Skip to main content

Advertisement

Log in

Mitochondrial Genetics and Function as Determinants of Bone Phenotype and Aging

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to summarize the recently published scientific literature regarding the effects of mitochondrial function and mitochondrial genome mutations on bone phenotype and aging.

Recent Findings

While aging and sex steroid levels have traditionally been considered the most important risk factors for development of osteoporosis, mitochondrial function and genetics are being increasingly recognized as important determinants of bone health. Recent studies indicate that mitochondrial genome variants found in different human populations determine the risk of complex degenerative diseases. We propose that osteoporosis should be among such diseases. Studies have shown the deleterious effects of mitochondrial DNA mutations and mitochondrial dysfunction on bone homeostasis. Mediators of such effects include oxidative stress, mitochondrial permeability transition, and dysregulation of autophagy.

Summary

Mitochondrial health plays an important role in bone homeostasis and aging, and understanding underlying mechanisms is critical in leveraging this relationship clinically for therapeutic benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable

Code Availability

Not applicable

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ, et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022;33(10):2049–102. https://doi.org/10.1007/s00198-021-05900-y. This is a comprehensive review of current state of osteoporosis research and clinical management.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sözen T, Özışık L, Başaran N. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56. https://doi.org/10.5152/eurjrheum.2016.048.

    Article  PubMed  Google Scholar 

  3. Rashki Kemmak A, Rezapour A, Jahangiri R, Nikjoo S, Farabi H, Soleimanpour S. Economic burden of osteoporosis in the world: a systematic review. Med J Islam Repub Iran. 2020;34:154. https://doi.org/10.34171/mjiri.34.154.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Noh JY, Yang Y, Jung H. Molecular mechanisms and emerging therapeutics for osteoporosis. Int J Mol Sci. 2020;21(20) https://doi.org/10.3390/ijms21207623.

  5. Su N, Yang J, Xie Y, Du X, Chen H, Zhou H, et al. Bone function, dysfunction and its role in diseases including critical illness. Int J Biol Sci. 2019;15(4):776–87. https://doi.org/10.7150/ijbs.27063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nayak S, Greenspan SL. Osteoporosis treatment efficacy for men: a systematic review and meta-analysis. J Am Geriatr Soc. 2017;65(3):490–5. https://doi.org/10.1111/jgs.14668.

    Article  PubMed  Google Scholar 

  7. Almeida M, O'Brien CA. Basic biology of skeletal aging: role of stress response pathways. J Gerontol A Biol Sci Med Sci. 2013;68(10):1197–208. https://doi.org/10.1093/gerona/glt079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wallace DC. A mitochondrial bioenergetic etiology of disease. J Clin Invest. 2013;123(4):1405–12. https://doi.org/10.1172/jci61398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •• Brown JA, Sammy MJ, Ballinger SW. An evolutionary, or “mitocentric” perspective on cellular function and disease. Redox Biol. 2020;36:101568. https://doi.org/10.1016/j.redox.2020.101568. Recent review of the role of mitochondrial genetics and function in aging of various non-skeletal tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McKinney EA, Oliveira MT. Replicating animal mitochondrial DNA. Genet Mol Biol. 2013;36(3):308–15. https://doi.org/10.1590/s1415-47572013000300002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics. 2009;36(3):125–31. https://doi.org/10.1016/s1673-8527(08)60099-5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Atilano SR, Malik D, Chwa M, Cáceres-Del-Carpio J, Nesburn AB, Boyer DS, et al. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes. Hum Mol Genet. 2015;24(16):4491–503. https://doi.org/10.1093/hmg/ddv173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kopinski PK, Janssen KA, Schaefer PM, Trefely S, Perry CE, Potluri P, et al. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc Natl Acad Sci U S A. 2019;116(32):16028–35. https://doi.org/10.1073/pnas.1906896116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wallace DC. Mitochondrial genetic medicine. Nat Genet. 2018;50(12):1642–9. https://doi.org/10.1038/s41588-018-0264-z.

    Article  CAS  PubMed  Google Scholar 

  15. Balloux F, Handley LJ, Jombart T, Liu H, Manica A. Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. Proc Biol Sci. 2009;276(1672):3447–55. https://doi.org/10.1098/rspb.2009.0752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kazuno AA, Munakata K, Nagai T, Shimozono S, Tanaka M, Yoneda M, et al. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet. 2006;2(8):e128. https://doi.org/10.1371/journal.pgen.0020128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wallace DC. Mitochondrial DNA variation in human radiation and disease. Cell. 2015;163(1):33–8. https://doi.org/10.1016/j.cell.2015.08.067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leonard WR, Sorensen MV, Galloway VA, Spencer GJ, Mosher MJ, Osipova L, et al. Climatic influences on basal metabolic rates among circumpolar populations. Am J Hum Biol. 2002;14(5):609–20. https://doi.org/10.1002/ajhb.10072.

    Article  PubMed  Google Scholar 

  19. Snodgrass JJ, Leonard WR, Sorensen MV, Tarskaia LA, Mosher MJ. The influence of basal metabolic rate on blood pressure among indigenous Siberians. Am J Phys Anthropol. 2008;137(2):145–55. https://doi.org/10.1002/ajpa.20851.

    Article  PubMed  Google Scholar 

  20. Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochimica et Biophysica Acta. 2014;1842(2):208–19. https://doi.org/10.1016/j.bbadis.2013.10.016.

    Article  CAS  PubMed  Google Scholar 

  21. Barrett-Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, Berger ML, et al. Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res. 2005;20(2):185–94. https://doi.org/10.1359/jbmr.041007.

    Article  PubMed  Google Scholar 

  22. National Diabetes Statistics Report. https://www.cdc.gov/diabetes/data/statistics-report/index.html (2022). Accessed April 25, 2023 2023.

  23. Roshal D, Glosser D, Zangaladze A. Parieto-occipital lobe epilepsy caused by a POLG1 compound heterozygous A467T/W748S genotype. Epilepsy Behav. 2011;21(2):206–10. https://doi.org/10.1016/j.yebeh.2011.03.003.

    Article  PubMed  Google Scholar 

  24. Chan SS, Longley MJ, Copeland WC. The common A467T mutation in the human mitochondrial DNA polymerase (POLG) compromises catalytic efficiency and interaction with the accessory subunit. J Biol Chem. 2005;280(36):31341–6. https://doi.org/10.1074/jbc.M506762200.

    Article  CAS  PubMed  Google Scholar 

  25. De Block CE, De Leeuw IH, Maassen JA, Ballaux D, Martin JJ. A novel 7301-bp deletion in mitochondrial DNA in a patient with Kearns-Sayre syndrome, diabetes mellitus, and primary amenorrhoea. Exp Clin Endocrinol Diabetes. 2004;112(2):80–3. https://doi.org/10.1055/s-2004-815754.

    Article  CAS  PubMed  Google Scholar 

  26. Flanagan D, CRNA A, Hicks L. Anesthetic management of a patient with mitochondrial encephalopathy, lactic acidosis and stroke-like symptoms (MELAS): a case study. Anesth J. 2016;4(1)

  27. Maslow A, Lisbon A. Anesthetic considerations in patients with mitochondrial dysfunction. Anesth Analg. 1993;76(4):884–6. https://doi.org/10.1213/00000539-199304000-00035.

    Article  CAS  PubMed  Google Scholar 

  28. Blair MT, Heard G. Neuraxial anaesthesia in MELAS syndrome. Anaesth Intensive Care. 2011;39(6):1152–3.

    CAS  PubMed  Google Scholar 

  29. Du Y, Jiang B, Li K, Chen Y, He J. Leber hereditary optic neuropathy in a boy with fibrous boney dysplasia. Eye Sci. 2013;28(1):48–50.

    PubMed  Google Scholar 

  30. Hayashi S, Okamoto K. Leber’s hereditary optic neuropathy after head trauma: a case report. Rinsho Shinkeigaku. 2011;51(10):781–3. https://doi.org/10.5692/clinicalneurol.51.781.

    Article  PubMed  Google Scholar 

  31. Manickam AH, Michael MJ, Ramasamy S. Mitochondrial genetics and therapeutic overview of Leber’s hereditary optic neuropathy. Indian J Ophthalmol. 2017;65(11):1087–92. https://doi.org/10.4103/ijo.IJO_358_17.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Diab M. Self-inflicted orodental injury in a child with Leigh disease. Int J Paediatr Dent. 2004;14(1):73–7. https://doi.org/10.1111/j.1365-263x.2004.00472.x.

    Article  CAS  PubMed  Google Scholar 

  33. Schubert Baldo M, Vilarinho L. Molecular basis of Leigh syndrome: a current look. Orphanet J. Rare Dis. 2020;15(1):31. https://doi.org/10.1186/s13023-020-1297-9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Monroy N, Macías Kauffer LR, Mutchinick OM. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) in two Mexican brothers harboring a novel mutation in the ECGF1 gene. Eur J Med Genet. 2008;51(3):245–50. https://doi.org/10.1016/j.ejmg.2007.12.007.

    Article  PubMed  Google Scholar 

  35. Fetterman JL, Zelickson BR, Johnson LW, Moellering DR, Westbrook DG, Pompilius M, et al. Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload. Biochem J. 2013;455(2):157–67. https://doi.org/10.1042/bj20130029.

    Article  CAS  PubMed  Google Scholar 

  36. Guntur AR, Le PT, Farber CR, Rosen CJ. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology. 2014;155(5):1589–95. https://doi.org/10.1210/en.2013-1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Latorre-Pellicer A, Moreno-Loshuertos R, Lechuga-Vieco AV, Sánchez-Cabo F, Torroja C, Acín-Pérez R, et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature. 2016;535(7613):561–5. https://doi.org/10.1038/nature18618.

    Article  CAS  PubMed  Google Scholar 

  38. Bouxsein ML, Myers KS, Shultz KL, Donahue LR, Rosen CJ, Beamer WG. Ovariectomy-induced bone loss varies among inbred strains of mice. J Bone Miner Res. 2005;20(7):1085–92. https://doi.org/10.1359/jbmr.050307.

    Article  PubMed  Google Scholar 

  39. Buie HR, Moore CP, Boyd SK. Postpubertal architectural developmental patterns differ between the L3 vertebra and proximal tibia in three inbred strains of mice. J Bone Miner Res. 2008;23(12):2048–59. https://doi.org/10.1359/jbmr.080808.

    Article  PubMed  Google Scholar 

  40. Dunham-Snary KJ, Sandel MW, Sammy MJ, Westbrook DG, Xiao R, McMonigle RJ, et al. Mitochondrial - nuclear genetic interaction modulates whole body metabolism, adiposity and gene expression in vivo. EBioMedicine. 2018;36:316–28. https://doi.org/10.1016/j.ebiom.2018.08.036.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145–7. https://doi.org/10.1111/j.1532-5415.1972.tb00787.x.

    Article  CAS  PubMed  Google Scholar 

  42. •• Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol. 2022;18(4):243–58. https://doi.org/10.1038/s41574-021-00626-7. Important review of cellular and whole tissue metabolic changes associated with aging.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–23. https://doi.org/10.1038/nature02517.

    Article  CAS  PubMed  Google Scholar 

  44. Mito T, Ishizaki H, Suzuki M, Morishima H, Ota A, Ishikawa K, et al. Transmitochondrial mito-miceΔ and mtDNA mutator mice, but not aged mice, share the same spectrum of musculoskeletal disorders. Biochem Biophys Res Commun. 2015;456(4):933–7. https://doi.org/10.1016/j.bbrc.2014.12.009.

    Article  CAS  PubMed  Google Scholar 

  45. Mito T, Tani H, Suzuki M, Ishikawa K, Nakada K, Hayashi JI. Mito-mice∆ and mitochondrial DNA mutator mice as models of human osteoporosis caused not by aging but by hyperparathyroidism. Exp Anim. 2018;67(4):509–16. https://doi.org/10.1538/expanim.18-0060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dobson PF, Dennis EP, Hipps D, Reeve A, Laude A, Bradshaw C, et al. Mitochondrial dysfunction impairs osteogenesis, increases osteoclast activity, and accelerates age related bone loss. Sci Rep. 2020;10(1):11643. https://doi.org/10.1038/s41598-020-68566-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin PI, Tai YT, Chan WP, Lin YL, Liao MH, Chen RM. Estrogen/ERα signaling axis participates in osteoblast maturation via upregulating chromosomal and mitochondrial complex gene expressions. Oncotarget. 2018;9(1):1169–86. https://doi.org/10.18632/oncotarget.23453.

    Article  PubMed  Google Scholar 

  48. Goropashnaya AV, Tøien Ø, Ramaraj T, Sundararajan A, Schilkey FD, Barnes BM, et al. Transcriptional changes and preservation of bone mass in hibernating black bears. Sci Rep. 2021;11(1):8281. https://doi.org/10.1038/s41598-021-87785-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feigenson M, Eliseev RA, Jonason JH, Mills BN, O'Keefe RJ. PGE2 Receptor Subtype 1 (EP1) Regulates mesenchymal stromal cell osteogenic differentiation by modulating cellular energy metabolism. J Cell Biochem. 2017;118(12):4383–93. https://doi.org/10.1002/jcb.26092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shares BH, Busch M, White N, Shum L, Eliseev RA. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation. J Biol Chem. 2018;293(41):16019–27. https://doi.org/10.1074/jbc.RA118.004102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. • Hollenberg AM, Smith CO, Shum LC, Awad H, Eliseev RA. Lactate dehydrogenase inhibition with oxamate exerts bone anabolic effect. J Bone Miner Res. 2020;35(12):2432–43. https://doi.org/10.1002/jbmr.4142. This study demonstrated a glycolytic shift and mitochondrial dysfunction in aged bone. Targeting these changes pharmacologically reversed bone loss during aging.

    Article  CAS  PubMed  Google Scholar 

  52. Huang T, Liu R, Fu X, Yao D, Yang M, Liu Q, et al. Aging reduces an ERRalpha-directed mitochondrial glutaminase expression suppressing glutamine anaplerosis and osteogenic differentiation of mesenchymal stem cells. Stem Cells. 2017;35(2):411–24. https://doi.org/10.1002/stem.2470.

    Article  CAS  PubMed  Google Scholar 

  53. Ling W, Krager K, Richardson KK, Warren AD, Ponte F, Aykin-Burns N, et al. Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency. JCI Insight. 2021;6(10) https://doi.org/10.1172/jci.insight.146728.

  54. Richardson KK, Ling W, Krager K, Fu Q, Byrum SD, Pathak R, et al. Ionizing radiation activates mitochondrial function in osteoclasts and causes bone loss in young adult male mice. Int J Mol Sci. 2022;23(2) https://doi.org/10.3390/ijms23020675.

  55. Lee SH, Lee SH, Lee JH, Park JW, Kim JE. IDH2 deficiency increases bone mass with reduced osteoclastogenesis by limiting RANKL expression in osteoblasts. Bone. 2019;129:115056. https://doi.org/10.1016/j.bone.2019.115056.

    Article  CAS  PubMed  Google Scholar 

  56. Takeshima K, Nishiwaki Y, Suda Y, Niki Y, Sato Y, Kobayashi T, et al. A missense single nucleotide polymorphism in the ALDH2 gene, rs671, is associated with hip fracture. Sci Rep. 2017;7(1):428. https://doi.org/10.1038/s41598-017-00503-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoshi H, Monoe F, Ohsawa I, Ohta S, Miyamoto T. Astaxanthin improves osteopenia caused by aldehyde-stress resulting from Aldh2 mutation due to impaired osteoblastogenesis. Biochem Biophys Res Commun. 2020;527(1):270–5. https://doi.org/10.1016/j.bbrc.2020.04.013.

    Article  CAS  PubMed  Google Scholar 

  58. Bernardi P, Rasola A, Forte M, Lippe G. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev. 2015;95(4):1111–55. https://doi.org/10.1152/physrev.00001.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhen YF, Wang GD, Zhu LQ, Tan SP, Zhang FY, Zhou XZ, et al. P53 dependent mitochondrial permeability transition pore opening is required for dexamethasone-induced death of osteoblasts. J Cell Physiol. 2014;229(10):1475–83. https://doi.org/10.1002/jcp.24589.

    Article  CAS  PubMed  Google Scholar 

  60. Shum LC, White NS, Nadtochiy SM, Bentley KL, Brookes PS, Jonason JH, et al. Cyclophilin D Knock-out mice show enhanced resistance to osteoporosis and to metabolic changes observed in aging bone. PLoS One. 2016;11(5):e0155709. https://doi.org/10.1371/journal.pone.0155709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. • Shares BH, Smith CO, Sheu TJ, Sautchuk R Jr, Schilling K, Shum LC, et al. Inhibition of the mitochondrial permeability transition improves bone fracture repair. Bone. 2020;137:115391. https://doi.org/10.1016/j.bone.2020.115391. This study has shown that inhibition of the mitochondrial permeability transition pore accelerates bone fracture repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shum LC, Hollenberg AM, Baldwin AL, Kalicharan BH, Maqsoodi N, Rubery PT, et al. Role of oxidative metabolism in osseointegration during spinal fusion. PLoS One. 2020;15(11):e0241998. https://doi.org/10.1371/journal.pone.0241998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. •• Sautchuk R, Kalicharan BH, Escalera-Rivera K, Jonason JH, Porter GA, Awad HA, et al. Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation. Elife. 2022;11 https://doi.org/10.7554/eLife.75023. This work demonstrates how osteogenic signaling (BMP) modulates mitochondrial integrity and function (MPTP activity) and why such a modulation is important for osteoprogenitors.

  64. Sautchuk R Jr, Yu C, McArthur M, Massie C, Brookes PS, Porter GA Jr, et al. Role of the mitochondrial permeability transition in bone metabolism and aging. J Bone Miner Res. 2023;38(4):522–40. https://doi.org/10.1002/jbmr.4787.

    Article  PubMed  Google Scholar 

  65. Singh K, Krug L, Basu A, Meyer P, Treiber N, Vander Beken S, et al. Alpha-ketoglutarate curbs differentiation and induces cell death in mesenchymal stromal precursors with mitochondrial dysfunction. Stem Cells. 2017;35(7):1704–18. https://doi.org/10.1002/stem.2629.

    Article  CAS  PubMed  Google Scholar 

  66. Kobayashi K, Nojiri H, Saita Y, Morikawa D, Ozawa Y, Watanabe K, et al. Mitochondrial superoxide in osteocytes perturbs canalicular networks in the setting of age-related osteoporosis. Sci Rep. 2015;5:9148. https://doi.org/10.1038/srep09148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. • Behera J, Ison J, Rai H, Tyagi N. Allyl sulfide promotes osteoblast differentiation and bone density via reducing mitochondrial DNA release mediated Kdm6b/H3K27me3 epigenetic mechanism. Biochem Biophys Res Commun. 2021;543:87–94. https://doi.org/10.1016/j.bbrc.2021.01.016. This work connects mitochondrial activity in osteoblasts with epigenetic signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ucer S, Iyer S, Kim HN, Han L, Rutlen C, Allison K, et al. The effects of aging and sex steroid deficiency on the murine skeleton are independent and mechanistically distinct. J Bone Miner Res. 2017;32(3):560–74. https://doi.org/10.1002/jbmr.3014.

    Article  CAS  PubMed  Google Scholar 

  69. Jiang Z, Wang H, Qi G, Jiang C, Chen K, Yan Z. Iron overload-induced ferroptosis of osteoblasts inhibits osteogenesis and promotes osteoporosis: an in vitro and in vivo study. IUBMB Life. 2022;74(11):1052–69. https://doi.org/10.1002/iub.2656.

    Article  CAS  PubMed  Google Scholar 

  70. Das BK, Wang L, Fujiwara T, Zhou J, Aykin-Burns N, Krager KJ, et al. Transferrin receptor 1-mediated iron uptake regulates bone mass in mice via osteoclast mitochondria and cytoskeleton. Elife. 2022;11:e73539. https://doi.org/10.7554/eLife.73539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gan X, Huang S, Yu Q, Yu H, Yan SS. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction. Biochem Biophys Res Commun. 2015;468(4):719–25. https://doi.org/10.1016/j.bbrc.2015.11.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Danics L, Abbas AA, Kis B, Pircs K. Fountain of youth—targeting autophagy in aging. Front Aging Neurosci. 2023;15:1125739. https://doi.org/10.3389/fnagi.2023.1125739.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300. https://doi.org/10.1210/er.2009-0024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang YH, Li B, Zheng XF, Chen JW, Chen K, Jiang SD, et al. Oxidative damage to osteoblasts can be alleviated by early autophagy through the endoplasmic reticulum stress pathway—implications for the treatment of osteoporosis. Free Radic Biol Med. 2014;77:10–20. https://doi.org/10.1016/j.freeradbiomed.2014.08.028.

    Article  CAS  PubMed  Google Scholar 

  75. Li W, Jiang WS, Su YR, Tu KW, Zou L, Liao CR, et al. PINK1/Parkin-mediated mitophagy inhibits osteoblast apoptosis induced by advanced oxidation protein products. Cell Death Dis. 2023;14(2):88. https://doi.org/10.1038/s41419-023-05595-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun X, Yang X, Zhao Y, Li Y, Guo L. Effects of 17β-estradiol on mitophagy in the murine MC3T3-E1 osteoblast cell line is mediated via G protein-coupled estrogen receptor and the ERK1/2 signaling pathway. Med Sci Monit. 2018;24:903–11. https://doi.org/10.12659/msm.908705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim HN, Ponte F, Nookaew I, Ucer Ozgurel S, Marques-Carvalho A, Iyer S, et al. Estrogens decrease osteoclast number by attenuating mitochondria oxidative phosphorylation and ATP production in early osteoclast precursors. Sci Rep. 2020;10(1):11933. https://doi.org/10.1038/s41598-020-68890-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Piemontese M, Onal M, Xiong J, Han L, Thostenson JD, Almeida M, et al. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage. Sci Rep. 2016;6:24262. https://doi.org/10.1038/srep24262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Aoki S, Shimizu K, Ito K. Autophagy-dependent mitochondrial function regulates osteoclast differentiation and maturation. Biochem Biophys Res Commun. 2020;527(4):874–80. https://doi.org/10.1016/j.bbrc.2020.04.155.

    Article  CAS  PubMed  Google Scholar 

  80. Chen YH, Peng SY, Cheng MT, Hsu YP, Huang ZX, Cheng WT, et al. Different susceptibilities of osteoclasts and osteoblasts to glucocorticoid-induced oxidative stress and mitochondrial alterations. Chin J Physiol. 2019;62(2):70–9. https://doi.org/10.4103/cjp.Cjp_7_19.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

R. A. E. is supported by NIH grants R01 AR072601, R01 AG076786, and R21 AR080291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman A. Eliseev.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All reported data coming from human and animal studies performed by the authors have been previously published and complied with all applicable ethical standards including the Helsinki declaration and its amendments, institutional/national research committee standards, and guidelines.

Additional information

All figures and tables are original and never published before. Parts of Fig. 1 were made using Biorender.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catheline, S.E., Kaiser, E. & Eliseev, R.A. Mitochondrial Genetics and Function as Determinants of Bone Phenotype and Aging. Curr Osteoporos Rep 21, 540–551 (2023). https://doi.org/10.1007/s11914-023-00816-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00816-4

Keywords

Navigation