Skip to main content

Advertisement

Log in

Fracture Burden: What Two and a Half Decades of Dubbo Osteoporosis Epidemiology Study Data Reveal About Clinical Outcomes of Osteoporosis

  • Skeletal Biology and Regulation (M Forwood and A Robling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

This review aims to highlight important clinical findings from the over 25 year-long Dubbo Osteoporosis Epidemiology Study particularly focusing on outcomes post fracture.

Recent Findings

Every low trauma fracture in the elderly is associated with an increased risk of a subsequent fracture, with a higher risk in men than women. All major or proximal fractures and even minor fractures in the very elderly or minor fractures that are then followed by re-fracture are associated with premature mortality, greatest in the first 5 years post fracture. Having a subsequent fracture further increases this high mortality risk, but if an individual survives the high risk period, their risk returns to that of the background population. Non-hip non-vertebral fractures account for a significant proportion of the premature mortality. Despite an improvement in overall health and population mortality over the years, excess mortality post fracture has not changed in the last 2 decades.

Summary

All low trauma, fractures in the elderly herald a high risk of poor outcomes, particularly in the first few years post fracture. Early intervention should be initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of Particular Interest, Published recently, Have Been Highlighted as: • Of importance, •• Of major importance

  1. Simons LA, McCallum J, Simons J, Powell I, Ruys J, Heller R, et al. The Dubbo study: an Australian prospective community study of the health of the elderly. Australian and New Zealand Journal Journal of Medicine. 1990;20:783–9.

    Article  CAS  Google Scholar 

  2. Jones G, Nguyen T, Sambrook PN, Kelly PJ, Gilbert C, Eisman JA. Symptomatic fracture incidence in elderly men and women: the Dubbo osteoporosis epidemiology study (DOES). Osteoporos Int. 1994;4:277–82.

    Article  CAS  PubMed  Google Scholar 

  3. •• Bliuc D, Nguyen TV, Eisman JA, Center JR. The impact of nonhip nonvertebral fractures in elderly women and men. J Clin Endocrinol Metab. 2014;99(2):415–23. This paper outlines the burden of non-hip non-vertebral fractures that account for 50% of all fractures, carry a 2-fold risk of subsequent fracture and contribute to 20% of the overall 5-year excess mortality.

    Article  CAS  PubMed  Google Scholar 

  4. Johansson H, Kanis JA, Oden A, Leslie WD, Fujiwara S, Gluer CC, et al. Impact of femoral neck and lumbar spine BMD discordances on FRAX probabilities in women: a meta-analysis of international cohorts. Calcif Tissue Int. 2014;95(5):428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA. Spine-hip discordance and fracture risk assessment: a physician-friendly FRAX enhancement. Osteoporos Int. 2011;22(3):839–47.

    Article  CAS  PubMed  Google Scholar 

  6. Leslie WD, Kovacs CS, Olszynski WP, Towheed T, Kaiser SM, Prior JC, et al. Spine-hip T-score difference predicts major osteoporotic fracture risk independent of FRAX((R)): a population-based report from CAMOS. J Clin Densitom. 2011;14(3):286–93.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Blackburn TD, Howard DB, Leib ES. Utility of spine bone mineral density in fracture prediction within FRAX. J Clin Densitom. 2013;16(1):81–6.

    Article  PubMed  Google Scholar 

  8. • Alarkawi D, Bliuc D, Nguyen TV, Eisman JA, Center JR. Contribution of lumbar spine BMD to fracture risk in individuals with T-score discordance. J Bone Miner Res. 2016;31(2):274–80. Demonstrates that a low LS bone density in those with higher FN bone density has an independent effect on fracture risk, particularly manifest in those >70 years.

    Article  PubMed  Google Scholar 

  9. Center JR, Bliuc D, Nguyen TV, Eisman JA. Risk of subsequent fracture after low-trauma fracture in men and women. JAMA. 2007;297(4):387–94.

    Article  CAS  PubMed  Google Scholar 

  10. van Geel TA, van Helden S, Geusens PP, Winkens B, Dinant GJ. Clinical subsequent fractures cluster in time after first fractures. Ann Rheum Dis. 2009;68(1):99–102.

    Article  PubMed  Google Scholar 

  11. Gehlbach S, Saag KG, Adachi JD, Hooven FH, Flahive J, Boonen S, et al. Previous fractures at multiple sites increase the risk for subsequent fractures: the global longitudinal study of osteoporosis in women. J Bone Miner Res. 2012;27(3):645–53.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huntjens KM, Kosar S, van Geel TA, Geusens PP, Willems P, Kessels A, et al. Risk of subsequent fracture and mortality within 5 years after a non-vertebral fracture. Osteoporos Int. 2010;21:2075–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, et al. Fracture risk following an osteoporotic fracture. Osteoporos Int. 2004;15(3):175–9.

    Article  CAS  PubMed  Google Scholar 

  14. Giangregorio LM, Leslie WD. Time since prior fracture is a risk modifier for 10-year osteoporotic fractures. J Bone Miner Res. 2010;25(6):1400–5.

    Article  PubMed  Google Scholar 

  15. Center JR, Nguyen TV, Schneider P, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353:878–82.

    Article  CAS  PubMed  Google Scholar 

  16. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301(5):513–21.

    Article  CAS  PubMed  Google Scholar 

  17. •• Bliuc D, Nguyen ND, Nguyen TV, Eisman JA, Center JR. Compound risk of high mortality following osteoporotic fracture and refracture in elderly women and men. J Bone Miner Res. 2013;28(11):2317–24. This paper demonstrates the additional effect of a subsequent fracture on the fracture-associated mortality. Although the greatest mortality risk lies in the first 5 years post initial fracture, this is extended up to 10 years if a re-fracture occurs.

    Article  PubMed  Google Scholar 

  18. Nguyen ND, Eisman JA, Center JR, Nguyen TV. Risk factors for fracture in nonosteoporotic men and women. J Clin Endocrinol Metab. 2007;92(3):955–62.

    Article  CAS  PubMed  Google Scholar 

  19. Pasco JA, Seeman E, Henry MJ, Merriman EN, Nicholson GC, Kotowicz MA. The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos Int. 2006;17(9):1404–9.

    Article  CAS  PubMed  Google Scholar 

  20. Browner WS, Seeley DG, Vogt TM, Cummings SR. Non-trauma mortality in elderly women with low bone mineral density. Lancet. 1991;338:355–8.

    Article  CAS  PubMed  Google Scholar 

  21. Qu X, Huang X, Jin F, Wang H, Hao Y, Tang T, et al. Bone mineral density and all-cause, cardiovascular and stroke mortality: a meta-analysis of prospective cohort studies. Int J Cardiol. 2013;166(2):385–93.

    Article  PubMed  Google Scholar 

  22. Johansson H, Oden A, Kanis J, McCloskey E, Lorentzon M, Ljunggren O, et al. Low bone mineral density is associated with increased mortality in elderly men: MrOS Sweden. Osteoporos Int. 2011;22(5):1411–8.

    Article  CAS  PubMed  Google Scholar 

  23. Bliuc D, Alarkawi D, Nguyen TV, Eisman JA, Center JR. Risk of subsequent fractures and mortality in elderly women and men with fragility fractures with and without osteoporotic bone density: the Dubbo osteoporosis epidemiology study. J Bone Miner Res. 2015;30(4):637–46.

    Article  PubMed  Google Scholar 

  24. Cooper C, Cole ZA, Holroyd CR, Earl SC, Harvey NC, Dennison EM, et al. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int. 2011;22(5):1277–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adams AL, Shi J, Takayanagi M, Dell RM, Funahashi TT, Jacobsen SJ. Ten-year hip fracture incidence rate trends in a large California population, 1997–2006. Osteoporos Int. 2013;24(1):373–6.

    Article  CAS  PubMed  Google Scholar 

  26. Lau EM, Cooper C, Fung H, Lam D, Tsang KK. Hip fracture in Hong Kong over the last decade—a comparison with the UK. J Public Health Med. 1999;21(3):249–50.

    Article  CAS  PubMed  Google Scholar 

  27. Hagino H, Furukawa K, Fujiwara S, Okano T, Katagiri H, Yamamoto K, et al. Recent trends in the incidence and lifetime risk of hip fracture in Tottori. Japan Osteoporos Int. 2009;20(4):543–8.

    Article  CAS  PubMed  Google Scholar 

  28. Bliuc D, Tran T, Alarkawi D, Nguyen TV, Eisman JA, Center JR. Secular changes in Postfracture outcomes over 2 decades in Australia: a time-trend comparison of excess Postfracture mortality in two birth controls over two decades. J Clin Endocrinol Metab. 2016;101(6):2475–83.

    Article  CAS  PubMed  Google Scholar 

  29. Lyles KW, Colon-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007;357(18):1799–809.

    Article  CAS  PubMed  Google Scholar 

  30. Beaupre LA, Morrish DW, Hanley DA, Maksymowych WP, Bell NR, Juby AG, et al. Oral bisphosphonates are associated with reduced mortality after hip fracture. Osteoporos Int. 2010. PubMed Epub 2010/11/06. Eng.

  31. Sambrook PN, Cameron ID, Chen JS, March LM, Simpson JM, Cumming RG, et al. Oral bisphosphonates are associated with reduced mortality in frail older people: a prospective five-year study. Osteoporos Int. 2011;22(9):2551–6.

    Article  CAS  PubMed  Google Scholar 

  32. Nurmi-Luthje I, Sund R, Juntunen M, Luthje P. Post-hip fracture use of prescribed calcium plus vitamin D or vitamin D supplements and antiosteoporotic drugs is associated with lower mortality: a nationwide study in Finland. J Bone Miner Res. 2011;26(8):1845–53.

    Article  CAS  PubMed  Google Scholar 

  33. Bondo L, Eiken P, Abrahamsen B. Analysis of the association between bisphosphonate treatment survival in Danish hip fracture patients—a nationwide register-based open cohort study. Osteoporos Int. 2013;24(1):245–52.

    Article  CAS  PubMed  Google Scholar 

  34. • Brozek W, Reichardt B, Zwerina J, Dimai HP, Klaushofer K, Zwettler E. Antiresorptive therapy and risk of mortality and refracture in osteoporosis-related hip fracture: a nationwide study. Osteoporos Int. 2016;27(1):387–96. Large database study demonstrating a beneficial effect of bisphosphonate therapy on survival following a hip fracture.

    Article  CAS  PubMed  Google Scholar 

  35. Center JR, Bliuc D, Nguyen ND, Nguyen TV, Eisman JA. Osteoporosis medication and reduced mortality risk in elderly women and men. J Clin Endocrinol Metab. 2011;96(4):1006–14.

    Article  CAS  PubMed  Google Scholar 

  36. Corrado A, Santoro N, Cantatore FP. Extra-skeletal effects of bisphosphonates. Joint, bone, spine : revue du rhumatisme. 2007;74(1):32–8.

    Article  CAS  Google Scholar 

  37. Gulson B, Mizon K, Smith H, Eisman J, Palmer J, Korsch M, et al. Skeletal lead release during bone resorption: effect of bisphosphonate treatment in a pilot study. Environ Health Perspect. 2002;110(10):1017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guise TA. Antitumor effects of bisphosphonates: promising preclinical evidence. Cancer Treat Rev. 2008;34(Suppl 1):S19–24.

    Article  CAS  PubMed  Google Scholar 

  39. Waning DL, Guise TA. Cancer-associated muscle weakness: What’s bone got to do with it? BoneKEy reports. 2015;4:691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Junankar S, Shay G, Jurczyluk J, Ali N, Down J, Pocock N, et al. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer discovery. 2015;5(1):35–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline R. Center.

Ethics declarations

Conflict of Interest

Jacqueline Center reports grants from National Health and Medical Research Council, other from Ernst Heine Foundation, Osteoporosis-Amgen grant, grants from BUPA Health Foundation, untied grants from Amgen, Merck Sharpe and Dohme, Novartis, Sanofi Aventis, and Servier during the conduct of the study; personal fees from Amgen, non-financial support from Merck Sharp and Dohme, personal fees from Allergan Australia, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Skeletal Biology and Regulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Center, J.R. Fracture Burden: What Two and a Half Decades of Dubbo Osteoporosis Epidemiology Study Data Reveal About Clinical Outcomes of Osteoporosis. Curr Osteoporos Rep 15, 88–95 (2017). https://doi.org/10.1007/s11914-017-0352-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0352-5

Key Words

Navigation