulos, AS, Pawlby, S, ... Moore, R. Changes in the maternal hypothalamic-pituitary-adrenal axis during the early puerperium may be related to the postpartum ‘blues'. J Neuroendocrinol 2011;23:1149–1155.

  51. Dickens MJ, Pawluski JL. The HPA axis during the perinatal period: implications for perinatal depression. Endocrinol. 2018;159:3737–46.

    Article  CAS  Google Scholar 

  52. • Berry D, Blair C, Willoughby M, Granger DA, Mills-Koonce WR, Family life project key investigators. Maternal sensitivity and adrenocortical functioning across infancy and toddlerhood: physiological adaptation to context? Dev Psychopathol. 2017;29(1):303–17. With a prospective design, this study showed that maternal sensitivity calibrates infant cortisol response from 7 to 24 months of age.

  53. Noroña-Zhou AN, Morgan A, Glynn LM, Sandman CA, Baram TZ, Stern HS, Davis EP. Unpredictable maternal behavior is associated with a blunted infant cortisol response. Dev Psychobiol. 2020;62(6):882–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Jonas W, Bisceglia R, Meaney MJ, Dudin A, Fleming AS, Steiner M, MAVAN Research Team. The role of breastfeeding in the association between maternal and infant cortisol attunement in the first postpartum year. Acta Paediatr. 2018;107(7):1205–17.

  55. • Hendrix CL, Stowe ZN, Newport DJ, Brennan PA. Physiological attunement in mother–infant dyads at clinical high risk: the influence of maternal depression and positive parenting. Dev Psychopathol. 2018;30(2):623–34. (This study shows that caregiving behaviors exert a stronger influence on neuroendocrine attunement relative to psychiatric illness is pregnancy.)

    Article  PubMed  Google Scholar 

  56. Laurent HK, Duncan LG, Lightcap A, Khan F. Mindful parenting predicts mothers’ and infants’ hypothalamic-pituitary-adrenal activity during a dyadic stressor. Dev Psychol. 2017;53(3):417.

    Article  PubMed  Google Scholar 

  57. Scorza P, Duarte CS, Hipwell AE, Posner J, Ortin A, Canino G, Monk C, Program collaborators for environmental influences on child health outcomes. Research review: intergenerational transmission of disadvantage: epigenetics and parents' childhoods as the first exposure. J Child Psychol Psychiatry. 2019;60(2):119–32.

  58. Swales DA, Stout-Oswald SA, Glynn LM, Sandman C, Wing DA, Davis EP. Exposure to traumatic events in childhood predicts cortisol production among high risk pregnant women. Bio Psychol. 2018;139:186–92.

    Article  Google Scholar 

  59. Schury K, Koenig AM, Isele D, Hulbert AL, Krause S, Umlauft M, Kolassa S, Ziegenhain U, Karabatsiakis A, Reister F, Guendel H. Alterations of hair cortisol and dehydroepiandrosterone in mother-infant-dyads with maternal childhood maltreatment. BMC Psychiatry. 2017;17(1):1–10.

    Article  CAS  Google Scholar 

  60. Koenig AM, Ramo-Fernández L, Boeck C, Umlauft M, Pauly M, Binder EB, Kirschbaum C, Gündel H, Karabatsiakis A, Kolassa IT. Intergenerational gene× environment interaction of FKBP5 and childhood maltreatment on hair steroids. Psychoneuroendocrinology. 2018;92:103–12.

    Article  CAS  PubMed  Google Scholar 

  61. DePasquale CE, Raby KL, Hoye J, Dozier M. Parenting predicts strange situation cortisol reactivity among children adopted internationally. Psychoneuroendocrinology. 2018;89:86–91.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Szenczy AK, Bernard K, Raby KL, Garnett M, Dozier M. Foster parent responsiveness and young children's diurnal cortisol production. Dev Psychobiol. 2020: 1–9.

  63. Moe V, Von Soest T, Fredriksen E, Olafsen KS, Smith L. The multiple determinants of maternal parenting stress 12 months after birth: the contribution of antenatal attachment style, adverse childhood experiences, and infant temperament. Front Psychol. 2018;9:1987.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wittig SM, Rodriguez CM. Emerging behavior problems: bidirectional relations between maternal and paternal parenting styles with infant temperament. Dev Psychol. 2019;55(6):1199.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bader LR, Tan L, Gonzalez R, Saini EK, Bae Y, Provenzi L, Volling BL. Adrenocortical interdependence in father‐infant and mother‐infant dyads: attunement or something more? Dev Psychobiol. 2021: 1–15.

  66. Provenzi L, Giusti L, Fumagalli M, Tasca H, Ciceri F, Menozzi G, Mosca F, Morandi F, Borgatti R, Montirosso R. Pain-related stress in the Neonatal Intensive Care Unit and salivary cortisol reactivity to socio-emotional stress in 3-month-old very preterm infants. Psychoneuroendocrinology. 2016;72:161–5.

    Article  PubMed  Google Scholar 

  67. Provenzi L, Giusti L, Fumagalli M, Frigerio S, Morandi F, Borgatti R, Mosca F, Montirosso R. The dual nature of hypothalamic-pituitary-adrenal axis regulation in dyads of very preterm infants and their mothers. Psychoneuroendocrinology. 2019;100:172–9.

    Article  CAS  PubMed  Google Scholar 

  68. Hambrick EP, Oppenheim-Weller S, N'zi AM, Taussig HN. Mental health interventions for children in foster care: a systematic review. Child Youth Serv Rev. 2016;70:65–77.

  69. Yi Y, Edwards FR, Wildeman C. Cumulative prevalence of confirmed maltreatment and foster care placement for US children by race/ethnicity, 2011–2016. Am J Public Health. 2020;110(5):704–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bederian-Gardner D, Hobbs SD, Ogle CM, Goodman GS, Cordón IM, Bakanosky S, Narr R, Chae Y, Chong JY, NYTD/CYTD Research Group. Instability in the lives of foster and nonfoster youth: mental health impediments and attachment insecurities. Child Youth Serv Rev. 2018;84:159–67.

  71. Harden BJ, Panlilio C, Morrison C, Duncan AD, Duchene M, Clyman RB. Emotion regulation of preschool children in foster care: the influence of maternal depression and parenting. J Child Fam Stud. 2017;26(4):1124–34.

    Article  Google Scholar 

  72. Koss KJ, Mliner SB, Donzella B, Gunnar MR. Early adversity, hypocortisolism, and behavior problems at school entry: a study of internationally adopted children. Psychoneuroendocrinology. 2016;66:31–8.

    Article  PubMed  Google Scholar 

  73. Isenhour J, Raby KL, Dozier M. The persistent associations between early institutional care and diurnal cortisol outcomes among children adopted internationally. Dev Psychobiol. 2020: 1–11.

  74. Shakiba N, Raby KL. Attachment dimensions and cortisol responses during the strange situation among young children adopted internationally. Attach Hum Dev. 2021:1–5.

  75. •• Bernard NK, Kashy DA, Levendosky AA, Bogat GA, Lonstein JS. Do different data analytic approaches generate discrepant findings when measuring mother–infant HPA axis attunement? Dev Psychobiol. 2017;59(2):174–84. This study illustrates how analytic approach impacts detection of mother-infant HPA axis attunement and calls for consensus to advance our understanding of dyadic cortisol relationships.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin M. Voegtline.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Reproductive Psychiatry and Women's Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voegtline, K.M., Dhaurali, S., Wainger, J. et al. Ontogeny of the Dyad: the Relationship Between Maternal and Offspring Neuroendocrine Function. Curr Psychiatry Rep 24, 297–306 (2022). https://doi.org/10.1007/s11920-022-01337-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-022-01337-0

Keywords

Navigation