Skip to main content

Advertisement

Log in

Vertebral Fracture Identification as Part of a Comprehensive Risk Assessment in Patients with Osteoporosis

  • Epidemiology and Pathophysiology (F Cosman and D Shoback, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review current evidence regarding the vertebral fracture prevalence, the accuracy of vertebral fracture identification on current imaging technologies, and the potential impact of vertebral fracture identification on fracture risk.

Recent Findings

Important new studies have clarified the features of prevalent vertebral fracture that most strongly predict incident fractures. Age- and sex-stratified estimates of vertebral fracture prevalence on densitometric lateral spine images in the US population are now available. The accuracy of densitometric vertebral fracture assessment, how computed tomography scans and other spinal images obtained for indications other than vertebral fracture assessment can be leveraged to detect prevalent vertebral fractures, and the potential impact of vertebral fracture assessment on patient and provider fracture risk management behavior have been clarified.

Summary

Substantial progress has been made regarding screening strategies using lateral spine imaging to detect prevalent vertebral fracture in the older population. Further research regarding implementation of these strategies in clinical practice and their impact on clinical outcomes is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Lentle B, Trollip J, Lian K. The radiology of osteoporotic vertebral fractures redux. J Clin Densitom. 2016;19(1):40–7. An excellent overview of the various definitions of vertebral fracture, and their applications in clinical practice

    Article  PubMed  Google Scholar 

  2. • Chou SH, Vokes T. Vertebral morphometry. J Clin Densitom. 2016;19(1):48–53. A very good review of the various morphometric definitions of vertebral fracture that have been used in both randomized trials and prospective cohort studies, as well as practical advice and tips on using vertebral morphometry

    Article  PubMed  Google Scholar 

  3. Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O'Fallon WM, Riggs BL. Epidemiology of vertebral fractures in women. Am J Epidemiol. 1989;129(5):1000–11.

    Article  PubMed  Google Scholar 

  4. McCloskey EV, Spector TD, Eyres KS, Fern ED, O'Rourke N, Vasikaran S, et al. The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int. 1993;3(3):138–47.

    Article  CAS  PubMed  Google Scholar 

  5. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ 3rd. Classification of vertebral fractures. J Bone Miner Res. 1991;6(3):207–15.

    Article  CAS  PubMed  Google Scholar 

  6. Black DM, Cummings SR, Stone K, Hudes E, Palermo L, Steiger P. A new approach to defining normal vertebral dimensions. J Bone Miner Res. 1991;6(8):883–92.

    Article  CAS  PubMed  Google Scholar 

  7. Ismail AA, Cockerill W, Cooper C, Finn JD, Abendroth K, Parisi G, et al. Prevalent vertebral deformity predicts incident hip though not distal forearm fracture: results from the European Prospective Osteoporosis Study. Osteoporos Int. 2001;12(2):85–90.

    Article  CAS  PubMed  Google Scholar 

  8. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR. Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1999;14(5):821–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ross PD, Davis JW, Epstein RS, Wasnich RD. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med. 1991;114(11):919–23.

    Article  CAS  PubMed  Google Scholar 

  10. Leidig-Bruckner G, Limberg B, Felsenberg D, Bruckner T, Holder S, Kather A, et al. Sex difference in the validity of vertebral deformities as an index of prevalent vertebral osteoporotic fractures: a population survey of older men and women. Osteoporos Int. 2000;11(2):102–19.

    Article  CAS  PubMed  Google Scholar 

  11. Abdel-Hamid Osman A, Bassiouni H, Koutri R, Nijs J, Geusens P, Dequeker J. Aging of the thoracic spine: distinction between wedging in osteoarthritis and fracture in osteoporosis--a cross-sectional and longitudinal study. Bone. 1994;15(4):437–42.

    Article  CAS  PubMed  Google Scholar 

  12. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, et al. Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1996;11(7):984–96.

    Article  CAS  PubMed  Google Scholar 

  13. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48.

    Article  CAS  PubMed  Google Scholar 

  14. Ferrar L, Jiang G, Adams J, Eastell R. Identification of vertebral fractures: an update. Osteoporos Int. 2005;16(7):717–28.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang G, Eastell R, Barrington NA, Ferrar L. Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int. 2004;15(11):887–96.

    Article  CAS  PubMed  Google Scholar 

  16. • Oei L, Koromani F, Breda SJ, Schousboe JT, Clark EM, van Meurs JB, et al. Osteoporotic vertebral fracture prevalence varies widely between qualitative and quantitative radiological assessment methods: the Rotterdam study. J Bone Miner Res. 2018;33(4):560–8. An important recent study showing comparing the prevalence of vertebral fracture, stratified by vertebral level, of a morphometric method and the Algorithm Based Qualitative (ABQ) method, and the poor agreement between the two methods

    Article  PubMed  Google Scholar 

  17. •• Lentle BC, Berger C, Probyn L, Brown JP, Langsetmo L, Fine B, et al. Comparative analysis of the radiology of osteoporotic vertebral fractures in women and men: cross-sectional and longitudinal observations from the Canadian Multicentre Osteoporosis Study (CaMos). J Bone Miner Res. 2018;33(4):569–79. This is the only study that has directly compared how well two main vertebral fracture adjudication methods (the Genant SQ and a modification of the ABQ method) predict incident vertebral and non-vertebral fractures

    Article  CAS  PubMed  Google Scholar 

  18. Szulc P. Vertebral fracture: diagnostic difficulties of a major medical problem. J Bone Miner Res. 2018;33(4):553–9.

    Article  PubMed  Google Scholar 

  19. Johansson H, Siggeirsdottir K, Harvey NC, Oden A, Gudnason V, McCloskey E, et al. Imminent risk of fracture after fracture. Osteoporos Int. 2017;28(3):775–80.

    Article  CAS  PubMed  Google Scholar 

  20. Giangregorio LM, Leslie WD, Manitoba Bone Density P. Time since prior fracture is a risk modifier for 10-year osteoporotic fractures. J Bone Miner Res. 2010;25(6):1400–5.

    Article  PubMed  Google Scholar 

  21. Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, et al. Fracture risk following an osteoporotic fracture. Osteoporos Int. 2004;15(3):175–9.

    Article  CAS  PubMed  Google Scholar 

  22. Schousboe JT, Fink HA, Lui LY, Taylor BC, Ensrud KE. Association between prior non-spine non-hip fractures or prevalent radiographic vertebral deformities known to be at least 10 years old and incident hip fracture. J Bone Miner Res Off J Am Soc Bone Miner Res. 2006;21(10):1557–64.

    Article  Google Scholar 

  23. • Ballane G, Cauley JA, Luckey MM, El-Hajj FG. Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int. 2017;28(5):1531–42. A nice critical overview of studies of the prevalence and incidence of vertebral fracture among different populations across the globe

    Article  CAS  PubMed  Google Scholar 

  24. O'Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ. The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res. 1996;11(7):1010–8.

    Article  CAS  PubMed  Google Scholar 

  25. Jackson SA, Tenenhouse A, Robertson L. Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int. 2000;11(8):680–7.

    Article  CAS  PubMed  Google Scholar 

  26. Cooper C, Atkinson EJ, O'Fallon WM, Melton LJ 3rd. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985-1989. J Bone Miner Res. 1992;7(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  27. Fink HA, Milavetz DL, Palermo L, Nevitt MC, Cauley JA, Genant HK, et al. What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? J Bone Miner Res. 2005;20(7):1216–22.

    Article  PubMed  Google Scholar 

  28. • Ensrud KE, Blackwell TL, Fink HA, Zhang J, Cauley JA, Cawthon PM, et al. What proportion of incident radiographic vertebral fractures in older men is clinically diagnosed and vice versa: a prospective study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2016;31(8):1500–3. The largest study among older men to estimate the proportion of incident radiographic vertebral fractures that are clinically recognized at the time of their occurrence

    Article  Google Scholar 

  29. Felsenberg D, Silman A, Lunt M, Armbrecht G, Ismail A, Finn J, et al. Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res. 2002;17(4):716–24.

    Article  CAS  PubMed  Google Scholar 

  30. Van der Klift M, De Laet CE, McCloskey EV, Hofman A, Pols HA. The incidence of vertebral fractures in men and women: the Rotterdam study. J Bone Miner Res. 2002;17(6):1051–6.

    Article  PubMed  Google Scholar 

  31. Fujiwara S, Kasagi F, Masunari N, Naito K, Suzuki G, Fukunaga M. Fracture prediction from bone mineral density in Japanese men and women. J Bone Miner Res. 2003;18(8):1547–53.

    Article  PubMed  Google Scholar 

  32. Jitapunkul S, Thamarpirat J, Chaiwanichsiri D, Boonhong J. Incidence of vertebral fractures in Thai women and men: a prospective population-based study. Geriatr Gerontol Int. 2008;8(4):251–8.

    Article  PubMed  Google Scholar 

  33. Ensrud KE, Blackwell TL, Cawthon PM, Bauer DC, Fink HA, Schousboe JT, et al. Degree of trauma differs for major osteoporotic fracture events in older men versus older women. J Bone Miner Res Off J Am Soc Bone Miner Res. 2016;31(1):204–7.

    Article  Google Scholar 

  34. • Cosman F, Krege JH, Looker AC, Schousboe JT, Fan B, Sarafrazi Isfahani N, et al. Spine fracture prevalence in a nationally representative sample of US women and men aged ≥ 40 years: results from the National Health and Nutrition Examination Survey (NHANES) 2013–2014. Osteoporos Int. 2017;28(6):1857–66. This is the first study to provide population-based age- and sex-stratified estimates of vertebral fracture prevalence on densitometric lateral spine images, and to estimate how well the National Osteoporosis Foundation (NOF) criteria would perform identifying women and men age 50 years and older who have a prevalent vertebral fracture

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Domiciano DS, Figueiredo CP, Lopes JB, Kuroishi ME, Takayama L, Caparbo VF, et al. Vertebral fracture assessment by dual X-ray absorptiometry: a valid tool to detect vertebral fractures in community-dwelling older adults in a population-based survey. Arthritis Care Res. 2013;65(5):809–15.

    Article  CAS  Google Scholar 

  36. Yakemchuk V, Beaumont LF, Webber CE, Gulenchyn KY, Jager PL. Vertebral fracture prevalence in a referral population of 750 Canadian men and women. Clin Radiol. 2012;67(11):1061–8.

    Article  CAS  PubMed  Google Scholar 

  37. • Amin S, Achenbach SJ, Atkinson EJ, Khosla S, Melton LJ III. Trends in fracture incidence: a population-based study over 20 years. J Bone Miner Res. 2014;29(3):581–9. Follow-up of Rochester Epidmiology Project Data showing how the age- and sex-stratified incidence of fractures at different skeletal sites has changed over a 20 year time period in the United States

    Article  PubMed  Google Scholar 

  38. • Siggeirsdottir K, Aspelund T, Jonsson BY, Mogensen B, Gudmundsson EF, Gudnason V, et al. Epidemiology of fractures in Iceland and secular trends in major osteoporotic fractures 1989–2008. Osteoporos Int. 2014;25(1):211–9. An important study showing how the age- and sex-stratified incidence of fractures at different skeletal sites has changed over a 20 year time period in Iceland

    Article  CAS  PubMed  Google Scholar 

  39. Oudshoorn C, Hartholt KA, Zillikens MC, Panneman MJ, van der Velde N, Colin EM, et al. Emergency department visits due to vertebral fractures in the Netherlands, 1986-2008: steep increase in the oldest old, strong association with falls. Injury. 2012;43(4):458–61.

    Article  PubMed  Google Scholar 

  40. Leslie WD, Sadatsafavi M, Lix LM, Azimaee M, Morin S, Metge CJ, et al. Secular decreases in fracture rates 1986-2006 for Manitoba, Canada: a population-based analysis. Osteoporos Int. 2011;22(7):2137–43.

    Article  CAS  PubMed  Google Scholar 

  41. • Schousboe JT. Epidemiology of vertebral fractures. J Clin Densitom. 2016;19(1):8–22. This includes a review of studies that have delineated clinical characteristics that are associated with prevalent vertebral fracture. These studies have been very important to construct algorithms for use of spine imaging in clinical practice to detect those with clinically unrecognized vertebral fractures

    Article  PubMed  Google Scholar 

  42. Kwok AW, Gong JS, Wang YX, Leung JC, Kwok T, Griffith JF, et al. Prevalence and risk factors of radiographic vertebral fractures in elderly Chinese men and women: results of Mr. OS (Hong Kong) and Ms. OS (Hong Kong) studies. Osteoporos Int. 2013;24(3):877–85.

    Article  CAS  PubMed  Google Scholar 

  43. Sanfelix-Gimeno G, Sanfelix-Genoves J, Hurtado I, Reig-Molla B, Peiro S. Vertebral fracture risk factors in postmenopausal women over 50 in Valencia, Spain. A population-based cross-sectional study. Bone. 2013;52(1):393–9.

    Article  PubMed  Google Scholar 

  44. Tobias JH, Hutchinson AP, Hunt LP, McCloskey EV, Stone MD, Martin JC, et al. Use of clinical risk factors to identify postmenopausal women with vertebral fractures. Osteoporos Int. 2007;18(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  45. van der Jagt-Willems HC, van Hengel M, Vis M, van Munster BC, van Campen JP, Tulner LR, et al. Why do geriatric outpatients have so many moderate and severe vertebral fractures? Exploring prevalence and risk factors. Age Ageing. 2012;41(2):200–6.

    Article  PubMed  Google Scholar 

  46. Vogt TM, Ross PD, Palermo L, Musliner T, Genant HK, Black D, et al. Vertebral fracture prevalence among women screened for the fracture intervention trial and a simple clinical tool to screen for undiagnosed vertebral fractures. Fracture Intervention Trial Research Group. Mayo Clin Proc. 2000;75(9):888–96.

    Article  CAS  PubMed  Google Scholar 

  47. Vokes TJ, Gillen DL. Using clinical risk factors and bone mineral density to determine who among patients undergoing bone densitometry should have vertebral fracture assessment. Osteoporos Int. 2010;21(12):2083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schousboe JT, Rosen HR, Vokes TJ, Cauley JA, Cummings SR, Nevitt M, et al. Prediction models of prevalent radiographic vertebral fractures among older women. J Clin Densitom. 2014;17(3):378–85.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schousboe JT, Rosen HR, Vokes TJ, Cauley JA, Cummings SR, Nevitt MC, et al. Prediction models of prevalent radiographic vertebral fractures among older men. J Clin Densitom. 2014;17(4):449–57.

    Article  PubMed  Google Scholar 

  50. Ling X, Cummings SR, Mingwei Q, Xihe Z, Xioashu C, Nevitt M, et al. Vertebral fractures in Beijing, China: the Beijing osteoporosis project. J Bone Miner Res. 2000;15(10):2019–25.

    Article  CAS  PubMed  Google Scholar 

  51. El Maghraoui A, Mounach A, Rezqi A, Achemlal L, Bezza A, Ghozlani I. Vertebral fracture assessment in asymptomatic men and its impact on management. Bone. 2012;50(4):853–7.

    Article  PubMed  Google Scholar 

  52. El Maghraoui A, Rezqi A, Mounach A, Achemlal L, Bezza A, Ghozlani I. Systematic vertebral fracture assessment in asymptomatic postmenopausal women. Bone. 2013;52(1):176–80.

    Article  PubMed  Google Scholar 

  53. Waterloo S, Nguyen T, Ahmed LA, Center JR, Morseth B, Nguyen ND, et al. Important risk factors and attributable risk of vertebral fractures in the population-based Tromso study. BMC Musculoskelet Disord. 2012;13:163.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosen HN, Vokes TJ, Malabanan AO, Deal CL, Alele JD, Olenginski TP, et al. The official positions of the International Society for Clinical Densitometry: vertebral fracture assessment. Journal of clinical densitometry: the official journal of the International Society for Clinical Densitometry. 2013;16(4):482–8.

    Article  Google Scholar 

  56. Clark EM, Gould V, Morrison L, Ades AE, Dieppe P, Tobias JH. Randomized controlled trial of a primary care-based screening program to identify older women with prevalent osteoporotic vertebral fractures: Cohort for Skeletal Health in Bristol and Avon (COSHIBA). J Bone Miner Res. 2012;27(3):664–71.

    Article  PubMed  Google Scholar 

  57. Blazkova S, Vytrisalova M, Palicka V, Stepan J, Byma S, Kubena AA, et al. Osteoporosis risk assessment and management in primary care: focus on quantity and quality. J Eval Clin Pract. 2010;16(6):1176–82.

    Article  PubMed  Google Scholar 

  58. Rianon N, Anand D, Rasu R. Changing trends in osteoporosis care from specialty to primary care physicians. Curr Med Res Opin 2013;29(8):881–8, 888.

    Article  CAS  PubMed  Google Scholar 

  59. Roux S, Beaulieu M, Beaulieu MC, Cabana F, Boire G. Priming primary care physicians to treat osteoporosis after a fragility fracture: an integrated multidisciplinary approach. J Rheumatol. 2013;40(5):703–11.

    Article  PubMed  Google Scholar 

  60. Simonelli C, Killeen K, Mehle S, Swanson L. Barriers to osteoporosis identification and treatment among primary care physicians and orthopedic surgeons. Mayo Clin Proc. 2002;77(4):334–8.

    Article  PubMed  Google Scholar 

  61. Sorbi R, Aghamirsalim M. Osteoporotic Fracture Program management: who should be in charge? A comparative survey of knowledge in orthopaedic surgeons and internists. Orthopaedics & Traumatology-Surgery & Research. 2013;99(6):723–30.

    Article  CAS  Google Scholar 

  62. Bodenheimer T, Pham HH. Primary care: current problems and proposed solutions. Health Aff (Millwood). 2010;29(5):799–805.

    Article  Google Scholar 

  63. Ostbye T, Yarnall KS, Krause KM, Pollak KI, Gradison M, Michener JL. Is there time for management of patients with chronic diseases in primary care? Ann Fam Med. 2005;3(3):209–14.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Korownyk C, McCormack J, Kolber MR, Garrison S, Allan GM. Competing demands and opportunities in primary care. Can Fam Phys. 2017;63(9):664–8.

    Google Scholar 

  65. Schousboe J, McKiernan F, Fuehrer J, Binkley N. Use of a performance algorithm improves utilization of vertebral fracture assessment in clinical practice. Osteoporosis Int. 2014;25(3):965–72.

    Article  CAS  Google Scholar 

  66. Chou SH, Vokes TJ, Ma SL, Costello M, Rosen HR, Schousboe JT. Simplified criteria for selecting patients for vertebral fracture assessment. J Clin Densitom. 2014;17(3):386–91.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kuet KP, Charlesworth D, Peel NF. Vertebral fracture assessment scans enhance targeting of investigations and treatment within a fracture risk assessment pathway. Osteoporos Int. 2013;24(3):1007–14.

    Article  PubMed  Google Scholar 

  68. • Lee JH, Lee YK, Oh SH, Ahn J, Lee YE, Pyo JH, et al. A systematic review of diagnostic accuracy of vertebral fracture assessment (VFA) in postmenopausal women and elderly men. Osteoporos Int. 2016;27(5):1691–9. An important systematic review of the accuracy of densitometric vertebral fracture assessment compared to standard lateral spine radiography

    Article  PubMed  Google Scholar 

  69. • Malgo F, Hamdy NAT, Ticheler C, Smit F, Kroon HM, Rabelink TJ, et al. Value and potential limitations of vertebral fracture assessment (VFA) compared to conventional spine radiography: experience from a fracture liaison service (FLS) and a meta-analysis. Osteoporos Int. 2017;28(10):2955–65. An important meta-analysis of densitometric lateral spine imaging for vertebral fracture assessment compared to standard lateral spine radiography

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Diacinti D, Vitali C, Gussoni G, Pisani D, Sinigaglia L, Bianchi G, et al. Misdiagnosis of vertebral fractures on local radiographic readings of the multicentre POINT (Prevalence of Osteoporosis in INTernal medicine) study. Bone. 2017;101:230–5.

    Article  PubMed  Google Scholar 

  71. Diacinti D, Del Fiacco R, Pisani D, Todde F, Cattaruzza MS, Diacinti D, et al. Diagnostic performance of vertebral fracture assessment by the lunar iDXA scanner compared to conventional radiography. Calcif Tissue Int. 2012;91(5):335–42.

    Article  CAS  PubMed  Google Scholar 

  72. Bazzocchi A, Spinnato P, Fuzzi F, Diano D, Morselli-Labate AM, Sassi C, et al. Vertebral fracture assessment by new dual-energy X-ray absorptiometry. Bone. 2012;50(4):836–41.

    Article  PubMed  Google Scholar 

  73. Hospers IC, van der Laan JG, Zeebregts CJ, Nieboer P, Wolffenbuttel BH, Dierckx RA, et al. Vertebral fracture assessment in supine position: comparison by using conventional semiquantitative radiography and visual radiography. Radiology. 2009;251(3):822–8.

    Article  PubMed  Google Scholar 

  74. Fuerst T, Wu C, Genant HK, von Ingersleben G, Chen Y, Johnston C, et al. Evaluation of vertebral fracture assessment by dual X-ray absorptiometry in a multicenter setting. Osteoporos Int. 2009;20(7):1199–205.

    Article  CAS  PubMed  Google Scholar 

  75. Schousboe JT, Debold CR. Reliability and accuracy of vertebral fracture assessment with densitometry compared to radiography in clinical practice. Osteoporos Int. 2006;17(2):281–9.

    Article  PubMed  Google Scholar 

  76. Rud B, Vestergaard A, Hyldstrup L. Accuracy of densitometric vertebral fracture assessment when performed by DXA technicians--a cross-sectional, multiobserver study. Osteoporos Int. 2016;27(4):1451–8.

    Article  CAS  PubMed  Google Scholar 

  77. • Aubry-Rozier B, Fabreguet I, Iglesias K, Lamy O, Hans D. Impact of level of expertise versus the statistical tool on vertebral fracture assessment (VFA) readings in cohort studies. Osteoporos Int. 2017;28(2):523–7. An important study showing that with appropriate training non-experts can quickly be trained to accurately recognize vertebral fractures on lateral spine images

    Article  CAS  PubMed  Google Scholar 

  78. Ferrar L, Roux C, Felsenberg D, Gluer CC, Eastell R. Association between incident and baseline vertebral fractures in European women: vertebral fracture assessment in the Osteoporosis and Ultrasound Study (OPUS). Osteoporos Int. 2012;23(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  79. Delmas PD, Genant HK, Crans GG, Stock JL, Wong M, Siris E, et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone. 2003;33(4):522–32.

    Article  CAS  PubMed  Google Scholar 

  80. Schousboe JT, Vo T, Taylor BC, Cawthon PM, Schwartz AV, Bauer DC, et al. Prediction of incident major osteoporotic and hip fractures by trabecular bone score (TBS) and prevalent radiographic vertebral fracture in older men. J Bone Miner Res Off J Am Soc Bone Miner Res. 2016;31(3):690–7.

    Article  CAS  Google Scholar 

  81. Siris ES, Genant HK, Laster AJ, Chen P, Misurski DA, Krege JH. Enhanced prediction of fracture risk combining vertebral fracture status and BMD. Osteoporos Int. 2007;18(6):761–70.

    Article  CAS  PubMed  Google Scholar 

  82. McCloskey EV, Vasireddy S, Threlkeld J, Eastaugh J, Parry A, Bonnet N, et al. Vertebral fracture assessment (VFA) with a densitometer predicts future fractures in elderly women unselected for osteoporosis. J Bone Miner Res. 2008;23(10):1561–8.

    Article  PubMed  Google Scholar 

  83. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, et al. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med. 1998;128(10):793–800.

    Article  CAS  PubMed  Google Scholar 

  84. • Fink HA, Litwack-Harrison S, Ensrud KE, Shen J, Schousboe JT, Cawthon PM, et al. Association of incident, clinically undiagnosed radiographic vertebral fractures with follow-up back pain symptoms in older men: the Osteoporotic Fractures in Men (MrOS) Study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2017;32(11):2263–8. An important study showing that incident radiographic, but clinically unrecognized vertebral fractures are associated with pain and morbidity in older men

    Article  Google Scholar 

  85. Clark EM, Cummings SR, Schousboe JT. Spinal radiographs in those with back pain-when are they appropriate to diagnose vertebral fractures? Osteoporosis Int. 2017;28:2293–97.

    Article  CAS  PubMed  Google Scholar 

  86. Clark EM, Hutchinson AP, McCloskey EV, Stone MD, Martin JC, Bhalla AK, et al. Lateral back pain identifies prevalent vertebral fractures in post-menopausal women: cross-sectional analysis of a primary care-based cohort. Rheumatology (Oxford). 2010;49(3):505–12.

    Article  Google Scholar 

  87. • Clark EM, Gooberman-Hill R, Peters TJ. Using self-reports of pain and other variables to distinguish between older women with back pain due to vertebral fractures and those with back pain due to degenerative changes. Osteoporos Int. 2016;27(4):1459–67. This study is the most recent that sheds important light on characteristics of back pain that are associated with prevalent vertebral fracture, and that may appropriately constitute indications for lateral spine imaging

    Article  CAS  PubMed  Google Scholar 

  88. Gehlbach SH, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood JR. Recognition of vertebral fracture in a clinical setting. Osteoporos Int. 2000;11(7):577–82.

    Article  CAS  PubMed  Google Scholar 

  89. Kim N, Rowe BH, Raymond G, Jen H, Colman I, Jackson SA, et al. Underreporting of vertebral fractures on routine chest radiography. AJR Am J Roentgenol. 2004;182(2):297–300.

    Article  CAS  PubMed  Google Scholar 

  90. Morris CA, Carrino JA, Lang P, Solomon DH. Incidental vertebral fractures on chest radiographs. Recognition, documentation, and treatment. J Gen Intern Med. 2006;21(4):352–6.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mui LW, Haramati LB, Alterman DD, Haramati N, Zelefsky MN, Hamerman D. Evaluation of vertebral fractures on lateral chest radiographs of inner-city postmenopausal women. Calcif Tissue Int. 2003;73(6):550–4.

    Article  CAS  PubMed  Google Scholar 

  92. Medicare Payment Advisory Commission (MedPAC). Report to the Congress: medicare payment policy. Washington, DC: Medicare Payment Advisory Commission; 2017. p. 97–130.

  93. Samelson EJ, Christiansen BA, Demissie S, Broe KE, Zhou Y, Meng CA, et al. Reliability of vertebral fracture assessment using multidetector CT lateral scout views: the Framingham Osteoporosis Study. Osteoporos Int. 2011;22(4):1123–31.

    Article  CAS  PubMed  Google Scholar 

  94. Lee SJ, Binkley N, Lubner MG, Bruce RJ, Ziemlewicz TJ, Pickhardt PJ. Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporos Int. 2016;27(3):1131–6.

    Article  CAS  PubMed  Google Scholar 

  95. Bazzocchi A, Spinnato P, Albisinni U, Battista G, Rossi C, Guglielmi G. A careful evaluation of scout CT lateral radiograph may prevent unreported vertebral fractures. Eur J Radiol. 2012;81(9):2353–7.

    Article  PubMed  Google Scholar 

  96. • Adams JE. Opportunistic identification of vertebral fractures. J Clin Densitom. 2016;19(1):54–62. An very important, detailed review of how lateral spine images obtained for unrelated reasons in clinical practice can be leveraged to identify those with prevalent vertebral fracture

    Article  PubMed  Google Scholar 

  97. Bazzocchi A, Garzillo G, Fuzzi F, Diano D, Albisinni U, Salizzoni E, et al. Localizer sequences of magnetic resonance imaging accurately identify osteoporotic vertebral fractures. Bone. 2014;61:158–63.

    Article  CAS  PubMed  Google Scholar 

  98. Bazzocchi A, Spinnato P, Garzillo G, Ciccarese F, Albisinni U, Mignani S, et al. Detection of incidental vertebral fractures in breast imaging: the potential role of MR localisers. Eur Radiol. 2012;22(12):2617–23.

    Article  PubMed  Google Scholar 

  99. Lee SJ, Anderson PA, Pickhardt PJ. Predicting future hip fractures on routine abdominal CT using opportunistic osteoporosis screening measures: a matched case-control study. Am J Roentgenol. 2017;209(2):395–402.

    Article  Google Scholar 

  100. Buckens CF, de Jong PA, Mali WP, Verhaar HJ, van der Graaf Y, Verkooijen HM. Prevalent vertebral fractures on chest CT: higher risk for future hip fracture. J Bone Miner Res. 2014;29(2):392–8.

    Article  PubMed  Google Scholar 

  101. Kim YM, Demissie S, Genant HK, Cheng X, Yu W, Samelson EJ, et al. Identification of prevalent vertebral fractures using CT lateral scout views: a comparison of semi-automated quantitative vertebral morphometry and radiologist semi-quantitative grading. Osteoporos Int. 2012;23(3):1007–16.

    Article  CAS  PubMed  Google Scholar 

  102. Tabak RG, Khoong EC, Chambers DA, Brownson RC. Bridging research and practice: models for dissemination and implementation research. Am J Prev Med. 2012;43(3):337–50.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Schousboe.

Ethics declarations

Conflict of Interest

John Schousboe declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epidemiology and Pathophysiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schousboe, J.T. Vertebral Fracture Identification as Part of a Comprehensive Risk Assessment in Patients with Osteoporosis. Curr Osteoporos Rep 16, 573–583 (2018). https://doi.org/10.1007/s11914-018-0472-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0472-6

Keywords

Navigation