Skip to main content

Advertisement

Log in

Diabetes and the Microvasculature of the Bone and Marrow

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to highlight the evidence of microvascular dysfunction in bone and marrow and its relation to poor skeletal outcomes in diabetes mellitus.

Recent Findings

Diabetes mellitus is characterized by chronic hyperglycemia, which may lead to microangiopathy and macroangiopathy. Micro- and macroangiopathy have been diagnosed in Type 1 and Type 2 diabetes, coinciding with osteopenia, osteoporosis, enhanced fracture risk and delayed fracture healing. Microangiopathy has been reported in the skeleton, correlating with reduced blood flow and perfusion, vasomotor dysfunction, microvascular rarefaction, reduced angiogenic capabilities, and augmented vascular permeability.

Summary

Microangiopathy within the skeleton may be detrimental to bone and manifest as, among other clinical abnormalities, reduced mass, enhanced fracture risk, and delayed fracture healing. More investigations are required to elucidate the various mechanisms by which diabetic microvascular dysfunction impacts the skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rosengren A, Dikaiou P. Cardiovascular outcomes in type 1 and type 2 diabetes. Diabetologia. 2023;66:425–37. https://doi.org/10.1007/s00125-022-05857-5.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Jiang Y, Luo W, Wang B, Yi Z, Gong P, Xiong Y. 1α,25-Dihydroxyvitamin D3 ameliorates diabetes-induced bone loss by attenuating FoxO1-mediated autophagy. J Biol Chem. 2021;296:100287. https://doi.org/10.1016/j.jbc.2021.100287.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ahlqvist M, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, Vikman P, Prasad RB, Mansour Aly D, Almgren P, Wessman Y, Shaat N, Spégel P, Mulder H, Lindholm E, Melander O, Hansson O, Malmqvist U, Lernmark Å, Lahti K, Forsén T, Tuomi T, Rosengren AH, Groop L. Novel subgroups of adult-onset diabetes and their association with outcomes: a datadriven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6:361–9. https://doi.org/10.1016/S2213-8587(18)30051-2.

    Article  PubMed  Google Scholar 

  4. Al-Majdoub M, Ali A, Storm P, Rosengren AH, Groop L, Spégel P. Metabolite profiling of LADA challenges the view of a metabolically distinct subtype. Diabetes. 2017;66:806–14. https://doi.org/10.2337/db16-0779.

    Article  CAS  PubMed  Google Scholar 

  5. Hjort R, Ahlqvist E, Carlsson P-O, Grill V, Groop L, Martinell M, Rasouli B, Rosengren A, Tuomi T, Åsvold BO, Carlsson S. Overweight, obesity and the risk of LADA: results from a Swedish case-control study and the Norwegian HUNT Study. Diabetologia. 2018;61:1333–43. https://doi.org/10.1007/s00125-4596-0.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Skyler J. Hope vs hype: where are we in type 1 diabetes? Diabetologia. 2018;61:509–16. https://doi.org/10.1007/s00125-017-4530-x.

    Article  PubMed  Google Scholar 

  7. Shah V, Carpenter RD, Ferguson VL, Schwartz AV. Bone health in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2018;25:231–6. https://doi.org/10.1097/MED.0000000000000421.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Diaz-Valencia P, Bougnères P, Valleron AJ. Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health. 2015;15:255. https://doi.org/10.1186/s12889-015-1591-y.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL. IOF Bone and Diabetes Working Group. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13:208–19. https://doi.org/10.1038/nrendo.2016.153.

    Article  CAS  PubMed  Google Scholar 

  10. Stidsen JV, Henriksen JE, Olsen MH, Thomsen RW, Nielsen JS, Rungby J, Ulrichsen SP, Berencsi K, Kahlert JA, Friborg SG, Brandslund I, Nielsen AA, Christiansen JS, Sørensen HT, Olesen TB, Beck-Nielsen H. Pathophysiology-based phenotyping in type 2 diabetes: a clinical classification tool. Diabetes Metab Res Rev. 2018;34:e3005. https://doi.org/10.1002/dmrr.3005.

    Article  CAS  PubMed  Google Scholar 

  11. Hedevang Christensen D, Nicolaisen SK, Ahlqvist E, Stidsen JV, Steen Nielsen J, Hojlund K, Olsen MH, García-Calzón S, Ling C, Rungby J, Brandslund I, Vestergaard P, Jessen N, Hansen T, Brøns C, Beck-Nielsen H, Sørensen HT, Thomsen RW, Vaag A. Type 2 diabetes classification: a data-driven cluster study of the Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort. BMJ Open Diabetes Res Care. 2022;10:e002731. https://doi.org/10.1136/bmjdrc-2021-002731.

    Article  Google Scholar 

  12. Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, Groop PH, Handelsman Y, Insel RA, Mathieu C, McElvaine AT, Palmer JP, Pugliese A, Schatz DA, Sosenko JM, Wilding JP, Ratner RE. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66:241–55. https://doi.org/10.2337/db16-0806.

    Article  CAS  PubMed  Google Scholar 

  13. Rawshani A, Sattar N, Franzén S, Rawshani A, Hattersley AT, Svensson A-M, Eliasson B, Gudbjörnsdottir S. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 2018;392:477–86. https://doi.org/10.1016/S0140-6736(18)31506-X.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Sattar N, Rawshani A, Franzén S, Rawshani A, Svensson A-M, Rosengren A, McGuire DK, Eliasson B, Gudbjörnsdottir S. Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks. Circulation. 2019;139:2228–37. https://doi.org/10.1161/CIRCULATIONAHA.118.037885.

    Article  PubMed  Google Scholar 

  15. Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol. 2020;18:117–24. https://doi.org/10.2174/1570161117666190502103733.

    Article  CAS  PubMed  Google Scholar 

  16. Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T. Macrovascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol. 2020;18:110–6. https://doi.org/10.2174/1570161117666190405165151.

    Article  CAS  PubMed  Google Scholar 

  17. Constantino M, Molyneaux L, Limacher-Gisler F, Al-Saeed A, Luo C, Wu T, Twigg SM, Yue DK, Wong J. Longterm complications and mortality in young-onset diabetes: type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care. 2013;36:3863–9. https://doi.org/10.2337/dc12-2455.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dabelea D, Stafford JM, Mayer-Davis EJ, D’Agostino R Jr, Dolan L, Imperatore G, Linder B, Lawrence JM, Marcovina SM, Mottl AK, Black MH, Pop-Busui R, Sayda S, Hamman RF, Pihoker C, SEARCH for Diabetes in Youth Research Group. Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA. 2017;317:825–35. https://doi.org/10.1001/jama.2017.0686.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a meta-analysis. Osteoporos Int. 2007;18:427–44. https://doi.org/10.1007/s00198-006-0253-4.

    Article  CAS  PubMed  Google Scholar 

  20. Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL, IOF Bone and Diabetes Working Group. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13:208–19. https://doi.org/10.1038/nrendo.2016.153.

    Article  CAS  PubMed  Google Scholar 

  21. Shanbhogue VV, Hansen S, Frost M, Brixen K, Hermann AP. Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinol. 2017;5:827–38. https://doi.org/10.1016/S2213-8587(17)30134-1.10.1016/S2213-8587(17)30134-1.

    Article  PubMed  Google Scholar 

  22. Schwartz AV. Efficacy of osteoporosis therapies in diabetic patients. Calcif Tissue Int. 2017;100:165–73. https://doi.org/10.1007/s00223-016-0177-8.

    Article  CAS  PubMed  Google Scholar 

  23. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166:495–505. https://doi.org/10.1093/aje/kwm106.

    Article  PubMed  Google Scholar 

  24. Weinstein R, Nicholas RW, Manolagas SC. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab. 2000;85:2907–12. https://doi.org/10.1210/jcem.85.8.6714.

    Article  CAS  PubMed  Google Scholar 

  25. Shah VN, Harrall KK, Shah CS, Gallo TL, Joshee P, Snell-Bergeon JK, Kohrt WM. Bone mineral density at femoral neck and lumbar spine in adults with type 1 diabetes: a meta-analysis and review of the literature. Osteoporos Int. 2017;28:2601–10. https://doi.org/10.1007/s00198-017-4097-x.

    Article  CAS  PubMed  Google Scholar 

  26. Pan H, Wu N, Yang T, He W. Association between bone mineral density and type 1 diabetes mellitus: a meta-analysis of cross-sectional studies. Diabetes Metab Res Rev. 2014;30:531–42. https://doi.org/10.1002/dmrr.2508.

    Article  PubMed  Google Scholar 

  27. López-Ibarra P, Pastor MM, Escobar-Jiménez F, Pardo MD, González AG, Luna JD, Requena ME, Diosdado MA. Bone mineral density at time of clinical diagnosis of adult-onset type 1 diabetes mellitus. Endocr Pract. 2001;7:346–51. https://doi.org/10.4158/EP.7.5.346.

    Article  PubMed  Google Scholar 

  28. Hamilton E, Rakic V, Davis WA, Paul Chubb SA, Kamber N, Prince RL, Davis TME. A five-year prospective study of bone mineral density in men and women with diabetes: the Fremantle Diabetes Study. Acta Diabetol. 2012;49:53–8. https://doi.org/10.1007/s00592-011-0324-7.

    Article  CAS  Google Scholar 

  29. Bechtold S, Putzker S, Bonfig W, Fuchs O, Dirlenbach I, Schwarz HP. Bone size normalizes with age in children and adolescents with type 1 diabetes. Diabetes Care. 2007;30:2046–50. https://doi.org/10.2337/dc07-0142.

    Article  PubMed  Google Scholar 

  30. Campos Pastor M, López-Ibarra PJ, Escobar-Jiménez F, Serrano Pardo MD, García-Cervigón AG. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int. 2000;11:455–9. https://doi.org/10.1007/s001980070114.

    Article  CAS  PubMed  Google Scholar 

  31. Compston J. Type 2 diabetes mellitus and bone. J Intern Med. 2018;83:140–53. https://doi.org/10.1007/s001980070114.

    Article  Google Scholar 

  32. Bhatti F, Dadwal UC, Valuch CR, Tewari NP, Awosanya OD, de Andrade Staut C, Sun S, Mendenhall SK, Perugini AJ 3rd, Nagaraj RU, Battina HL, Nazzal MK, Blosser RJ, Maupin KA, Childress PJ, Li J, Kacena MA. The effects of high fat diet, bone healing, and BMP-2 treatment on endothelial cell growth and function. Bone. 2021;146:115883. https://doi.org/10.1016/j.bone.2021.115883.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Schwartz AV. Efficacy of osteoporosis therapies in diabetic patients. Calcif Tissue Int. 2017;100:165–73. https://doi.org/10.1007/s00223-016-0177-8.

    Article  CAS  PubMed  Google Scholar 

  34. Loder R. The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res. 1988;232:210–6.

    Article  Google Scholar 

  35. Gortler H, Rusyn J, Godbout C, Chahal J, Schemitsch EH, Nauth A. Diabetes and healing outcomes in lower extremity fractures: a systematic review. Injury. 2018;49:177–83. https://doi.org/10.1016/j.injury.2017.11.006.

    Article  PubMed  Google Scholar 

  36. Hankenson K, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury. 2011;42:556–61. https://doi.org/10.1016/j.injury.2011.03.035.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Weber D, Schwartz G. Epidemiology of skeletal health in type 1 diabetes. Curr Osteoporos Rep. 2016;14:327–36. https://doi.org/10.1007/s11914-016-0333-0.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Prisby R. The clinical relevance of the bone vascular system: age-related implications. Clin Rev Bone Miner Metab. 2019;17:48–62. https://doi.org/10.1007/s12018-019-09259-x.

    Article  Google Scholar 

  39. Prisby R. Mechanical, hormonal and metabolic influences on blood vessels, blood flow and bone. J Endocrinol. 2017;235:R77–100. https://doi.org/10.1530/JOE-16-0666.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Prisby R. Bone marrow microvasculature. Compr Physiol. 2020;10:1009–46. https://doi.org/10.1002/cphy.c190009.

    Article  PubMed  Google Scholar 

  41. Stocum DL. Regenerative biology and medicine. Burlington: Academic Press; 2006. p. 433.

    Google Scholar 

  42. Gerber H-P, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Medicine. 1999;5:623–8. https://doi.org/10.1038/9467.

    Article  CAS  Google Scholar 

  43. Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010;19:329–44. https://doi.org/10.1016/j.devcel.2010.07.010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Parfitt A. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem. 1994;55:273–86. https://doi.org/10.1002/jcb.240550303.

    Article  CAS  PubMed  Google Scholar 

  45. Parfitt AM. Mini-review: Osteoclast precursors as leukocytes: importance of the area code. Bone. 1998;23:491–4. https://doi.org/10.1016/s8756-3282(98)00140-9.

    Article  CAS  PubMed  Google Scholar 

  46. Frost H. The skeletal intermediary organization. Metab Bone Dis Relat Res. 1983;4:281–90. https://doi.org/10.1016/s0221-8747(83)80001-0.

    Article  CAS  PubMed  Google Scholar 

  47. Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res. 2001;16:1575–82. https://doi.org/10.1359/jbmr.2001.16.9.1575.

    Article  CAS  PubMed  Google Scholar 

  48. Johnson DL, McAllister TN, Frangos JA. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol. 1996;271:E205–8. https://doi.org/10.1152/ajpendo.1996.271.1.E205.

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Wang J, Xing J, Wang Y, Luo Y. Surface chemistry regulates the sensitivity and tolerability of osteoblasts to various magnitudes of fluid shear stress. J Biomed Mater Res A. 2016;104:2978–91. https://doi.org/10.1002/jbm.a.35848.

    Article  CAS  PubMed  Google Scholar 

  50. McAllister TN, Frangos JA. Steady and transient fluid shear stress stimulate NO release in osteoblast through distinct biochemical pathways. J Bone Miner Res. 1999;14:930–6. https://doi.org/10.1359/jbmr.1999.14.6.930.

    Article  CAS  PubMed  Google Scholar 

  51. McAllister TN, Du T, Frangos JA. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells. Biochem Biophys Res Commun. 2000;270:643–8. https://doi.org/10.1006/bbrc.2000.2467.

    Article  CAS  PubMed  Google Scholar 

  52. Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, Platts LA, Hukkanen M, Polak JM, Lanyon LE. Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res. 1999;14:1123–31. https://doi.org/10.1359/jbmr.1999.14.7.1123.

    Article  CAS  PubMed  Google Scholar 

  53. Gutterman D, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM. The human microcirculation: regulatin of flow and beyond. Circ Res. 2016;118:157–72. https://doi.org/10.1161/CIRCRESAHA.115.305364.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Jackson W. Microcirculation. In: Hill JA, Olson EN, editors. Muscle: fundamental biology and mechanisms of disease. Cambridge: Acedemic Press; 2012.

    Google Scholar 

  55. Cowin S, Cardoso L. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech. 2015;48:842–54. https://doi.org/10.1016/j.jbiomech.2014.12.013.

    Article  PubMed  Google Scholar 

  56. Colleran PN, Wilkerson MK, Bloomfield SA, Suva LJ, Turner RT, Delp MD. Alterations in skeletal perfusion with simulated microgravity: a possible mechanism for bone remodeling. J Appl Physiol. 2000;89:1046–54. https://doi.org/10.1152/jappl.2000.89.3.1046.

    Article  CAS  PubMed  Google Scholar 

  57. Kwon R, Meays DR, Tang WJ, Frangos JA. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J Bone Mineral Res. 2010;25:1798–807. https://doi.org/10.1002/jbmr.74.

    Article  Google Scholar 

  58. Qin Y, Kaplan T, Saldanha A, Rubin C. Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J Biomech. 2003;36:1427–37. https://doi.org/10.1016/s0021-9290(03)00127-1.

    Article  PubMed  Google Scholar 

  59. Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity. 2003;19:583–93. https://doi.org/10.1016/s1074-7613(03)00263-2.

    Article  CAS  PubMed  Google Scholar 

  60. Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood. 2001;97:2293–9. https://doi.org/10.1182/blood.v97.8.2293.

    Article  CAS  PubMed  Google Scholar 

  61. Penninx B, Guralnik JM, Onder G, Ferrucci L, Wallace RB, Pahor M. Anemia and decline in physical performance among older persons. Am J Med. 2003;115:104–10. https://doi.org/10.1016/s0002-9343(03)00263-8.

    Article  PubMed  Google Scholar 

  62. Arai F, Suda T. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann N Y Acad Sci. 2007;1106:41–53. https://doi.org/10.1196/annals.1392.005.

    Article  CAS  ADS  PubMed  Google Scholar 

  63. Calvi L, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood. 2015;126:2443–51. https://doi.org/10.1182/blood-2015-07-533588.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Renkin E. Control of microcirculation and blood-tissue exchange. In: Renkin E, Michel CC, editors. Handbook of physiology, Section 2: The cardiovascular system. Bethesda: American Physiological Society; 1984.

    Google Scholar 

  65. Zweifach BW, Lipowsky HH. Pressure-flow relations in blood and lymph micocirculation. In: Renkin EM, Michel CC, editors. Handbook of physiology, section 2: the cardiovascular system. Bethesda: The American Physiological Society; 1984.

    Google Scholar 

  66. Davis M, Hill MA, Kuo L. Local regulation of microvascular perfusion, In: Compr Physiol; Suppl 9: Handbook of physiology: the cardiovascular system, Microcirculation. 2011;161–284.

  67. Rothe C. Venous system: physiology of the capacitance vessels, In: Compr Physiol; Suppl 8: Handbook of physiology: the cardiovascular system, Peripheral circulation and organ blood flow: 2011;397–452.

  68. Brookes M, Revell WJ. Blood supply of bone: scientific aspects. London: Springer-Verlag; 1998.

    Book  Google Scholar 

  69. Noh S, Lee S, Green S, Prisby R. Myogenic autoregulation in bone marrow arterioles and in vivo intramedullary pressure in femora of conscious, female Long Evans rats. Microcirculation. 2021;28:e12720. https://doi.org/10.1111/micc.12720.

    Article  PubMed  Google Scholar 

  70. Fleming J, Barati MT, Beck DJ, Dodds JC, Malkani AL, Parameswaran D, Soukhova GK, Voor MJ. Bone blood flow and vascular reactivity. Cells Tissues Organs. 2001;169:279–84. https://doi.org/10.1159/000047892.

    Article  CAS  PubMed  Google Scholar 

  71. Behnke B, Delp MD. Aging blunts the dynamics of vasodilation in isolated skeletal muscle resistance vessels. J Appl Physiol. 2010;108:14–20. https://doi.org/10.1152/japplphysiol.00970.2009.

    Article  CAS  PubMed  Google Scholar 

  72. Nowak TJ Essentials of pathophysiology: concepts and applications for health care professionals. Nowak T, Handford AG, editors. 2nd ed, Boston: McGraw-Hill; 1999.

  73. • Zhao J, Liang G, Luo M, Yang W, Xu N, Luo M, Pan J, Liu J, Zeng L. Influence of type 2 diabetes microangiopathy on bone mineral density and bone metabolism: a meta-analysis. Heliyon. 2022;8:e11001. https://doi.org/10.1016/j.heliyon.2022.e11001. A meta-analysis showing that systemic vascular dysfunction may contribute to diabetic bone loss.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Shanbhogue V, Hansen S, Frost M, Jørgensen NR, Hermann AP, Henriksen JE, Brixen K. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease. Eur J Endocrinol. 2016;174:15–24. https://doi.org/10.1530/EJE-15-0860.

    Article  CAS  Google Scholar 

  75. Cui R, Sun SQ, Zhong N, Xu MX, Cai HD, Zhang G, Qu S, Sheng H. The relationship between atherosclerosis and bone mineral density in patients with type 2 diabetes depends on vascular calcifications and sex. Osteoporos Int. 2020;31:1135–43. https://doi.org/10.1007/s00198-020-05374-4.

    Article  CAS  PubMed  Google Scholar 

  76. Frost M, Grella R, Millasseau SC, Jiang B-Y, Hampson G, Fogelman I, Chowienczyk PJ. Relationship of calcification of atherosclerotic plaque and arterial stiffness to bone mineral density and osteoprotegerin in postmenopausal women referred for osteoporosis screening. Calcif Tissue Int. 2008;83:112–20. https://doi.org/10.1007/s00223-008-9153-2.

    Article  CAS  PubMed  Google Scholar 

  77. Carr J, Register TC, Hsu FC, Lohman K, Lenchik L, Bowden DW, Langefeld CD, Xu J, Rich SS, Wagenknecht LE, Freedman BI. Calcified atherosclerotic plaque and bone mineral density in type 2 diabetes: the diabetes heart study. Bone. 2008;42:43–52. https://doi.org/10.1016/j.bone.2007.08.023.

    Article  CAS  PubMed  Google Scholar 

  78. Wagenknecht L, Divers J, Register TC, Russell GB, Bowden DW, Xu J, Langefeld CD, Lenchik L, Hruska KA, Carr JJ, Freedman BI. Bone mineral density and progression of subclinical atherosclerosis in African-Americans with type 2 diabetes. J Clin Endocrinol Metab. 2016;101:4135–41. https://doi.org/10.1210/jc.2016-1934.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Tankò L, Bagger YZ, Christiansen C. Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int. 2003;73:15–20. https://doi.org/10.1007/s00223-002-2070-x.

    Article  CAS  PubMed  Google Scholar 

  80. Shen J, Shang Q, Wong C-K, Li EK, Kun EW, Cheng IT, Li M, Li TK, Zhu TY, Yu C-M, Qin L, Tam L-S. Carotid plaque and bone density and microarchitecture in psoriatic arthritis: the correlation with soluble ST2. Sci Rep. 2016;6:32116. https://doi.org/10.1038/srep32116.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  81. Fajardo R. Is diabetic skeletal fragility associated with microvascular complications in bone? Curr Osteoporos Rep. 2017;15:1–8. https://doi.org/10.1007/s11914-017-0341-8.

    Article  PubMed  Google Scholar 

  82. •• Oikawa A, Siragusa M, Quaini F, Mangialardi G, Katare RG, Caporali A, van Buul JD, van Alphen FP, Graiani G, Spinetti G, Kraenkel N, Prezioso L, Emanueli C, Madeddu P. Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol. 2010;30:498–508. https://doi.org/10.1161/ATVBAHA.109.200154. The first rodent study to demonstrate skeletal microangiopathy in T1DM.

    Article  CAS  PubMed  Google Scholar 

  83. Peng J, Hui K, Hao C, Peng Z, Gao QX, Jin Q, Lei G, Min J, Qi Z, Bo C, Dong QN, Bing ZH, Jia XY, Fu DL. Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice. Connect Tissue Res. 2016;57:277–89. https://doi.org/10.3109/03008207.2016.1171858.

    Article  CAS  PubMed  Google Scholar 

  84. Ozgurel S, Swallow EA, Metzger CE, Allen MR. Femoral skeletal perfusion is reduced in male mice with Type 1 diabetes. Calcif Tissue Int. 2022;111:323–30. https://doi.org/10.1007/s00223-022-00992-y.

    Article  CAS  Google Scholar 

  85. Hu X-F, Xiang G, Wang T-J, Ma Y-B, Zhang Y, Yan Y-B, Zhao X, Wu Z-X, Feng Y-F, Lei W. Impairment of type H vessels by NOX2-mediated endothelial oxidative stress: critical mechanisms and therapeutic targets for bone fragility in streptozotocin-induced type 1 diabetic mice. Theranostics. 2021;11:3796–812. https://doi.org/10.7150/thno.50907.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Caliaperoumal G, Souyet M, Bensidhoum M, Petite H, Anagnostou F. Type 2 diabetes impairs angiogenesis and osteogenesis in calvarial defects: MicroCT study in ZDF rats. Bone. 2018;112:161–72. https://doi.org/10.1016/j.bone.2018.04.009.

    Article  CAS  PubMed  Google Scholar 

  87. Dadwal UC, de Andrade Staut C, Tewari NP, Awosanya OD, Mendenhall SK, Valuch CR, Nagaraj RU, Blosser RJ, Li J, Kacena MA. Effects of diet, BMP-2 treatment, and femoral skeletal injury on endothelial cells derived from the ipsilateral and contralateral limbs. J Orthop Res. 2022;40:439–48. https://doi.org/10.1002/jor.25033.

    Article  CAS  PubMed  Google Scholar 

  88. Wallner C, Schira J, Wagner JM, Schulte M, Fischer S, Hirsch T, Richter W, Abraham S, Kneser U, Lehnhardt M, Behr B. Application of VEGFA and FGF-9 enhances angiogenesis, osteogenesis and bone remodeling in type 2 diabetic long bone regeneration. PLoS One. 2015;10:e0118823-19. https://doi.org/10.1371/journal.pone.0118823.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. •• Spinetti G, Cordella D, Fortunato O, Sangalli E, Losa S, Gotti A, Carnelli F, Rosa F, Riboldi S, Sessa F, Avolio E, Beltrami AP, Emanueli C, Madeddu P. Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: implication of the microRNA-155/FOXO3a signaling pathway. Circ Res. 2013;112:510–22. https://doi.org/10.1161/CIRCRESAHA.112.300598. The first study to demonstrate skeletal microangiopathy in individuals with T2DM.

    Article  CAS  PubMed  Google Scholar 

  90. Kariya S, Cureoglu S, Morita N, Nomiya S, Nomiya R, Schachern PA, Nishizaki K, Paparella MM. Vascular findings in the facial nerve canal in human temporal bones with diabetes mellitus. Otol Neurotol. 2009;30:402–7. https://doi.org/10.1097/MAO.0b013e31819a8845.

    Article  PubMed  Google Scholar 

  91. Salis M, Graiani G, Desortes E, Caldwell RB, Madeddu P, Emanueli C. Nerve growth factor supplementation reverses the impairment, induced by Type 1 diabetes, of hindlimb post-ischaemic recovery in mice. Diabetologia. 2004;47:1055–63. https://doi.org/10.1007/s00125-004-1424-5.

    Article  CAS  PubMed  Google Scholar 

  92. Ali T, Al-Gayyar MMH, Matragoon S, Pillai BA, Abdelsaid MA, Nussbaum JJ, El-Remessy AB. Diabetes-induced peroxynitrite impairs the balance of pro-nerve growth factor and nerve growth factor, and causes neurovascular injury. Diabetologia. 2011;54:657–68. https://doi.org/10.1007/s00125-010-1935-1.

    Article  CAS  PubMed  Google Scholar 

  93. Sergiu-Bogdan C, Okamoto K, Pereira T, Brismar K, Poellinger L. Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes. 2004;53:3226–32. https://doi.org/10.2337/diabetes.53.12.3226.

    Article  Google Scholar 

  94. Bento C, Pereira P. Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes. Diabetologia. 2011;54:1946–56. https://doi.org/10.1007/s00125-011-2191-8.

    Article  CAS  PubMed  Google Scholar 

  95. Botolin S, McCabe LR. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem. 2006;99:411–24. https://doi.org/10.1002/jcb.20842.

    Article  CAS  PubMed  Google Scholar 

  96. Ishizuka T, Hinata T, Watanabe Y. Superoxide induced by a high-glucose concentration attenuates production of angiogenic growth factors in hypoxic mouse mesenchymal stem cells. J Endocrinol. 2011;208:147–59. https://doi.org/10.1677/JOE-10-0305.

    Article  CAS  PubMed  Google Scholar 

  97. Kusumbe A, Ramasamy S, Adam RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507:323–8. https://doi.org/10.1038/nature13145.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  98. DiPersio J. Diabetic stem-cell “mobilopathy.” N Engl J Med. 2011;365:2536–8. https://doi.org/10.1056/NEJMcibr1112347.

    Article  CAS  PubMed  Google Scholar 

  99. •• Stabley J, Prisby RD, Behnke BJ, Delp MD. Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat. J Endocrinol. 2015;225:47–58. https://doi.org/10.1530/JOE-14-0514. In conjunction with [118], this study demonstrates reduced vascular function in bone blood vessels with the onset and progression of T2DM in a rodent model.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Filipowska F, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20:291–302. https://doi.org/10.1007/s10456-017-9541-1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Brown M, Yukata K, Farnsworth CW, Chen DG, Awad H, Hilton MJ, O’Keefe RJ, Xing L, Mooney RA, Zuscik MJ. Delayed fracture healing and increased callus adiposity in a C57BL/6J murine model of obesity-associated type 2 diabetes mellitus. PLoS One. 2014;9:e99656. https://doi.org/10.1371/journal.pone.0099656.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  102. Thakkar A, Ma Y, Dela Cruz M, Wu Y, Arechiga V, Swaminathan S, Ganz P, Wu AHB, Scherzer R, Deesk S, Hsue PY. Effect of HIV-1 infection on angiopoietin 1 and 2 levels and measures of microvascular and macrovascular endothelial dysfunction. J Am Heart Assoc. 2021;10:e021397. https://doi.org/10.1161/JAHA.121.021397.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Alfieri A, Ong ACM, Kammerer RA, Solanky T, Bate S, Tasab M, Brown NJ, Brookes ZL. Angiopoietin-1 regulates microvascular reactivity and protects the microcirculation during acute endothelial dysfunction: role of eNOS and VE-cadherin. Pharmacol Res. 2014;80:43–51. https://doi.org/10.1016/j.phrs.2013.12.008.

    Article  CAS  PubMed  Google Scholar 

  104. Thurston G, Daly C. The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb Perspect Med. 2012;2:a006550. https://doi.org/10.1101/cshperspect.a006650.

    Article  CAS  PubMed  Google Scholar 

  105. Hiratsuka S, Mura Y, Okada A, Seiki M, Noda T, Shibuya M. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res. 2001;61:1207–13.

    CAS  PubMed  Google Scholar 

  106. Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis. 2006;9:225–30. https://doi.org/10.1007/s10456-006-9055-8.

    Article  CAS  PubMed  Google Scholar 

  107. Krueger J, Lui D, Scholz K, Zimmer A, Shi Y, Klein C, Siekmann A, Schulte-Merker S, Cudmore M, Ahmed A, le Noble F. Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development. 2011;138:2111–20. https://doi.org/10.1242/dev.063933.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Gerber H, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem. 1997;272:23659–67. https://doi.org/10.1074/jbc.272.38.23659.

    Article  CAS  PubMed  Google Scholar 

  109. Olofsson B, Korpelainen E, Pepper MS, Mandriota SJ, Aase K, Kumar V, Gunji Y, Jeltsch MM, Shibuya M, Alitalo K, Eriksson U. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci USA. 1998;95:11709–14. https://doi.org/10.1073/pnas.95.20.11709.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  110. Lee H, Chauhan SK, Kay E, Dana R. Flt-1 regulates vascular endothelial cell migration via a protein tyrosine kinase-7-dependent pathway. Blood. 2011;117:5762–71. https://doi.org/10.1182/blood-2010-09-306928.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Laham R, Li J, Tofukuji M, Post M, Simons M, Sellke FW. Spatial heterogeneity in VEGF-induced vasodilation: VEGF dilates microvessels but not epicardial and systemic arteries and veins. Ann Vasc Surg. 2003;17:245–52. https://doi.org/10.1007/s10016-001-0299-x.

    Article  PubMed  Google Scholar 

  112. Fogarty J, Muller-Delp JM, Delp MD, Mattox ML, Laughlin MH, Parker JL. Exercise training enhances vasodilation responses to vascular endothelial growth factor in porcine coronary arterioles exposed to chronic coronary occlusion. Circulation. 2004;109:664–70. https://doi.org/10.1161/01.CIR.0000112580.31594.F9.

    Article  CAS  PubMed  Google Scholar 

  113. Métais C, Li J, Li J, Simons M, Sellke FW. Effects of coronary artery disease on expression and microvascular response to VEGF. Am J Physiol. 1998;275:H1411–8. https://doi.org/10.1152/ajpheart.1998.275.4.H1411.

    Article  PubMed  Google Scholar 

  114. Ashrafpour H, Huang N, Neligan PC, Forrest CR, Addison PD, Moses MA, Levine RH, Pang CY. Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. Am J Physiol Heart Circ Physiol. 2004;286:H946–54. https://doi.org/10.1152/ajpheart.00901.2003.

    Article  CAS  PubMed  Google Scholar 

  115. Irace C, Messiniti V, Tassone B, Cortese C, Barrett EJ, Gnasso A. Evidence for congruent impairment in micro and macrovascular function in type 1 diabetes. PLoS One. 2017;12:e0187525. https://doi.org/10.1371/journal.pone.0187525.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Besic H, Jeraj L, Spirkoska A, Jezovnik MK, Poredoš P. Deterioration of endothelial function of micro- and macrocirculation in patients with diabetes type 1 and 2. Int Angiol. 2017;36:354–61. https://doi.org/10.23736/S0392-9590.16.03798-6.

    Article  PubMed  Google Scholar 

  117. Lesniewski L, Donato AJ, Behnke BJ, Woodman CR, Laughlin MH, Ray CA, Delp MD. Decreased NO signaling leads to enhanced vasoconstrictor responsiveness in skeletal muscle arterioles of the ZDF rat prior to overt diabetes and hypertension. Am J Physiol Heart Circ Physiol. 2008;294:H1840–50. https://doi.org/10.1152/ajpheart.00692.2007.

    Article  CAS  PubMed  Google Scholar 

  118. • Prisby R, Swift JM, Bloomfield SA, Hogan HA, Delp MD. Altered bone mass, geometry and mechanical properties during the development and progression of type 2 diabetes in the Zucker diabetic fatty rat. J Endocrinol. 2008;199:379–88. https://doi.org/10.1677/JOE-08-0046. In conjunction with [99], this study demonstrates impaired bone properties in the appendicular and axial skeleton with the onset and progression of T2DM in a rodent model.

    Article  CAS  PubMed  Google Scholar 

  119. Davis M, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999;79:387–423. https://doi.org/10.1152/physrev.1999.79.2.387.

    Article  CAS  PubMed  Google Scholar 

  120. Fox A, Eastwood C, Gentry C, Manning D, Urban L. Critical evaluation of the streptozotocin model of painful diabetic neuropathy in the rat. Pain. 1999;81:307–16. https://doi.org/10.1016/S0304-3959(99)00024-X.

    Article  CAS  PubMed  Google Scholar 

  121. Morikawa T, Tamaki S, Fujita S, Suematsu M, Takubo K. Identification and local manipulation of bone marrow vasculature during intravital imaging. Sci Rep. 2020;10:6422. https://doi.org/10.1038/s41598-020-63533-3.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  122. Maruhashi T, Kajikawa M, Kishimoto S, Hashimoto H, Takaeko Y, Yamaji T, Harada T, Han Y, Aibara Y, Yusoff FM, Hidaka T, Kihara Y, Chayama K, Nakashima A, Goto C, Tomiyama H, Takase B, Kohro T, Suzuki T, Ishizu T, Ueda S, Yamazaki T, Furumoto T, Kario K, Inoue T, Koba S, Watanabe K, Takemoto Y, Hano T, Sata M, Ishibashi Y, Node K, Maemura K, Ohya Y, Furukawa T, Ito H, Ikeda H, Yamashina A, Higashi Y. Diagnostic criteria of flow-nediated vasodilation for normal endothelial function and nitroglycerin-induced vasodilation for normal vascular smooth muscle function of the brachial artery. J Am Heart Assoc. 2020;9:e013915. https://doi.org/10.1161/JAHA.119.013915.

    Article  PubMed Central  PubMed  Google Scholar 

  123. Kizhakekuttu TJ, Gutterman DD, Phillips SA, Jurva JW, Arthur EIL, Das E, Widlansky ME. Measuring FMD in the brachial artery: how important is QRS gating? J Appl Physiol. 2010;109:959–65. https://doi.org/10.1152/japplphysiol.00532.2010.

    Article  PubMed Central  PubMed  Google Scholar 

  124. Dos Santos Pinheiro V, da Silva Tavares ACF, Volino-Souza M, de Oliveira GV, Alvares TS. Association between femoral artery flow-mediated dilation and muscle oxygen saturation parameters in healthy, young individuals. J Cardiovasc Dev Dis. 2023;10:63. https://doi.org/10.3390/jcdd10020063.

    Article  Google Scholar 

  125. O’Brien MW, Johns JA, Petterson JL, Mekary S, Kimmerly DS. The impact of age and sex on popliteal artery endothelial-dependent vasodilator and vasoconstrictor function. Exp Gerontol. 2021;145:111221. https://doi.org/10.1016/j.exger.2020.111221.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhonda D. Prisby.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Bone and Diabetes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T., Salas Sanchez, A., Nashawi, D. et al. Diabetes and the Microvasculature of the Bone and Marrow. Curr Osteoporos Rep 22, 11–27 (2024). https://doi.org/10.1007/s11914-023-00841-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00841-3

Keywords

Navigation