Skip to main content
Log in

Evaluating Patients for Secondary Causes of Osteoporosis

  • Epidemiology and Pathophysiology (J Compston and M Rothman, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review provides suggestions for the evaluation of patients with osteoporosis in order to assure that the diagnosis is correct, to identify potentially correctable conditions contributing to skeletal fragility and fracture risk, and to assist in individualizing management decisions.

Recent Findings

Some patients who appear to have osteoporosis have another skeletal disease, such as osteomalacia, that requires further evaluation and treatment that is different than for osteoporosis. Many patients with osteoporosis have contributing factors (e.g., vitamin D deficiency, high fall risk) that should be addressed before and after starting treatment to assure that treatment is effective and safe. Evaluation includes a focused medical history, skeletal-related physical examination, assessment of falls risk, appropriate laboratory tests, and rarely transiliac double-tetracycline labeled bone biopsy.

Summary

Evaluation of patients with osteoporosis before starting treatment is essential for optimizing clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kanis JA, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical Report. World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK: Printed by the University of Sheffield; 2007.

  2. Shuhart CR, Yeap SS, Anderson PA, Jankowski LG, Lewiecki EM, Morse LR, et al. Executive summary of the 2019 ISCD position development conference on monitoring treatment, DXA cross-calibration and least significant change, spinal cord injury, periprosthetic and orthopedic bone health, transgender medicine, and pediatrics. J Clin Densitom. 2019;22(4):453–71. https://doi.org/10.1016/j.jocd.2019.07.001. Adherence to the ISCD Official Positions is very important in order to have good quality bone density tests that can be used in making clinical decision about the management of patients with osteoporosis

    Article  PubMed  Google Scholar 

  3. Siris ES, Adler R, Bilezikian J, Bolognese M, Dawson-Hughes B, Favus MJ, Harris ST, Jan de Beur SM, Khosla S, Lane NE, Lindsay R, Nana AD, Orwoll ES, Saag K, Silverman S, Watts NB. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int. 2014;25(5):1439–43. https://doi.org/10.1007/s00198-014-2655-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kanis JA, Hans D, Cooper C, Baim S, Bilezikian JP, Binkley N, et al. Interpretation and use of FRAX in clinical practice. Osteoporos Int. 2011;22(9):2395–411. https://doi.org/10.1007/s00198-011-1713-z.

    Article  CAS  PubMed  Google Scholar 

  5. Camacho PM, Petak SM, Binkley N, Diab DL, Eldeiry LS, Farooki A, et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis-2020 Update. Endocr Pract. 2020;26(Suppl 1):1–46. 10.4158/GL-2020-0524SUPPL. These guidelines provide a through review of current concepts in evaluating and treating patients with osteoporosis

  6. Byreddy DV, Bouchonville MF II, Lewiecki EM. Drug-induced osteoporosis: from Fuller Albright to aromatase inhibitors. Climacteric. 2015;18(Suppl 2):39–46. https://doi.org/10.3109/13697137.2015.1103615.

    Article  PubMed  Google Scholar 

  7. Painter SE, Kleerekoper M, Camacho PM. Secondary osteoporosis: a review of the recent evidence. Endocr Pract. 2006;12(4):436–45.

    Article  Google Scholar 

  8. Tannenbaum C, Clark J, Schwartzman K, Wallenstein S, Lapinski R, Meier D, Luckey M. Yield of laboratory testing to identify secondary contributors to osteoporosis in otherwise healthy women. J Clin Endocrinol Metab. 2003;87:4431–7.

    Article  Google Scholar 

  9. Luckey MM, Tannenbaum C. Authors’ response: recommended testing in patients with low bone density. J Clin Endocrinol Metab. 2003;88(3):1405.

    Article  CAS  Google Scholar 

  10. Fitzpatrick LA. Secondary causes of osteoporosis. Mayo Clin Proc. 2002;77(5):453–68.

    Article  Google Scholar 

  11. Hofbauer LC, Hamann C, Ebeling PR. Approach to the patient with secondary osteoporosis. Eur J Endocrinol. 2010;162(6):1009–20. doi:EJE-10-0015 [pii]. https://doi.org/10.1530/EJE-10-0015.

    Article  CAS  PubMed  Google Scholar 

  12. Stein E, Shane E. Secondary osteoporosis. EndocrinolMetab ClinNorth Am. 2003;32(1):115–34. vii

    Google Scholar 

  13. Jha S, Chapman M, Roszko K. When low bone mineral density and fractures is not osteoporosis. Current Osteoporosis Reports. 2019;17(5):324–32. https://doi.org/10.1007/s11914-019-00529-7. Some patients who appear to have osteoporosis have other skeletal disorders that require evaluation and treatment that is different than for osteoporosis

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sutton RA, Mumm S, Coburn SP, Ericson KL, Whyte MP. “Atypical femoral fractures” during bisphosphonate exposure in adult hypophosphatasia. J Bone Miner Res. 2012;27(5):987–94. https://doi.org/10.1002/jbmr.1565.

    Article  CAS  PubMed  Google Scholar 

  15. Whyte MP. Atypical femoral fractures, bisphosphonates, and adult hypophosphatasia. J Bone Miner Res. 2009;24(6):1132–4. https://doi.org/10.1359/jbmr.081253.

    Article  PubMed  Google Scholar 

  16. Lewiecki EM. Evaluation of the osteoporosis patient. In: Dempster DW, Cauley JA, Bouxsein ML, Cosman F, editors. Marcus and Feldman’s Osteoporosis. 5th ed. San Diego, CA, USA: Elsevier; 2021. p. 1475–500.

    Chapter  Google Scholar 

  17. Lewiecki EM. Osteoporosis: clinical evaluation. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et al., editors. Endotext. South Dartmouth (MA): Endotext; 2021.

    Google Scholar 

  18. Colangelo L, Biamonte F, Pepe J, Cipriani C, Minisola S. Understanding and managing secondary osteoporosis. Expert Rev Endocrinol Metab. 2019;14(2):111–22. https://doi.org/10.1080/17446651.2019.1575727.

    Article  CAS  PubMed  Google Scholar 

  19. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R, National Osteoporosis Foundation. Clinician's Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int. 2014;25(10):2359–81. https://doi.org/10.1007/s00198-014-2794-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. North American Menospause Society. Management of osteoporosis in postmenopausal women: 2010 position statement of The North American Menopause Society. Menopause. 2010;17(1):25–54.

    Article  Google Scholar 

  21. Helsel BC, Kemper KA, Williams JE, Truong K, Van Puymbroeck M. Multidimensional risk score to stratify community-dwelling older adults by future fall risk using the Stopping Elderly Accidents, Deaths and Injuries (STEADI) framework. Inj Prev. 2020;27:461–6. https://doi.org/10.1136/injuryprev-2020-044014.

    Article  PubMed  Google Scholar 

  22. Kanis JA, Johansson H, Oden A, McCloskey EV. Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int. 2011;22(3):809–16.

    Article  CAS  Google Scholar 

  23. Kanis JA, Johansson H, Harvey NC, Gudnason V, Sigurdsson G, Siggeirsdottir K, Lorentzon M, Liu E, Vandenput L, McCloskey EV. Adjusting conventional FRAX estimates of fracture probability according to the recency of sentinel fractures. Osteoporos Int. 2020;31(10):1817–28. https://doi.org/10.1007/s00198-020-05517-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang S, Leslie WD, Yan L, Walld R, Roos LL, Morin SN, Majumdar SR, Lix LM. Objectively Verified Parental Hip Fracture Is an Independent Risk Factor for Fracture: a Linkage Analysis of 478,792 Parents and 261,705 Offspring. J Bone Miner Res. 2016;31(9):1753–9. https://doi.org/10.1002/jbmr.2849.

    Article  PubMed  Google Scholar 

  25. Schacter GI, Leslie WD. DXA-based measurements in diabetes: can they predict fracture risk? Calcif Tissue Int. 2017;100(2):150–64. https://doi.org/10.1007/s00223-016-0191-x.

    Article  CAS  PubMed  Google Scholar 

  26. Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA. Spine-hip discordance and fracture risk assessment: a physician-friendly FRAX enhancement. Osteoporos Int. 2011;22:839–47.

    Article  CAS  Google Scholar 

  27. Martineau P, Leslie WD, Johansson H, Oden A, McCloskey EV, Hans D, et al. clinical utility of using lumbar spine trabecular bone score to adjust fracture probability: the Manitoba BMD cohort. J Bone Miner Res. 2017;32(7):1568–74. https://doi.org/10.1002/jbmr.3124.

    Article  PubMed  Google Scholar 

  28. Johansson H, Kanis JA, Oden A, McCloskey E, Chapurlat RD, Christiansen C, et al. A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res. 2014;29(1):223–33. https://doi.org/10.1002/jbmr.2017.

    Article  PubMed  Google Scholar 

  29. Li G, Compston JE, Leslie WD, Thabane L, Papaioannou A, Lau A, Wang X, Qin C, Chen B, Chen M, Adachi JD. Relationship between obesity and risk of major osteoporotic fracture in postmenopausal women: taking frailty into consideration. J Bone Miner Res. 2020;35(12):2355–62. https://doi.org/10.1002/jbmr.4139.

    Article  CAS  PubMed  Google Scholar 

  30. Delitala AP, Scuteri A, Doria C. Thyroid hormone diseases and osteoporosis. J Clin Med. 2020;9(4) https://doi.org/10.3390/jcm9041034.

  31. Biskobing DM. COPD and osteoporosis. Chest. 2002;121(2):609–20.

    Article  Google Scholar 

  32. Prevention CfDCa. Timed Up & Go (TUG). Centers for Disease Control and Prevention. 2017. https://www.cdc.gov/steadi/pdf/TUG_test-print.pdf. Accessed June 19, 2021.

  33. Centers for Disease Control and Prevention. 30-Second Chair Stand. Centers for Disease Control and Prevention, 2017. https://www.cdc.gov/steadi/pdf/STEADI-Assessment-30Sec-508.pdf. Accessed June 19, 2021.

  34. Yee XS, Ng YS, Allen JC, Latib A, Tay EL, Abu Bakar HM, Ho CYJ, Koh WCC, Kwek HHT, Tay L. Performance on sit-to-stand tests in relation to measures of functional fitness and sarcopenia diagnosis in community-dwelling older adults. Eur Rev Aging Phys Act. 2021;18(1):1. https://doi.org/10.1186/s11556-020-00255-5.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lusardi MM, Fritz S, Middleton A, Allison L, Wingood M, Phillips E, Criss M, Verma S, Osborne J, Chui KK. Determining risk of falls in community dwelling older adults: a systematic review and meta-analysis using posttest probability. J Geriatr Phys Ther. 2017;40(1):1–36. https://doi.org/10.1519/JPT.0000000000000099.

    Article  PubMed  Google Scholar 

  36. Applebaum EV, Breton D, Feng ZW, Ta AT, Walsh K, Chasse K, et al. Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans. PLoS One. 2017;12(5):e0176946. https://doi.org/10.1371/journal.pone.0176946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Papaioannou A, Morin S, Cheung AM, Atkinson S, Brown JP, Feldman S, et al. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ. 2010;182(17):1864–73. cmaj.100771 [pii]. https://doi.org/10.1503/cmaj.100771.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2017;12(1):43. https://doi.org/10.1007/s11657-017-0324-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsvetov G, Amitai O, Shochat T, Shimon I, Akirov A, Diker-Cohen T. Denosumab-induced hypocalcemia in patients with osteoporosis: can you know who will get low? Osteoporos Int. 2020;31(4):655–65. https://doi.org/10.1007/s00198-019-05261-7.

    Article  CAS  PubMed  Google Scholar 

  40. Maalouf NM, Heller HJ, Odvina CV, Kim PJ, Sakhaee K. Bisphosphonate-induced hypocalcemia: report of 3 cases and review of literature. Endocr Pract. 2006;12(1):48–53.

    Article  Google Scholar 

  41. Bilezikian JP, Brandi ML, Eastell R, Silverberg SJ, Udelsman R, Marcocci C, Potts JT Jr. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the fourth international workshop. J Clin Endocrinol Metab. 2014;99(10):3561–9. https://doi.org/10.1210/jc.2014-1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jawaid I, Rajesh S. Hyperparathyroidism (primary) NICE guideline: diagnosis, assessment, and initial management. Br J Gen Pract. 2020;70(696):362–3. https://doi.org/10.3399/bjgp20X710717.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Payne RB, Little AJ, Williams RB, Milner JR. Interpretation of serum calcium in patients with abnormal serum proteins. Br Med J. 1973;4(5893):643–6. https://doi.org/10.1136/bmj.4.5893.643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. James MT, Zhang J, Lyon AW, Hemmelgarn BR. Derivation and internal validation of an equation for albumin-adjusted calcium. BMC Clin Pathol. 2008;8:12. https://doi.org/10.1186/1472-6890-8-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schini M, Hannan FM, Walsh JS, Eastell R. Reference interval for albumin-adjusted calcium based on a large UK population. Clin Endocrinol (Oxf). 2020;94:34–9. https://doi.org/10.1111/cen.14326.

    Article  CAS  PubMed  Google Scholar 

  46. Minisola S, Pepe J, Cipriani C. Measuring serum calcium: total, albumin-adjusted or ionized? Clin Endocrinol (Oxf). 2020;95:267–8. https://doi.org/10.1111/cen.14362.

    Article  PubMed  Google Scholar 

  47. Vautour L, Goltzman D. Regulation of Calcium Homeostasis. In: Bilezikian JP, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Ninth ed. John Wiley & Sons, Inc; 2019. p. 165–72.

  48. Morton AR, Garland JS, Holden RM. Is the calcium correct? Measuring serum calcium in dialysis patients. Seminars in dialysis. 2010;23(3):283–9. https://doi.org/10.1111/j.1525-139X.2010.00735.x.

    Article  PubMed  Google Scholar 

  49. Drezner MK. Tumor-induced osteomalacia. RevEndocrMetab Disord. 2001;2(2):175–86.

    CAS  Google Scholar 

  50. Perazella MA. Drug-induced renal failure: update on new medications and unique mechanisms of nephrotoxicity. Am J Med Sci. 2003;325(6):349–62.

    Article  Google Scholar 

  51. Ralston SH, Corral-Gudino L, Cooper C, Francis RM, Fraser WD, Gennari L, Guañabens N, Javaid MK, Layfield R, O'Neill TW, Russell RGG, Stone MD, Simpson K, Wilkinson D, Wills R, Zillikens MC, Tuck SP. Diagnosis and Management of Paget's Disease of Bone in Adults: A Clinical Guideline. J Bone Miner Res. 2019;34(4):579–604. https://doi.org/10.1002/jbmr.3657.

    Article  PubMed  Google Scholar 

  52. Minisola S, Colangelo L, Pepe J, Diacinti D, Cipriani C, Rao SD. Osteomalacia and vitamin D status: a clinical update 2020. JBMR Plus. 2021;5(1):e10447. https://doi.org/10.1002/jbm4.10447.

    Article  CAS  PubMed  Google Scholar 

  53. Whyte MP. Hypophosphatasia: An overview For 2017. Bone. 2017;102:15–25. https://doi.org/10.1016/j.bone.2017.02.011.

    Article  CAS  PubMed  Google Scholar 

  54. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, Moe SM, Shroff R, Tonelli MA, Toussaint ND, Vervloet MG, Leonard MB. Diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder: synopsis of the kidney disease: improving Global Outcomes 2017 Clinical Practice Guideline Update. Ann Intern Med. 2018;168(6):422–30. https://doi.org/10.7326/M17-2640.

    Article  PubMed  Google Scholar 

  55. Moe SM, Drueke TB. Group ftKW. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention and treatment of chronic kidney disease mineral and bone disorder (CKD-MBD). Kidney Int. 2009;76(Suppl 113):S1–S128.

    Google Scholar 

  56. Wilson LM, Rebholz CM, Jirru E, Liu MC, Zhang A, Gayleard J, Chu Y, Robinson KA. Benefits and harms of osteoporosis medications in patients with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med. 2017;166(9):649–58. https://doi.org/10.7326/M16-2752.

    Article  PubMed  Google Scholar 

  57. Perazella MA, Markowitz GS. Bisphosphonate nephrotoxicity. Kidney Int. 2008;74(11):1385–93.

    Article  CAS  Google Scholar 

  58. Boonen S, Sellmeyer DE, Lippuner K, Orlov-Morozov A, Abrams K, Mesenbrink P, Eriksen EF, Miller PD. Renal safety of annual zoledronic acid infusions in osteoporotic postmenopausal women. Kidney Int. 2008;74(5):641–8.

    Article  CAS  Google Scholar 

  59. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM, Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  CAS  Google Scholar 

  60. Roth DE, Abrams SA, Aloia J, Bergeron G, Bourassa MW, Brown KH, Calvo MS, Cashman KD, Combs G, de-Regil LM, Jefferds ME, Jones KS, Kapner H, Martineau AR, Neufeld LM, Schleicher RL, Thacher TD, Whiting SJ. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low- and middle-income countries. Ann N Y Acad Sci. 2018;1430(1):44–79. https://doi.org/10.1111/nyas.13968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Priemel M, von Domarus C, Klatte TO, Kessler S, Schlie J, Meier S et al. Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res. 2010;25(2):305-312.

  62. Adami S, Giannini S, Bianchi G, Sinigaglia L, Di MO, Fiore CE, et al. Vitamin D status and response to treatment in post-menopausal osteoporosis. Osteoporos Int. 2009;20(2):239–44. https://doi.org/10.1007/s00198-008-0650-y.

    Article  CAS  PubMed  Google Scholar 

  63. Bertoldo F, Pancheri S, Zenari S, Boldini S, Giovanazzi B, Zanatta M, Valenti MT, Carbonare LD, Cascio VL. Serum 25-hydroxyvitamin D levels modulate the acute-phase response associated with the first nitrogen-containing bisphosphonate infusion. J Bone Miner Res. 2010;25(3):447–54.

    Article  CAS  Google Scholar 

  64. Bayomy O, Zaheer S, Williams JS, Curhan G, Vaidya A. Disentangling the relationships between the renin-angiotensin-aldosterone system, calcium physiology, and risk for kidney stones. J Clin Endocrinol Metab. 2020;105(6) https://doi.org/10.1210/clinem/dgaa123.

  65. Laerum E, Palmer H. Methodological aspects of examination of 24 hour urinary excretions in outpatients with recurrent urolithiasis. Scand J Urol Nephrol. 1983;17(3):321–4. https://doi.org/10.3109/00365598309182139.

    Article  CAS  PubMed  Google Scholar 

  66. Yilmaz G, Yilmaz FM, Hakligor A, Yucel D. Are preservatives necessary in 24-hour urine measurements? Clin Biochem. 2008;41(10-11):899–901. https://doi.org/10.1016/j.clinbiochem.2008.03.002.

    Article  CAS  PubMed  Google Scholar 

  67. Feres MC, Bini R, De Martino MC, Biagini SP, de Sousa AL, Campana PG, et al. Implications for the use of acid preservatives in 24-hour urine for measurements of high demand biochemical analytes in clinical laboratories. Clin Chim Acta. 2011;412(23-24):2322–5. https://doi.org/10.1016/j.cca.2011.08.033.

    Article  CAS  PubMed  Google Scholar 

  68. Schafer AL, Weaver CM, Black DM, Wheeler AL, Chang H, Szefc GV, Stewart L, Rogers SJ, Carter JT, Posselt AM, Shoback DM, Sellmeyer DE. Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin d status. J Bone Miner Res. 2015;30(8):1377–85. https://doi.org/10.1002/jbmr.2467.

    Article  CAS  PubMed  Google Scholar 

  69. Ciacci C, Cirillo M, Mellone M, Basile F, Mazzacca G, De Santo NG. Hypocalciuria in overt and subclinical celiac disease. Am J Gastroenterol. 1995;90(9):1480–4.

    CAS  PubMed  Google Scholar 

  70. Bianchi ML. Inflammatory bowel diseases, celiac disease, and bone. Arch Biochem Biophys. 2010;503(1):54–65. https://doi.org/10.1016/j.abb.2010.06.026.

    Article  CAS  PubMed  Google Scholar 

  71. Ryan LE, Ing SW. Idiopathic hypercalciuria: can we prevent stones and protect bones? Cleve Clin J Med. 2018;85(1):47–54. https://doi.org/10.3949/ccjm.85a.16090.

    Article  PubMed  Google Scholar 

  72. Bilezikian JP, Bandeira L, Khan A, Cusano NE. Hyperparathyroidism. Lancet. 2018;391(10116):168–78. https://doi.org/10.1016/S0140-6736(17)31430-7.

    Article  CAS  PubMed  Google Scholar 

  73. Rizzoli R. Vitamin D supplementation: upper limit for safety revisited? Aging Clin Exp Res. 2021;33(1):19–24. https://doi.org/10.1007/s40520-020-01678-x.

    Article  PubMed  Google Scholar 

  74. Smith LM, Gallagher JC. Reference range for 24-h urine calcium, calcium/creatinine ratio, and correlations with calcium absorption and serum vitamin D metabolites in normal women. Osteoporos Int. 2021;32(3):539–47. https://doi.org/10.1007/s00198-020-05615-6.

    Article  CAS  PubMed  Google Scholar 

  75. Audran M, Legrand E. Hypercalciuria. Joint Bone Spine. 2000;67(6):509–15.

    Article  CAS  Google Scholar 

  76. Bataille P, Achard JM, Fournier A, Boudailliez B, Westeel PF, el Esper N, et al. Diet, vitamin D and vertebral mineral density in hypercalciuric calcium stone formers. Kidney Int. 1991;39(6):1193–205.

    Article  CAS  Google Scholar 

  77. Cote AM, Firoz T, Mattman A, Lam EM, von Dadelszen P, Magee LA. The 24-hour urine collection: gold standard or historical practice? Am J Obstet Gynecol. 2008;199(6):625.e1–6. https://doi.org/10.1016/j.ajog.2008.06.009.

    Article  Google Scholar 

  78. Foley K, Boccuzzi L. Urine calcium: laboratory measurement and clinical utility. Labmedicine. 2010;41(11):683–6.

    Google Scholar 

  79. Jones AN, Shafer MM, Keuler NS, Crone EM, Hansen KE. Fasting and postprandial spot urine calcium-to-creatinine ratios do not detect hypercalciuria. Osteoporos Int. 2011; https://doi.org/10.1007/s00198-011-1580-7.

  80. Bilezikian JP. Primary hyperparathyroidism. J Clin Endocrinol Metab. 2018;103:3993–4004. https://doi.org/10.1210/jc.2018-01225.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Brandi ML, Bilezikian JP, Shoback D, Bouillon R, Clarke BL, Thakker RV, Khan AA, Potts JT Jr. Management of hypoparathyroidism: summary statement and guidelines. J Clin Endocrinol Metab. 2016;101(6):2273–83. https://doi.org/10.1210/jc.2015-3907.

    Article  CAS  PubMed  Google Scholar 

  82. Zavatta G, Clarke BL. Normocalcemic primary hyperparathyroidism: need for a standardized clinical approach. Endocrinol Metab (Seoul). 2021;36:525–35. https://doi.org/10.3803/EnM.2021.1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Husby S, Koletzko S, Korponay-Szabo I, Kurppa K, Mearin ML, Ribes-Koninckx C, et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J Pediatr Gastroenterol Nutr. 2020;70(1):141–56. https://doi.org/10.1097/MPG.0000000000002497.

    Article  PubMed  Google Scholar 

  84. Watts NB, Adler RA, Bilezikian JP, Drake MT, Eastell R, Orwoll ES, et al. Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(6):1802–22. 97/6/1802 [pii]. https://doi.org/10.1210/jc.2011-3045.

    Article  CAS  PubMed  Google Scholar 

  85. Chiodini I, Vainicher CE, Morelli V, Palmieri S, Cairoli E, Salcuni AS, Copetti M, Scillitani A. MECHANISMS IN ENDOCRINOLOGY: Endogenous subclinical hypercortisolism and bone: a clinical review. Eur J Endocrinol. 2016;175(6):R265–R82. https://doi.org/10.1530/EJE-16-0289.

    Article  CAS  PubMed  Google Scholar 

  86. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40. https://doi.org/10.1210/jc.2008-0125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pardanani A. Systemic mastocytosis in adults: 2021 Update on diagnosis, risk stratification and management. Am J Hematol. 2021;96(4):508–25. https://doi.org/10.1002/ajh.26118.

    Article  PubMed  Google Scholar 

  88. Drake MT. Unveiling skeletal fragility in patients diagnosed with MGUS: no longer a condition of undetermined significance? J Bone Miner Res. 2014;29(12):2529–33. https://doi.org/10.1002/jbmr.2387.

    Article  PubMed  Google Scholar 

  89. Rasch S, Lund T, Asmussen JT, Lerberg Nielsen A, Faebo Larsen R, Osterheden Andersen M, et al. Multiple myeloma associated bone disease. Cancers (Basel). 2020;12(8) https://doi.org/10.3390/cancers12082113.

  90. Nador G, Ramasamy K, Panitsas F, Pratt G, Sadler R, Javaid MK. Testing and management for monoclonal gammopathy of uncertain significance and myeloma patients presenting with osteoporosis and fragility fractures. Rheumatology (Oxford). 2019;58(7):1142–53. https://doi.org/10.1093/rheumatology/kez127.

    Article  PubMed  Google Scholar 

  91. Lewiecki EM, Bilezikian JP, Kagan R, Krakow D, McClung MR, Miller PD, Rush ET, Shuhart CR, Watts NB, Yu EW. Proceedings of the 2019 Santa Fe Bone Symposium: new concepts in the care of osteoporosis and rare bone diseases. J Clin Densitom. 2019;23:1–20. https://doi.org/10.1016/j.jocd.2019.09.006.

    Article  PubMed  Google Scholar 

  92. Rocha-Braz MGM, Franca MM, Fernandes AM, Lerario AM, Zanardo EA, de Santana LS, et al. Comprehensive genetic analysis of 128 candidate genes in a cohort with idiopathic, severe, or familial osteoporosis. J Endocr Soc. 2020;4(12):bvaa148. https://doi.org/10.1210/jendso/bvaa148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lane NE, Saag K, O'Neill TJ, Manion M, Shah R, Klause U, et al. Real-world bone turnover marker use: impact on treatment decisions and fracture. Osteoporos Int. 2021;32(5):831–40. https://doi.org/10.1007/s00198-020-05734-0. Appropriate use of bone turnover markers in clinical practice can provide useful clinical information on bone health and response to therapy

    Article  CAS  PubMed  Google Scholar 

  94. Morris HA, Eastell R, Jorgensen NR, Cavalier E, Vasikaran S, Chubb SAP, Kanis JA, Cooper C, Makris K, IFCC-IOF Working Group for Standardisation of Bone Marker Assays (WG-BMA). Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin Chim Acta. 2017;467:34–41. https://doi.org/10.1016/j.cca.2016.06.036.

    Article  CAS  PubMed  Google Scholar 

  95. Miller PD. The role of bone biopsy in patients with chronic renal failure. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S140–S50.

    Article  Google Scholar 

  96. Pazianas M, Miller PD. Osteoporosis and chronic kidney disease-mineral and bone disorder (CKD-MBD): back to basics. Am J Kidney Dis. 2021; https://doi.org/10.1053/j.ajkd.2020.12.024. Patients with CKD-MBD may have low bone density and high fracture risk yet require special considerations for treatment based on an evaluation of skeletal metabolism

  97. Treurniet S, Eekhoff EMW, Schmidt FN, Micha D, Busse B, Bravenboer N. A clinical perspective on advanced developments in bone biopsy assessment in rare bone disorders. Front Endocrinol (Lausanne). 2020;11:399. https://doi.org/10.3389/fendo.2020.00399.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Michael Lewiecki.

Ethics declarations

Conflict of Interest

In the past year, E. Michael Lewiecki has received no direct income from potentially conflicting entities. His employer, New Mexico Clinical Research & Osteoporosis Center, has received research grants from Radius, Amgen, Mereo; income for service on scientific advisory boards or consulting for Amgen, Radius, Alexion, Sandoz, Samsung Bioepis; service on speakers’ bureaus for Radius, Alexion; project development for University of New Mexico; and royalties from UpToDate for sections on DXA, fracture risk assessment, and prevention of osteoporosis. He is a board member of the National Osteoporosis Foundation, International Society for Clinical Densitometry, and Osteoporosis Foundation of New Mexico.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Epidemiology and Pathophysiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewiecki, E.M. Evaluating Patients for Secondary Causes of Osteoporosis. Curr Osteoporos Rep 20, 1–12 (2022). https://doi.org/10.1007/s11914-022-00717-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-022-00717-y

Keywords

Navigation