Skip to main content

Advertisement

Log in

Strides Toward Better Understanding of Post-Traumatic Headache Pathophysiology Using Animal Models

  • Concussion and Head Injury (A Finkel, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In recent years, the awareness of the detrimental impact of concussion and mild traumatic brain injuries (mTBI) is becoming more apparent. Concussive head trauma results in a constellation of cognitive and somatic symptoms of which post-traumatic headache is the most common. Our understanding of post-traumatic headache is limited by the paucity of well validated, characterized, and clinically relevant animal models with strong predictive validity. In this review, we aim to summarize and discuss current animal models of concussion/mTBI and related data that start to shed light on the pathophysiology of post-traumatic headache.

Recent Findings

Each of the models will be discussed in terms of their face, construct, and predictive validity as well as overall translational relevance to concussion, mTBI, and post-traumatic headache. Significant contributions to the pathophysiology of PTH garnered from these models are discussed as well as potential contributors to the development of chronic post-traumatic headache.

Summary

Although post-traumatic headache is one of the most common symptoms following mild head trauma, there remains a disconnect between the study of mild traumatic brain injury and headache in the pre-clinical literature. A greater understanding of the relationship between these phenomena is currently needed to provide more insight into the increasing frequency of this debilitating condition in both military and civilian populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Johnson WD, Griswold DP. Traumatic brain injury: a global challenge. Lancet Neurol. 2017;16(12):949–50. https://doi.org/10.1016/S1474-4422(17)30362-9.

    Article  PubMed  Google Scholar 

  2. Bruns JJ Jr, Jagoda AS. Mild traumatic brain injury. Mt Sinai J Med. 2009;76(2):129–37. https://doi.org/10.1002/msj.20101.

    Article  PubMed  Google Scholar 

  3. Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013;9(4):231–6. https://doi.org/10.1038/nrneurol.2013.22.

    Article  PubMed  Google Scholar 

  4. Alexander MP. Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology. 1995;45(7):1253–60.

    Article  CAS  Google Scholar 

  5. Findling O, Schuster C, Sellner J, Ettlin T, Allum JH. Trunk sway in patients with and without, mild traumatic brain injury after whiplash injury. Gait Posture. 2011;34(4):473–8. https://doi.org/10.1016/j.gaitpost.2011.06.021.

    Article  CAS  PubMed  Google Scholar 

  6. Nelson NW, Davenport ND, Sponheim SR, Anderson CR. Blast-related mild traumatic brain injury: neuropsychological evaluation and findings. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Frontiers in Neuroengineering. Boca Raton (FL) 2015.

  7. McCrory P, Meeuwisse WH, Aubry M, Cantu B, Dvorak J, Echemendia RJ, et al. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br J Sports Med. 2013;47(5):250–8. https://doi.org/10.1136/bjsports-2013-092313.

    Article  PubMed  Google Scholar 

  8. Wojnarowicz MW, Fisher AM, Minaeva O, Goldstein LE. Considerations for experimental animal models of concussion, traumatic brain injury, and chronic traumatic encephalopathy-these matters matter. Front Neurol. 2017;8:240. https://doi.org/10.3389/fneur.2017.00240.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Minen MT, Boubour A, Walia H, Barr W. Post-concussive syndrome: a focus on post-traumatic headache and related cognitive, psychiatric, and sleep issues. Curr Neurol Neurosci Rep. 2016;16(11):100. https://doi.org/10.1007/s11910-016-0697-7.

    Article  PubMed  Google Scholar 

  10. Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27(8):1529–40. https://doi.org/10.1089/neu.2010.1358.

    Article  PubMed  Google Scholar 

  11. Lucas S, Hoffman JM, Bell KR, Dikmen S. A prospective study of prevalence and characterization of headache following mild traumatic brain injury. Cephalalgia. 2014;34(2):93–102. https://doi.org/10.1177/0333102413499645.

    Article  PubMed  Google Scholar 

  12. Vargas BB, Dodick DW. Posttraumatic headache. Curr Opin Neurol. 2012;25(3):284–9. https://doi.org/10.1097/WCO.0b013e3283535bf5.

    Article  PubMed  Google Scholar 

  13. Headache Classification Committee of the International Headache Society. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia: an International Journal of Headache. 2018;38(1):1–211. https://doi.org/10.1177/0333102417738202.

  14. Blinman TA, Houseknecht E, Snyder C, Wiebe DJ, Nance ML. Postconcussive symptoms in hospitalized pediatric patients after mild traumatic brain injury. J Pediatr Surg. 2009;44(6):1223–8. https://doi.org/10.1016/j.jpedsurg.2009.02.027.

    Article  PubMed  Google Scholar 

  15. Theeler BJ, Flynn FG, Erickson JC. Chronic daily headache in U.S. soldiers after concussion. Headache. 2012;52(5):732–8. https://doi.org/10.1111/j.1526-4610.2012.02112.x.

    Article  PubMed  Google Scholar 

  16. Lew HL, Lin PH, Fuh JL, Wang SJ, Clark DJ, Walker WC. Characteristics and treatment of headache after traumatic brain injury: a focused review. Am J Phys Med Rehabil. 2006;85(7):619–27. https://doi.org/10.1097/01.phm.0000223235.09931.c0.

    Article  PubMed  Google Scholar 

  17. Baandrup L, Jensen R. Chronic post-traumatic headache--a clinical analysis in relation to the International Headache Classification 2nd Edition. Cephalalgia. 2005;25(2):132–8. https://doi.org/10.1111/j.1468-2982.2004.00818.x.

    Article  CAS  PubMed  Google Scholar 

  18. Lieba-Samal D, Platzer P, Seidel S, Klaschterka P, Knopf A, Wober C. Characteristics of acute posttraumatic headache following mild head injury. Cephalalgia. 2011;31(16):1618–26. https://doi.org/10.1177/0333102411428954.

    Article  PubMed  Google Scholar 

  19. Walker WC, Seel RT, Curtiss G, Warden DL. Headache after moderate and severe traumatic brain injury: a longitudinal analysis. Arch Phys Med Rehabil. 2005;86(9):1793–800. https://doi.org/10.1016/j.apmr.2004.12.042.

    Article  PubMed  Google Scholar 

  20. Haas DC. Characteristics of chronic posttraumatic headache. Headache. 2002;42(2):162–3.

    Article  Google Scholar 

  21. •• Bree D, Levy D. Development of CGRP-dependent pain and headache related behaviours in a rat model of concussion: Implications for mechanisms of post-traumatic headache. Cephalalgia. 2016; https://doi.org/10.1177/0333102416681571. An Important preclinical study highlighting the role of periphreal CGRP as well as persistent sensitivity to a headache trigger in a post-concussive model of PTH.

  22. Walker WC, Marwitz JH, Wilk AR, Ketchum JM, Hoffman JM, Brown AW, et al. Prediction of headache severity (density and functional impact) after traumatic brain injury: a longitudinal multicenter study. Cephalalgia. 2013;33(12):998–1008. https://doi.org/10.1177/0333102413482197.

    Article  PubMed  Google Scholar 

  23. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 2009;8(7):679–90. https://doi.org/10.1016/S1474-4422(09)70090-0.

    Article  PubMed  Google Scholar 

  24. Noseda R, Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain. 2013;154(Suppl 1):S44–53. https://doi.org/10.1016/j.pain.2013.07.021.

    Article  CAS  PubMed  Google Scholar 

  25. Kosaras B, Jakubowski M, Kainz V, Burstein R. Sensory innervation of the calvarial bones of the mouse. J Comp Neurol. 2009;515(3):331–48. https://doi.org/10.1002/cne.22049.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Perry CJ, Blake P, Buettner C, Papavassiliou E, Schain AJ, Bhasin MK, et al. Upregulation of inflammatory gene transcripts in periosteum of chronic migraineurs: implications for extracranial origin of headache. Ann Neurol. 2016;79(6):1000–13. https://doi.org/10.1002/ana.24665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao J, Levy D. The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior. Pain. 2014;155(7):1392–400. https://doi.org/10.1016/j.pain.2014.04.019.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schueler M, Messlinger K, Dux M, Neuhuber WL, De Col R. Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain. 2013;154(9):1622–31. https://doi.org/10.1016/j.pain.2013.04.040.

    Article  PubMed  Google Scholar 

  29. Dalkara T, Moskowitz MA. Neurobiological basis of migraine. Hoboken: Wiley; 2018.

    Google Scholar 

  30. Bigal ME, Ashina S, Burstein R, Reed ML, Buse D, Serrano D, et al. Prevalence and characteristics of allodynia in headache sufferers: a population study. Neurology. 2008;70(17):1525–33. https://doi.org/10.1212/01.wnl.0000310645.31020.b1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Markus TE, Zeharia A, Cohen YH, Konen O. Persistent headache and cephalic allodynia attributed to head trauma in children and adolescents. J Child Neurol. 2016; https://doi.org/10.1177/0883073816650036.

  32. Defrin R, Gruener H, Schreiber S, Pick CG. Quantitative somatosensory testing of subjects with chronic post-traumatic headache: implications on its mechanisms. Eur J Pain. 2010;14(9):924–31. https://doi.org/10.1016/j.ejpain.2010.03.004.

    Article  PubMed  Google Scholar 

  33. Defrin R, Riabinin M, Feingold Y, Schreiber S, Pick CG. Deficient pain modulatory systems in patients with mild traumatic brain and chronic post-traumatic headache: implications for its mechanism. J Neurotrauma. 2015;32(1):28–37. https://doi.org/10.1089/neu.2014.3359.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Romero-Reyes M, Akerman S. Update on animal models of migraine. Curr Pain Headache Rep. 2014;18(11):462. https://doi.org/10.1007/s11916-014-0462-z.

    Article  PubMed  Google Scholar 

  35. Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann Neurol. 2000;47(5):614–24.

    Article  CAS  Google Scholar 

  36. Mogil JS. Animal models of pain: progress and challenges. Nat Rev Neurosci. 2009;10(4):283–94. https://doi.org/10.1038/nrn2606.

    Article  CAS  PubMed  Google Scholar 

  37. Mogil JS, Crager SE. What should we be measuring in behavioral studies of chronic pain in animals? Pain. 2004;112(1–2):12–5. https://doi.org/10.1016/j.pain.2004.09.028.

    Article  PubMed  Google Scholar 

  38. Harris HM, Carpenter JM, Black JR, Smitherman TA, Sufka KJ. The effects of repeated nitroglycerin administrations in rats; modeling migraine-related endpoints and chronification. J Neurosci Methods. 2017;284:63–70. https://doi.org/10.1016/j.jneumeth.2017.04.010.

    Article  CAS  PubMed  Google Scholar 

  39. De Felice M, Eyde N, Dodick D, Dussor GO, Ossipov MH, Fields HL, et al. Capturing the aversive state of cephalic pain preclinically. Ann Neurol. 2013;74(2):257–65. https://doi.org/10.1002/ana.23922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaiser EA, Kuburas A, Recober A, Russo AF. Modulation of CGRP-induced light aversion in wild-type mice by a 5-HT(1B/D) agonist. J Neurosci. 2012;32(44):15439–49. https://doi.org/10.1523/JNEUROSCI.3265-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128–42. https://doi.org/10.1038/nrn3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Andreou AP, Summ O, Charbit AR, Romero-Reyes M, Goadsby PJ. Animal models of headache: from bedside to bench and back to bedside. Expert Rev Neurother. 2010;10(3):389–411. https://doi.org/10.1586/ern.10.16.

    Article  PubMed  Google Scholar 

  43. Moye LS, Pradhan AA. From blast to bench: a translational mini-review of posttraumatic headache. J Neurosci Res. 2017;95(6):1347–54. https://doi.org/10.1002/jnr.24001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lighthall JW. Controlled cortical impact: a new experimental brain injury model. J Neurotrauma. 1988;5(1):1–15. https://doi.org/10.1089/neu.1988.5.1.

    Article  CAS  PubMed  Google Scholar 

  45. Hall ED, Sullivan PG, Gibson TR, Pavel KM, Thompson BM, Scheff SW. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: more than a focal brain injury. J Neurotrauma. 2005;22(2):252–65. https://doi.org/10.1089/neu.2005.22.252.

    Article  PubMed  Google Scholar 

  46. •• Elliott MB, Oshinsky ML, Amenta PS, Awe OO, Jallo JI. Nociceptive neuropeptide increases and periorbital allodynia in a model of traumatic brain injury. Headache. 2012;52(6):966–84. https://doi.org/10.1111/j.1526-4610.2012.02160.x. First preclinical rodent study to investigate the relationship between penetrative mTBI and PTH-related behaviors and underlying pathophysiology.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev Neurosci. 2003;4(5):386–98. https://doi.org/10.1038/nrn1102.

    Article  CAS  PubMed  Google Scholar 

  48. Ho TW, Edvinsson L, Goadsby PJ. CGRP and its receptors provide new insights into migraine pathophysiology. Nat Rev Neurol. 2010;6(10):573–82. https://doi.org/10.1038/nrneurol.2010.127.

    Article  CAS  Google Scholar 

  49. Messlinger K, Fischer MJ, Lennerz JK. Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med. 2011;60(3):82–9.

    Article  CAS  Google Scholar 

  50. Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol. 1988;23(2):193–6. https://doi.org/10.1002/ana.410230214.

    Article  CAS  PubMed  Google Scholar 

  51. Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350(11):1104–10. https://doi.org/10.1056/NEJMoa030505.

    Article  CAS  PubMed  Google Scholar 

  52. Tepper S, Ashina M, Reuter U, Brandes JL, Dolezil D, Silberstein S, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017;16(6):425–34. https://doi.org/10.1016/S1474-4422(17)30083-2.

    Article  CAS  Google Scholar 

  53. Raddant AC, Russo AF. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med. 2011;13:e36. https://doi.org/10.1017/S1462399411002067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J. CGRP may play a causative role in migraine. Cephalalgia. 2002;22(1):54–61.

    Article  CAS  Google Scholar 

  55. Daiutolo BV, Tyburski A, Clark SW, Elliott MB, et al. J Neurotrauma. 2016;33(8):748–60. https://doi.org/10.1089/neu.2015.4087.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Noseda R, Kainz V, Jakubowski M, Gooley JJ, Saper CB, Digre K, et al. A neural mechanism for exacerbation of headache by light. Nat Neurosci. 2010;13(2):239–45. https://doi.org/10.1038/nn.2475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mason BN, Kaiser EA, Kuburas A, Loomis MM, Latham JA, Garcia-Martinez LF, et al. Induction of migraine-like photophobic behavior in mice by both peripheral and central CGRP mechanisms. J Neurosci Off J Soc Neurosci. 2017;37(1):204–16. https://doi.org/10.1523/JNEUROSCI.2967-16.2016.

    Article  CAS  Google Scholar 

  58. Levy D, Burstein R, Kainz V, Jakubowski M, Strassman AM. Mast cell degranulation activates a pain pathway underlying migraine headache. Pain. 2007;130(1–2):166–76. https://doi.org/10.1016/j.pain.2007.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. TK MI, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, et al. Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience. 1989;28(1):233–44.

    Article  Google Scholar 

  60. Feliciano DP, Sahbaie P, Shi X, Klukinov M, Clark JD, Yeomans DC. Nociceptive sensitization and BDNF up-regulation in a rat model of traumatic brain injury. Neurosci Lett. 2014;583:55–9. https://doi.org/10.1016/j.neulet.2014.09.030.

    Article  CAS  PubMed  Google Scholar 

  61. Ofek H, Defrin R. The characteristics of chronic central pain after traumatic brain injury. Pain. 2007;131(3):330–40. https://doi.org/10.1016/j.pain.2007.06.015.

    Article  PubMed  Google Scholar 

  62. Meidahl AC, Klukinov M, Tzabazis AZ, Sorensen JC, Yeomans DC. Nasal application of HSV encoding human preproenkephalin blocks craniofacial pain in a rat model of traumatic brain injury. Gene Ther. 2017;24(8):482–6. https://doi.org/10.1038/gt.2017.55.

    Article  CAS  PubMed  Google Scholar 

  63. Meidahl AC, Eisenried A, Klukinov M, Cao L, Tzabazis AZ, Yeomans DC. Intranasal oxytocin attenuates reactive and ongoing, chronic pain in a model of mild traumatic brain injury. Headache. 2017; https://doi.org/10.1111/head.13248.

  64. Boll S, Almeida de Minas AC, Raftogianni A, Herpertz SC, Grinevich V. Oxytocin and pain perception: from animal models to human research. Neuroscience. 2017; https://doi.org/10.1016/j.neuroscience.2017.09.041.

  65. Wang YL, Yuan Y, Yang J, Wang CH, Pan YJ, Lu L, et al. The interaction between the oxytocin and pain modulation in headache patients. Neuropeptides. 2013;47(2):93–7. https://doi.org/10.1016/j.npep.2012.12.003.

    Article  CAS  PubMed  Google Scholar 

  66. Zohar O, Schreiber S, Getslev V, Schwartz JP, Mullins PG, Pick CG. Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neuroscience. 2003;118(4):949–55.

    Article  CAS  Google Scholar 

  67. Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res. 1981;211(1):67–77.

    Article  CAS  Google Scholar 

  68. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291–300. https://doi.org/10.3171/jns.1994.80.2.0291.

    Article  CAS  PubMed  Google Scholar 

  69. Baratz R, Tweedie D, Rubovitch V, Luo W, Yoon JS, Hoffer BJ, et al. Tumor necrosis factor-alpha synthesis inhibitor, 3,6′-dithiothalidomide, reverses behavioral impairments induced by minimal traumatic brain injury in mice. J Neurochem. 2011;118(6):1032–42. https://doi.org/10.1111/j.1471-4159.2011.07377.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baratz R, Tweedie D, Wang JY, Rubovitch V, Luo W, Hoffer BJ, et al. Transiently lowering tumor necrosis factor-alpha synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. J Neuroinflammation. 2015;12:45. https://doi.org/10.1186/s12974-015-0237-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Benromano T, Defrin R, Ahn AH, Zhao J, Pick CG, Levy D. Mild closed head injury promotes a selective trigeminal hypernociception: implications for the acute emergence of post-traumatic headache. Eur J Pain. 2015;19(5):621–8. https://doi.org/10.1002/ejp.583.

    Article  CAS  PubMed  Google Scholar 

  72. Levy D, Kainz V, Burstein R, Strassman AM. Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity. Brain Behav Immun. 2012;26(2):311–7. https://doi.org/10.1016/j.bbi.2011.09.016.

    Article  PubMed  Google Scholar 

  73. Ottosson A, Edvinsson L. Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia. 1997;17(3):166–74.

    Article  CAS  Google Scholar 

  74. Levy D, Edut S, Baraz-Goldstein R, Rubovitch V, Defrin R, Bree D, et al. Responses of dural mast cells in concussive and blast models of mild traumatic brain injury in mice: potential implications for post-traumatic headache. Cephalalgia. 2015; https://doi.org/10.1177/0333102415617412.

  75. Silberstein SD, Dodick DW, Bigal ME, Yeung PP, Goadsby PJ, Blankenbiller T, et al. Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med. 2017;377(22):2113–22. https://doi.org/10.1056/NEJMoa1709038.

    Article  CAS  Google Scholar 

  76. •• Mustafa G, Hou J, Tsuda S, Nelson R, Sinharoy A, Wilkie Z, et al. Trigeminal neuroplasticity underlies allodynia in a preclinical model of mild closed head traumatic brain injury (cTBI). Neuropharmacology. 2016;107:27–39. https://doi.org/10.1016/j.neuropharm.2016.03.016. An important study employing non-evoked measures that measure the motivational-affective aspect of PTH in a pre-clinical model of mild closed head which can be more prevalent than allodynia In patients.

    Article  CAS  PubMed  Google Scholar 

  77. AC MK, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(Pt 1):43–64. https://doi.org/10.1093/brain/aws307.

    Article  Google Scholar 

  78. Daneshvar DH, Riley DO, Nowinski CJ, AC MK, Stern RA, Cantu RC. Long-term consequences: effects on normal development profile after concussion. Phys Med Rehabil Clin N Am. 2011;22(4):683–700, ix. https://doi.org/10.1016/j.pmr.2011.08.009.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tyburski AL, Cheng L, Assari S, Darvish K, Elliott MB. Frequent mild head injury promotes trigeminal sensitivity concomitant with microglial proliferation, astrocytosis, and increased neuropeptide levels in the trigeminal pain system. J Headache Pain. 2017;18(1):16. https://doi.org/10.1186/s10194-017-0726-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. 2012;4(134):134ra60. https://doi.org/10.1126/scitranslmed.3003716.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tweedie D, Rachmany L, Rubovitch V, Zhang Y, Becker KG, Perez E, et al. Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury. Neurobiol Dis. 2013;54:1–11. https://doi.org/10.1016/j.nbd.2013.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huber BR, Meabon JS, Hoffer ZS, Zhang J, Hoekstra JG, Pagulayan KF, et al. Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction. Neuroscience. 2016;319:206–20. https://doi.org/10.1016/j.neuroscience.2016.01.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goldstein LE, AC MK, Stanton PK. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy. Alzheimers Res Ther. 2014;6(5):64. https://doi.org/10.1186/s13195-014-0064-3.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rubovitch V, Ten-Bosch M, Zohar O, Harrison CR, Tempel-Brami C, Stein E, et al. A mouse model of blast-induced mild traumatic brain injury. Exp Neurol. 2011;232(2):280–9. https://doi.org/10.1016/j.expneurol.2011.09.018.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tagge CA, Fisher AM, Minaeva OV, Gaudreau-Balderrama A, Moncaster JA, Zhang XL, et al. Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain. 2018;141(2):422–58. https://doi.org/10.1093/brain/awx350.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cole JT, Yarnell A, Kean WS, Gold E, Lewis B, Ren M, et al. Craniotomy: true sham for traumatic brain injury, or a sham of a sham? J Neurotrauma. 2011;28(3):359–69. https://doi.org/10.1089/neu.2010.1427.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Crone C, Olesen SP. Electrical resistance of brain microvascular endothelium. Brain Res. 1982;241(1):49–55.

    Article  CAS  Google Scholar 

  88. Flexman AM, Ng JL, Gelb AW. Acute and chronic pain following craniotomy. Curr Opin Anaesthesiol. 2010;23(5):551–7. https://doi.org/10.1097/ACO.0b013e32833e15b9.

    Article  PubMed  Google Scholar 

  89. Goldey GJ, Roumis DK, Glickfeld LL, Kerlin AM, Reid RC, Bonin V, et al. Removable cranial windows for long-term imaging in awake mice. Nat Protoc. 2014;9(11):2515–38. https://doi.org/10.1038/nprot.2014.165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11. https://doi.org/10.1126/scitranslmed.3003748.

    Article  CAS  Google Scholar 

  91. Olesen SP. Leakiness of rat brain microvessels to fluorescent probes following craniotomy. Acta Physiol Scand. 1987;130(1):63–8. https://doi.org/10.1111/j.1748-1716.1987.tb08112.x.

    Article  CAS  PubMed  Google Scholar 

  92. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, DB MG. Transcranial amelioration of inflammation and cell death after brain injury. Nature. 2014;505(7482):223–8. https://doi.org/10.1038/nature12808.

    Article  CAS  PubMed  Google Scholar 

  93. Stokely ME, Orr EL. Acute effects of calvarial damage on dural mast cells, pial vascular permeability, and cerebral cortical histamine levels in rats and mice. J Neurotrauma. 2008;25(1):52–61. https://doi.org/10.1089/neu.2007.0397.

    Article  PubMed  Google Scholar 

  94. Zhao J, Bree D, Harrington MG, Strassman AM, Levy D. Cranial dural permeability of inflammatory nociceptive mediators: potential implications for animal models of migraine. Cephalalgia. 2017;37(11):1017–25. https://doi.org/10.1177/0333102416663466.

    Article  CAS  PubMed  Google Scholar 

  95. Manley G, Gardner AJ, Schneider KJ, Guskiewicz KM, Bailes J, Cantu RC, et al. A systematic review of potential long-term effects of sport-related concussion. Br J Sports Med. 2017;51(12):969–77. https://doi.org/10.1136/bjsports-2017-097791.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Valentine V, Curl WW. Concussions in adolescent athletes. Instr Course Lect. 2006;55:703–9.

    PubMed  Google Scholar 

  97. Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain. 2001;89(2–3):107–10.

    Article  CAS  Google Scholar 

  98. Levy D, Jakubowski M, Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc Natl Acad Sci U S A. 2004;101(12):4274–9. https://doi.org/10.1073/pnas.0306147101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Levy.

Ethics declarations

Conflict of Interest

Dara Bree declares no conflict of interest. Dan Levy reports grants from Teva Pharmaceuticals, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Concussion and Head Injury

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bree, D., Levy, D. Strides Toward Better Understanding of Post-Traumatic Headache Pathophysiology Using Animal Models. Curr Pain Headache Rep 22, 67 (2018). https://doi.org/10.1007/s11916-018-0720-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-018-0720-6

Keywords

Navigation