Skip to main content

Advertisement

Log in

Mechanism of Action of Temporary Peripheral Nerve Stimulation

  • Chronic Pain Management (O Viswanath, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Peripheral nerve stimulation (PNS) refers to the technique of utilizing electrical stimulation of peripheral nerves to inhibit the transmission of pain signals. PNS is used to treat chronic intractable pain and post-surgical or post-traumatic pain alongside a variety of other pain conditions, including headaches, facial pain, pelvic and urogenital pain, chest wall pain, residual limb or phantom limb pain, and back pain.

Recent Findings

More recently, PNS has been used temporarily for periods of time less than 60 days to treat acute post-surgical pain. Peripheral nerve stimulation is believed to be effective due to its effects on both central and peripheral pathways.

Summary

Centrally, it is proposed that the electrical pulses of PNS inhibit alpha-delta and C fibers, which decreases pain signaling in the higher centers of the central nervous system. Peripherally, gate theory is applied as it is theorized that PNS downregulates inflammatory mediators, endorphins, and neurotransmitters associated with pain signaling to decrease the transmission of efferent nociception and reduce pain sensations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:  •  Of importance

  1. Lin T, Gargya A, Singh H, Sivanesan E, Gulati A. Mechanism of peripheral nerve stimulation in chronic pain. Pain Med. 2020;21(Suppl 1):S6–12. https://doi.org/10.1093/pm/pnaa164.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Peripheral nerve stimulation. https://www.clinicalkey.com/#!/browse/book/3-s2.0-C20200027763. Accessed 3 Sept 2023.

  3. Sweet WH, Wepsic JG. Treatment of chronic pain by stimulation of fibers of primary afferent neuron. Trans Am Neurol Assoc. 1968;93:103–7.

    CAS  PubMed  Google Scholar 

  4. • Strand NH, D'Souza R, Wie C, Covington S, Maita M, Freeman J, et al. Mechanism of action of peripheral nerve stimulation. Curr Pain Headache Rep. 2021;25[7]:47. https://doi.org/10.1007/s11916-021-00962-3. Notable for an overview of peripheral nerve stimulation.

  5. Xu J, Sun Z, Wu J, Rana M, Garza J, Zhu AC, et al. Peripheral nerve stimulation in pain management: a systematic review. Pain Physician. 2021;24(2):E131–52.

    PubMed  PubMed Central  Google Scholar 

  6. Ilfeld BM, Plunkett A, Vijjeswarapu AM, Hackworth R, Dhanjal S, Turan A, et al. Percutaneous peripheral nerve stimulation [neuromodulation] for postoperative pain: a randomized, sham-controlled pilot study. Anesthesiology. 2021;135(1):95–110. https://doi.org/10.1097/ALN.0000000000003776.

    Article  CAS  PubMed  Google Scholar 

  7. Albright-Trainer B, Phan T, Trainer RJ, Crosby ND, Murphy DP, Disalvo P, et al. Peripheral nerve stimulation for the management of acute and subacute post-amputation pain: a randomized, controlled feasibility trial. Pain Manag. 2022;12(3):357–69. https://doi.org/10.2217/pmt-2021-0087.

    Article  CAS  PubMed  Google Scholar 

  8. Mainkar O, Solla CA, Chen G, Legler A, Gulati A. Pilot study in temporary peripheral nerve stimulation in oncologic pain. Neuromodulation. 2020;23(6):819–26. https://doi.org/10.1111/ner.13139.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moman RN, Olatoye OO, Pingree MJ. Temporary, percutaneous peripheral nerve stimulation for refractory occipital neuralgia. Pain Med. 2022;23(2):415–20. https://doi.org/10.1093/pm/pnab128.

    Article  PubMed  Google Scholar 

  10. Liu DY, Chen JS, Lin CY, Gong QJ, Zhao Q, Wan L. Subcutaneous peripheral nerve stimulation for treatment of acute/subacute herpes zoster-related trigeminal neuralgia: a retrospective research. Clin J Pain. 2021;37(12):867–71. https://doi.org/10.1097/AJP.0000000000000981.

    Article  PubMed  Google Scholar 

  11. Johnson B, Covington S, Maita M, Strand N. Peripheral nerve stimulation of the lesser occipital and greater auricular nerve for post herpetic neuralgia in a case of Ramsay Hunt syndrome: case report. Orthop Rev [Pavia]. 2023;15:85149. https://doi.org/10.52965/001c.85149.

    Article  Google Scholar 

  12. Koeppen BM, Stanton BA, Hall JM, Swiatecka-Urban A. Berne & Levy physiology [8th edition]. https://www.clinicalkey.com/#!/browse/book/3-s2.0-C20200000472. Accessed 3 Sept 2023.

  13. Standring S. The anatomy of the peripheral nervous system. Gray’s anatomy. https://www.clinicalkey.com/#!/browse/book/3-s20-C20170037291. 42nd ed2021. Accessed 3 Sept. 2023.

  14. Helm S, Shirsat N, Calodney A, Abd-Elsayed A, Kloth D, Soin A, et al. Peripheral nerve stimulation for chronic pain: a systematic review of effectiveness and safety. Pain Ther. 2021;10(2):985–1002. https://doi.org/10.1007/s40122-021-00306-4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shelden C. Depolarization in the treatment of trigeminal neuralgia. Evaluation of compression and electrical methods: clinical concept of neurophysiological mechanism. Pain. 1966:373–86.

  16. Wall PD, Sweet WH. Temporary abolition of pain in man. Science. 1967;155(3758):108–9. https://doi.org/10.1126/science.155.3758.108.

    Article  CAS  PubMed  Google Scholar 

  17. Campbell JN, Long DM. Peripheral nerve stimulation in the treatment of intractable pain. J Neurosurg. 1976;45(6):692–9. https://doi.org/10.3171/jns.1976.45.6.0692.

    Article  CAS  PubMed  Google Scholar 

  18. Weiner RL, Reed KL. Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation. 1999;2(3):217–21. https://doi.org/10.1046/j.1525-1403.1999.00217.x.

    Article  CAS  PubMed  Google Scholar 

  19. • Deer TR, Naidu R, Strand N, Sparks D, Abd-Elsayed A, Kalia H, et al. A review of the bioelectronic implications of stimulation of the peripheral nervous system for chronic pain conditions. Bioelectron Med. 2020;6:9. https://doi.org/10.1186/s42234-020-00045-5. (Notable for the in-depth descriptions of peripheral nerve stimulation from a bioelectronic viewpoint.)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Deer TR, Eldabe S, Falowski SM, Huntoon MA, Staats PS, Cassar IR, et al. Peripherally induced reconditioning of the central nervous system: a proposed mechanistic theory for sustained relief of chronic pain with percutaneous peripheral nerve stimulation. J Pain Res. 2021;14:721–36. https://doi.org/10.2147/JPR.S297091.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Regnier SM, Chen J, Gabriel RA, Chakravarthy KV. A review of the StimRouter[[R]] peripheral neuromodulation system for chronic pain management. Pain Manag. 2021;11(3):227–36. https://doi.org/10.2217/pmt-2020-0042.

    Article  PubMed  Google Scholar 

  22. Oswald J, Shahi V, Chakravarthy KV. Prospective case series on the use of peripheral nerve stimulation for focal mononeuropathy treatment. Pain Manag. 2019;9(6):551–8. https://doi.org/10.2217/pmt-2019-0028.

    Article  PubMed  Google Scholar 

  23. Ong Sio LC, Hom B, Garg S, Abd-Elsayed A. Mechanism of action of peripheral nerve stimulation for chronic pain: a narrative review. Int J Mol Sci. 2023;24(5). https://doi.org/10.3390/ijms24054540.

  24. Pingree MJ, Hurdle MF, Spinner DA, Valimahomed A, Crosby ND, Boggs JW. Real-world evidence of sustained improvement following 60-day peripheral nerve stimulation treatment for pain: a cross-sectional follow-up survey. Pain Manag. 2022;12(5):611–21. https://doi.org/10.2217/pmt-2022-0005.

    Article  CAS  PubMed  Google Scholar 

  25. Strand N, Tieppo Francio V, Turkiewicz M, El Helou A, et al. Advances in pain medicine: a review of new technologies. Curr Pain Headache Rep. 2022;26(8):605–16. https://doi.org/10.1007/s11916-022-01062-6.

  26. Kalia H, Pritzlaff S, Li AH, Ottestad E, Gulati A, Makous J, et al. Application of the novel nalu neurostimulation system for peripheral nerve stimulation. Pain Manag. 2022;12(7):795–804. https://doi.org/10.2217/pmt-2021-0050.

    Article  CAS  PubMed  Google Scholar 

  27. Char S, Jin MY, Francio VT, Hussain N, Wang EJ, Morsi M, et al. Implantable peripheral nerve stimulation for peripheral neuropathic pain: a systematic review of prospective studies. Biomedicines. 2022;10(10). https://doi.org/10.3390/biomedicines10102606.

  28. Kaye AD, Ridgell S, Alpaugh ES, Mouhaffel A, Kaye AJ, Cornett EM, et al. Peripheral nerve stimulation: a review of techniques and clinical efficacy. Pain Ther. 2021;10(2):961–72. https://doi.org/10.1007/s40122-021-00298-1.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abd-Elsayed A, D'Souza RS. Peripheral nerve stimulation: the evolution in pain medicine. Biomedicines. 2021;10(1). https://doi.org/10.3390/biomedicines10010018.

  30. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9. https://doi.org/10.1126/science.150.3699.971.

    Article  CAS  PubMed  Google Scholar 

  31. Papuc E, Rejdak K. The role of neurostimulation in the treatment of neuropathic pain. Ann Agric Environ Med. 2013;1:14–7.

  32. Franz DN, Iggo A. Conduction failure in myelinated and non-myelinated axons at low temperatures. J Physiol. 1968;199(2):319–45. https://doi.org/10.1113/jphysiol.1968.sp008656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Torebjork HE, Hallin RG. Responses in human A and C fibres to repeated electrical intradermal stimulation. J Neurol Neurosurg Psychiatry. 1974;37(6):653–64. https://doi.org/10.1136/jnnp.37.6.653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Swett JE, Law JD. Analgesia with peripheral nerve stimulation: absence of a peripheral mechanism. Pain. 1983;15:55–70.

    Article  Google Scholar 

  35. Schaible HG, Hope PJ, Lang CW, Duggan AW. Calcitonin gene-related peptide causes intraspinal spreading of substance p released by peripheral stimulation. Eur J Neurosci. 1992;4(8):750–7. https://doi.org/10.1111/j.1460-9568.1992.tb00184.x.

    Article  CAS  PubMed  Google Scholar 

  36. Yang F, Xu Q, Cheong YK, Shechter R, Sdrulla A, He SQ, et al. Comparison of intensity-dependent inhibition of spinal wide-dynamic range neurons by dorsal column and peripheral nerve stimulation in a rat model of neuropathic pain. Eur J Pain. 2014;18(7):978–88. https://doi.org/10.1002/j.1532-2149.2013.00443.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chung JM, Fang ZR, Hori Y, Lee KH, Willis WD. Prolonged inhibition of primate spinothalamic tract cells by peripheral nerve stimulation. Pain. 1984;19(3):259–75. https://doi.org/10.1016/0304-3959[84]90004-6.

    Article  CAS  PubMed  Google Scholar 

  38. Strand N, D’Souza RS, Hagedorn JM, Pritzlaff S, Sayed D, Azeem N, et al. Evidence-based clinical guidelines from the american society of pain and neuroscience for the use of implantable peripheral nerve stimulation in the treatment of chronic pain. J Pain Res. 2022;15:2483–504. https://doi.org/10.2147/JPR.S362204.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gilmore CA, Kapural L, McGee MJ, Boggs JW. Percutaneous peripheral nerve stimulation for chronic low back pain: prospective case series with 1 year of sustained relief following short-term implant. Pain Pract. 2020;20(3):310–20. https://doi.org/10.1111/papr.12856.

    Article  PubMed  Google Scholar 

  40. Trent AR, Chopra P, Jain A. Peripheral nerve stimulator. StatPearls [Internet]. Treasure Island [FL]: StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK539703/. 2023.

  41. Schiefer M, Tan D, Sidek SM, Tyler DJ. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J Neural Eng. 2016;13(1):016001. https://doi.org/10.1088/1741-2560/13/1/016001.

  42. Brushart TM, Jari R, Verge V, Rohde C, Gordon T. Electrical stimulation restores the specificity of sensory axon regeneration. Exp Neurol. 2005;194(1):221–9. https://doi.org/10.1016/j.expneurol.2005.02.007.

    Article  PubMed  Google Scholar 

  43. Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VM. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol. 2007;205(2):347–59. https://doi.org/10.1016/j.expneurol.2007.01.040.

    Article  CAS  PubMed  Google Scholar 

  44. Petersen EA, Slavin KV. Peripheral nerve/field stimulation for chronic pain. Neurosurg Clin N Am. 2014;25(4):789–97. https://doi.org/10.1016/j.nec.2014.07.003.

    Article  PubMed  Google Scholar 

  45. Jain S, Fishman MA, Wu C. Significant cephalad lead migration with use of externally powered spinal cord stimulator. BMJ Case Rep. 2018;2018. https://doi.org/10.1136/bcr-2018-225813.

  46. Zorko B, Rozman J, Seliskar A. Influence of electrical stimulation on regeneration of the radial nerve in dogs. Acta Vet Hung. 2000;48(1):99–105. https://doi.org/10.1556/AVet.48.2000.1.11.

    Article  CAS  PubMed  Google Scholar 

  47. Al-Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. 2000;20(7):2602–8. https://doi.org/10.1523/JNEUROSCI.20-07-02602.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang WJ, Zhu H, Li F, Wan LD, Li HC, Ding WL. Electrical stimulation promotes motor nerve regeneration selectivity regardless of end-organ connection. J Neurotrauma. 2009;26(4):641–9. https://doi.org/10.1089/neu.2008.0758.

    Article  PubMed  Google Scholar 

  49. Javeed S, Faraji AH, Dy C, Ray WZ, MacEwan MR. Application of electrical stimulation for peripheral nerve regeneration: stimulation parameters and future horizons. Interdisciplinary Neurosurgery. 2021;24:101117. https://doi.org/10.1016/j.inat.2021.101117.

    Article  Google Scholar 

  50. Garcia-Magro N, Negredo P, Martin YB, Nunez A, Avendano C. Modulation of mechanosensory vibrissal responses in the trigeminocervical complex by stimulation of the greater occipital nerve in a rat model of trigeminal neuropathic pain. J Headache Pain. 2020;21(1):96. https://doi.org/10.1186/s10194-020-01161-y.

  51. Beauchene C, Sacre P, Yang F, Guan Y, Sarma SV. Modeling responses to peripheral nerve stimulation in the dorsal horn. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:2324–7. https://doi.org/10.1109/EMBC.2019.8856566.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ceccanti M, Onesti E, Rubino A, Cambieri C, Tartaglia G, Miscioscia A, et al. Modulation of human corticospinal excitability by paired associative stimulation in patients with amyotrophic lateral sclerosis and effects of Riluzole. Brain Stimul. 2018;11(4):775–81. https://doi.org/10.1016/j.brs.2018.02.007.

    Article  CAS  PubMed  Google Scholar 

  53. Meyer-Friessem CH, Wiegand T, Eitner L, Maier C, Mainka T, Vollert J, et al. Effects of spinal cord and peripheral nerve stimulation reflected in sensory profiles and endogenous pain modulation. Clin J Pain. 2019;35(2):111–20. https://doi.org/10.1097/AJP.0000000000000661.

    Article  PubMed  Google Scholar 

  54. Kovacs S, Peeters R, De Ridder D, Plazier M, Menovsky T, Sunaert S. Central effects of occipital nerve electrical stimulation studied by functional magnetic resonance imaging. Neuromodulation. 2011;14(1):46–55; discussion 6–7. https://doi.org/10.1111/j.1525-1403.2010.00312.x

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work of the manuscript.

Corresponding author

Correspondence to Natalie Strand.

Ethics declarations

Conflict of Interest

Authors do not have financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elsayed, A., Attanti, S., Anderson, M. et al. Mechanism of Action of Temporary Peripheral Nerve Stimulation. Curr Pain Headache Rep (2023). https://doi.org/10.1007/s11916-023-01184-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11916-023-01184-5

Keywords

Navigation