Skip to main content

Advertisement

Log in

Long-Term Bisphosphonate Therapy in Osteogenesis Imperfecta

  • Pediatrics (L Ward and E Imel, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Osteogenesis imperfecta (OI) is a genetic bone disorder resulting in bone fragility. It has a heterogeneous phenotype which typically includes reduced bone mass, multiple fractures, deformity, and chronic disability. Bisphosphonate treatment remains the first-line medical management, but there is still debate on aspects of its effectiveness. This review summarizes current knowledge about long-term bisphosphonate use in OI with recommendations on clinical application.

Recent Findings

Bisphosphonates increase bone mineral density, most notably of the vertebrae, and reduce fracture risk in the pediatric OI population. Gains in strength and mobility, together with the permissive effect on orthopedic surgery (e.g., in combination with intramedullary rodding) and physiotherapy, have resulted in improved quality of life for those with OI.

Summary

As experience in its use continues, the risks and benefits of long-term bisphosphonate treatment in OI are slowly emerging. Patient registries containing data on genotype, phenotype, fractures, bisphosphonate treatment, orthopedic intervention, and functional outcomes are essential for systematic evaluation given the lack of large multi-centered randomized control trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Biggin A, Munns CF. Osteogenesis imperfecta: diagnosis and treatment. Curr Osteoporos Rep. 2014;12(3):279–88.

    Article  CAS  PubMed  Google Scholar 

  2. Byers PH. Etiology of osteogenesis imperfecta: an overview of biochemical and molecular genetic analyses. Connect Tissue Res. 1995;31(4):257–9.

    Article  CAS  PubMed  Google Scholar 

  3. Forlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016;387(10028):1657–71.

    Article  CAS  PubMed  Google Scholar 

  4. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16(2):101–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. •• Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int. 2016;27(12):3427–37. A recent review of the diagnosis and management of OI in children including new approaches to treatment.

    Article  CAS  PubMed  Google Scholar 

  6. Bonafe L, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A. 2015;167A(12):2869–92.

    Article  PubMed  Google Scholar 

  7. Devogelaer JP, et al. Radiological manifestations of bisphosphonate treatment with APD in a child suffering from osteogenesis imperfecta. Skelet Radiol. 1987;16(5):360–3.

    Article  CAS  Google Scholar 

  8. •• Dwan K, et al. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev. 2016;10:CD005088. A Cochrane review of 14 trials (819 participants) to assess the effectiveness and safety of bisphosphonates in increasing bone mineral density, reducing fractures and improving clinical function in children and adults with OI.

    PubMed  Google Scholar 

  9. Watts NB. Treatment of osteoporosis with bisphosphonates. Endocrinol Metab Clin N Am. 1998;27(2):419–39.

    Article  CAS  Google Scholar 

  10. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc Mayo Clin. 2008;83(9):1032–45.

    Article  CAS  PubMed  Google Scholar 

  11. Castillo H, Samson-Fang L. Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev Med Child Neurol. 2009;51(1):17–29.

    Article  PubMed  Google Scholar 

  12. Adami S, et al. Intravenous neridronate in adults with osteogenesis imperfecta. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2003;18(1):126–30.

    Article  CAS  Google Scholar 

  13. Barros ER, et al. Safety and efficacy of a 1-year treatment with zoledronic acid compared with pamidronate in children with osteogenesis imperfecta. J Pediatr Endocrinol Metab: JPEM. 2012;25(5–6):485–91.

    CAS  PubMed  Google Scholar 

  14. Bishop N, et al. A randomized, controlled dose-ranging study of risedronate in children with moderate and severe osteogenesis imperfecta. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2010;25(1):32–40.

    Article  CAS  Google Scholar 

  15. • Bishop N, et al. Risedronate in children with osteogenesis imperfecta: a randomised, double-blind, placebo-controlled trial. The Lancet. 2013; Reported that oral risedronate increased areal BMD and reduced risk of first and recurrent clinical fractures in children with OI.

  16. Chevrel G, et al. Effects of oral alendronate on BMD in adult patients with osteogenesis imperfecta: a 3-year randomized placebo-controlled trial. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2006;21(2):300–6.

    Article  CAS  Google Scholar 

  17. DiMeglio LA, Peacock M. Two-year clinical trial of oral alendronate versus intravenous pamidronate in children with osteogenesis imperfecta. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2006;21(1):132–40.

    Article  Google Scholar 

  18. Gatti D, et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2005;20(5):758–63.

    Article  CAS  Google Scholar 

  19. Letocha AD, et al. Controlled trial of pamidronate in children with types III and IV osteogenesis imperfecta confirms vertebral gains but not short-term functional improvement. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2005;20(6):977–86.

    Article  CAS  Google Scholar 

  20. Rauch F, et al. Risedronate in the treatment of mild pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2009;24(7):1282–9.

    Article  CAS  Google Scholar 

  21. Sakkers R, et al. Skeletal effects and functional outcome with olpadronate in children with osteogenesis imperfecta: a 2-year randomised placebo-controlled study. Lancet. 2004;363(9419):1427–31.

    Article  CAS  PubMed  Google Scholar 

  22. Seikaly MG, et al. Impact of alendronate on quality of life in children with osteogenesis imperfecta. J Pediatr Orthop. 2005;25(6):786–91.

    Article  PubMed  Google Scholar 

  23. Senthilnathan S, Walker E, Bishop NJ. Two doses of pamidronate in infants with osteogenesis imperfecta. Arch Dis Child. 2008;93(5):398–400.

    Article  CAS  PubMed  Google Scholar 

  24. Ward LM, et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab. 2011;96(2):355–64.

    Article  CAS  PubMed  Google Scholar 

  25. • Alcausin MB, et al. Intravenous pamidronate treatment in children with moderate-to-severe osteogenesis imperfecta started under three years of age. Horm Res Paediatr. 2013;79(6):333–40. Reported that pamidronate started under three years of age improved bone density, reduced fracture frequency and resulted in attainment of motor milestones at an earlier age.

    Article  CAS  PubMed  Google Scholar 

  26. Palomo T, et al. Intravenous bisphosphonate therapy of young children with osteogenesis imperfecta: skeletal findings during follow up throughout the growing years. J Bone Miner Res. 2015;30(12):2150–7.

    Article  CAS  PubMed  Google Scholar 

  27. Sato A, et al. Scoliosis in osteogenesis imperfecta caused by COL1A1/COL1A2 mutations—genotype-phenotype correlations and effect of bisphosphonate treatment. Bone. 2016;86:53–7.

    Article  CAS  PubMed  Google Scholar 

  28. Shi CG, Zhang Y, Yuan W. Efficacy of bisphosphonates on bone mineral density and fracture rate in patients with osteogenesis imperfecta: a systematic review and meta-analysis. Am J Ther. 2016;23(3):e894–904.

    Article  PubMed  Google Scholar 

  29. Hald JD, et al. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials. J Bone Miner Res. 2015;30(5):929–33.

    Article  CAS  PubMed  Google Scholar 

  30. Munns CF, et al. Acute phase response and mineral status following low dose intravenous zoledronic acid in children. Bone. 2007;41(3):366–70.

    Article  CAS  PubMed  Google Scholar 

  31. Brizola E, Shapiro JR. Bisphosphonate treatment of children and adults with osteogenesis imperfecta: unanswered questions. Calcif Tissue Int. 2015;97(2):101–3.

    Article  CAS  PubMed  Google Scholar 

  32. Marom R, et al. Pharmacological and biological therapeutic strategies for osteogenesis imperfecta. Am J Med Genet C Semin Med Genet. 2016;172(4):367–83.

    Article  CAS  PubMed  Google Scholar 

  33. Tanvetyanon T, Stiff PJ. Management of the adverse effects associated with intravenous bisphosphonates. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2006;17(6):897–907.

    Article  CAS  Google Scholar 

  34. Italian Society of Osteoporosis, M.M, et al. Safety profile of drugs used in the treatment of osteoporosis: a systematical review of the literature. Reumatismo. 2013;65(4):143–66.

    Google Scholar 

  35. Sun K, et al. Bisphosphonate treatment and risk of esophageal cancer: a meta-analysis of observational studies. Osteoporos Int. 2013;24(1):279–86.

    Article  CAS  PubMed  Google Scholar 

  36. Barrett-Connor E, et al. Alendronate and atrial fibrillation: a meta-analysis of randomized placebo-controlled clinical trials. Osteoporosis Int. 2012;23:233–45.

    Article  CAS  Google Scholar 

  37. Sharma A, et al. Risk of serious atrial fibrillation and stroke with use of bisphosphonates. Chest. 2013;144(4):1311–22.

    Article  CAS  PubMed  Google Scholar 

  38. Yachoui R. Early onset acute tubular necrosis following single infusion of zoledronate. Clin Cases Miner Bone Metab. 2016;13(2):154–6.

    PubMed  PubMed Central  Google Scholar 

  39. Ott SM. Pharmacology of bisphosphonates in patients with chronic kidney disease. Semin Dial. 2015;28(4):363–9.

    Article  PubMed  Google Scholar 

  40. • Bhatt RN, Hibbert SA, Munns CF. The use of bisphosphonates in children: review of the literature and guidelines for dental management. Aust Dent J. 2014;59(1):9–19. Reports the pediatric uses and adverse effects of bisphosphonates and provides recommendations on the dental management of children receiving bisphosphonates.

    Article  CAS  PubMed  Google Scholar 

  41. Bejhed, R.S., M. Kharazmi, and Hallberg, Identification of risk factors for bisphosphonate-associated atypical femoral fractures and osteonecrosis of the jaw in a pharmacovigilance database. Ann Pharmacother, 2016. 50(8): 616–624.

  42. Hennedige AA, et al. Systematic review on the incidence of bisphosphonate related osteonecrosis of the jaw in children diagnosed with osteogenesis imperfecta. J Oral Maxillofac Res. 2013;4(4):e1.

    PubMed  Google Scholar 

  43. Bradaschia-Correa V, Massa LF, Arana-Chavez VE. Effects of alendronate on tooth eruption and molar root formation in young growing rats. Cell Tissue Res. 2007;330(3):475–85.

    Article  CAS  PubMed  Google Scholar 

  44. Vuorimies I, et al. Timing of dental development in osteogenesis imperfecta patients with and without bisphosphonate treatment. Bone. 2017;94:29–33.

    Article  CAS  PubMed  Google Scholar 

  45. Munns CF, et al. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Mineral Res: Off J Am Soc Bone Min Res. 2004;19(11):1779–86.

    Article  CAS  Google Scholar 

  46. Anam EA, et al. Osteotomy healing in children with osteogenesis imperfecta receiving bisphosphonate treatment. J Bone Miner Res. 2015;30(8):1362–8.

    Article  CAS  PubMed  Google Scholar 

  47. Shane E, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014;29(1):1–23.

    Article  PubMed  Google Scholar 

  48. Vasanwala RF, et al. Recurrent proximal femur fractures in a teenager with osteogenesis imperfecta on continuous bisphosphonate therapy: are we overtreating? J Bone Miner Res. 2016;31(7):1449–54.

    Article  CAS  PubMed  Google Scholar 

  49. • Trejo P, et al. Diaphyseal femur fractures in osteogenesis imperfecta: characteristics and relationship with bisphosphonate treatment. J Bone Miner Res. 2016; A recent retrospective study looking at 116 femur fractures in 119 children with OI showed atypical fractures were more closely associated with the severity of OI rather than to bisphosphonate treatment history.

  50. Biggin A, et al. Fracture during intravenous bisphosphonate treatment in a child with osteogenesis imperfecta: an argument for a more frequent, low-dose treatment regimen. Horm Res Paediatr. 2014;81(3):204–10.

    Article  CAS  PubMed  Google Scholar 

  51. Rauch F, et al. Long-bone changes after pamidronate discontinuation in children and adolescents with osteogenesis imperfecta. Bone. 2007;40(4):821–7.

    Article  CAS  PubMed  Google Scholar 

  52. Green SB, Pappas AL. Effects of maternal bisphosphonate use on fetal and neonatal outcomes. Am J Health Syst Pharm. 2014;71(23):2029–36.

    Article  CAS  PubMed  Google Scholar 

  53. Ashby E, et al. Functional outcome of humeral rodding in children with osteogenesis imperfecta. J Pediatr Orthop. 2016; https://doi.org/10.1097/BPO.0000000000000729.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Biggin.

Ethics declarations

Conflict of Interest

Andrew Biggin and Craig Munns report participating in drug trials sponsored by Novartis. Dr. Munns has received funding for trials from Novartis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatrics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biggin, A., Munns, C.F. Long-Term Bisphosphonate Therapy in Osteogenesis Imperfecta. Curr Osteoporos Rep 15, 412–418 (2017). https://doi.org/10.1007/s11914-017-0401-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0401-0

Keywords

Navigation