Skip to main content
Log in

Articular Cartilage: Structural and Developmental Intricacies and Questions

  • Skeletal Development (E Schipani and E Zelzer, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Articular cartilage has obvious and fundamental roles in joint function and body movement. Much is known about its organization, extracellular matrix, and phenotypic properties of its cells, but less is known about its developmental biology. Incipient articular cartilage in late embryos and neonates is a thin tissue with scanty matrix and small cells, while adult tissue is thick and zonal and contains large cells and abundant matrix. What remains unclear is not only how incipient articular cartilage forms, but how it then grows and matures into a functional, complex, and multifaceted structure. This review focuses on recent and exciting discoveries on the developmental biology and growth of articular cartilage, frames them within the context of classic studies, and points to lingering questions and research goals. Advances in this research area will have significant relevance to basic science, and also considerable translational value to design superior cartilage repair and regeneration strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Lyons TJ, McClure SF, Stoddart RW, McClure J. The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord. 2006;7(1):52.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hunziker E, Quinn T, Häuselmann H-J. Quantitative structural organization of normal adult human articular cartilage. Osteoarthr Cartil. 2002;10(7):564–72.

    Article  CAS  PubMed  Google Scholar 

  3. Mankin HJ. The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N Engl J Med. 1974;291(24):1285–92.

    Article  CAS  PubMed  Google Scholar 

  4. Williams R, Khan IM, Richardson K, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One. 2010;5(10):e13246.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci. 2004;117(6):889–97.

    Article  CAS  PubMed  Google Scholar 

  6. Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 2004;50(5):1522–32.

    Article  PubMed  Google Scholar 

  7. Tetteh ES, Bajaj S, Ghodadra NS, Cole BJ. The basic science and surgical treatment options for articular cartilage injuries of the knee. J Orthop Sports Phys Ther. 2012;42(3):243–53.

    Article  PubMed  Google Scholar 

  8. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109):917–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Johnstone B, Alini M, Cucchiarini M, et al. Tissue engineering for articular cartilage repair–the state of the art. Eur Cell Mater. 2013;25(248):e67.

    Google Scholar 

  10. Caldwell K, Wang J. Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthr Cartil. 2015;23(3):351–62.

    Article  CAS  PubMed  Google Scholar 

  11. Hunziker EB, Kapfinger E, Geiss J. The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthr Cartil. 2007;15(4):403–13.

    Article  CAS  PubMed  Google Scholar 

  12. Weiss C, Rosenberg L, Helfet AJ. An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg. 1968;50(4):663–74.

    CAS  PubMed  Google Scholar 

  13. Gannon A, Nagel T, Bell A, Avery N, Kelly D. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network. Eur Cell Mater. 2014;29:105–23.

    Google Scholar 

  14. Helminen HJ, Hyttinen MM, Lammi MJ, et al. Regular joint loading in youth assists in the establishment and strengthening of the collagen network of articular cartilage and contributes to the prevention of osteoarthrosis later in life: a hypothesis. J Bone Miner Metab. 2000;18(5):245–57.

    Article  CAS  PubMed  Google Scholar 

  15. Mienaltowski MJ, Huang L, Stromberg AJ, MacLeod JN. Differential gene expression associated with postnatal equine articular cartilage maturation. BMC Musculoskelet Disord. 2008;9:149.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Holder N. An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morphol. 1977;39:115–27.

    CAS  PubMed  Google Scholar 

  17. Mitrovic D. Development of the diarthrodial joints in the rat embryo. Am J Anat. 1978;151(4):475–85.

    Article  CAS  PubMed  Google Scholar 

  18. Craig FM, Bentley G, Archer CW. The spatial and temporal pattern of collagens I and II and keratan sulphate in the developing chick metatarsophalangeal joint. Development. 1987;99(3):383–91.

    CAS  PubMed  Google Scholar 

  19. Nalin AM, Greenlee Jr TK, Sandell LJ. Collagen gene expression during development of avian synovial joints: transient expression of types II and XI collagen genes in the joint capsule. Dev Dyn. 1995;203(3):352–62.

    Article  CAS  PubMed  Google Scholar 

  20. Hyde G, Boot‐Handford RP, Wallis GA. Col2a1 lineage tracing reveals that the meniscus of the knee joint has a complex cellular origin. J Anat. 2008;213(5):531–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Soeda T, Deng JM, de Crombrugghe B, Behringer RR, Nakamura T, Akiyama H. Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis. 2010;48(11):635–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhang Q, Cigan AD, Marrero L, et al. Expression of doublecortin reveals articular chondrocyte lineage in mouse embryonic limbs. Genesis. 2011;49(2):75–82.

    Article  CAS  PubMed  Google Scholar 

  23. Storm EE, Kingsley DM. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development. 1996;122(12):3969–79.

    CAS  PubMed  Google Scholar 

  24. Koyama E, Shibukawa Y, Nagayama M, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol. 2008;316(1):62–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rountree RB, Schoor M, Chen H, et al. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol. 2004;2(11):e355.

    Article  PubMed Central  PubMed  Google Scholar 

  26. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13(16):2072–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Koyama E, Ochiai T, Rountree RB, et al. Synovial joint formation during mouse limb skeletogenesis: roles of Indian hedgehog signaling. Ann N Y Acad Sci. 2007;1116:100–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Decker RS, Koyama E, Pacifici M. Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol. 2014;39:5–10.

    Article  CAS  PubMed  Google Scholar 

  29. Li T, Longobardi L, Myers TJ, et al. Joint TGF-β type II receptor-expressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev. 2012;22(9):1342–59. Specialized niches of joint progenitor cells give rise to unique tissues.

    Article  PubMed Central  Google Scholar 

  30. Jenner F, IJpma A, Cleary M, et al. Differential gene expression of the intermediate and outer interzone layers of developing articular cartilage in murine embryos. Stem Cells Dev. 2014;23(16):1883–98. Spatially defined cells within the murine knee interzone have unique roles in joint development.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ray A, Singh PNP, Sohaskey ML, Harland RM, Bandyopadhyay A. Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development. 2015;142(6):1169–79.

    Article  CAS  PubMed  Google Scholar 

  32. Dy P, Wang W, Bhattaram P, et al. Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell. 2012;22(3):597–609.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kan A, Tabin CJ. c-Jun is required for the specification of joint cell fates. Genes Dev. 2013;27(5):514–24. Transcription facter c-Jun works upstream of Wnt9a to determine joint progenitor cell fate.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Fell HB, Canti R. Experiments on the development in vitro of the avian knee-joint. Proc R Soc Lond B Biol Sci. 1934;116(799):316–51.

    Article  Google Scholar 

  35. Persson M. The role of movements in the development of sutural and diarthrodial joints tested by long-term paralysis of chick embryos. J Anat. 1983;137(Pt 3):591.

    PubMed Central  PubMed  Google Scholar 

  36. Dowthwaite GP, Edwards JC, Pitsillides AA. An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem. 1998;46(5):641–51.

    Article  CAS  PubMed  Google Scholar 

  37. Osborne A, Lamb K, Lewthwaite J, Dowthwaite G, Pitsillides A. Short-term rigid and flaccid paralyses diminish growth of embryonic chick limbs and abrogate joint cavity formation but differentially preserve pre-cavitated joints. J Musculoskelet Neuronal Interact. 2002;2(5):448–56.

    CAS  PubMed  Google Scholar 

  38. Kahn J, Shwartz Y, Blitz E, et al. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell. 2009;16(5):734–43.

    Article  CAS  PubMed  Google Scholar 

  39. Tamamura Y, Otani T, Kanatani N, et al. Developmental regulation of Wnt/β-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem. 2005;280(19):19185–95.

    Article  CAS  PubMed  Google Scholar 

  40. Mankin HJ. Localization of tritiated thymidine in articular cartilage of rabbits. III. Mature Articular Cartilage. J Bone Joint Surg. 1963;45(3):529–40.

    Google Scholar 

  41. Mankin HJ. Localization of tritiated thymidine in articular cartilage of rabbits. II. Repair in Immature Cartilage. J Bone Joint Surg. 1962;44(4):688–98.

    Google Scholar 

  42. Archer CW, Morrison H, Pitsillides AA. Cellular aspects of the development of diarthrodial joints and articular cartilage. J Anat. 1994;184(Pt 3):447.

    PubMed Central  PubMed  Google Scholar 

  43. Hayes AJ, MacPherson S, Morrison H, Dowthwaite G, Archer CW. The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl). 2001;203(6):469–79.

    Article  CAS  Google Scholar 

  44. Kozhemyakina E, Zhang M, Ionescu A, et al. Identification of a prg4-expressing articular cartilage progenitor cell population in mice. Arthritis Rheumatol. 2015;67(5):1261–73.

    Article  CAS  PubMed  Google Scholar 

  45. Ikegawa S, Sano M, Koshizuka Y, Nakamura Y. Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes. Cytogenet Cell Genet. 2000;90(3–4):291–7.

    Article  CAS  PubMed  Google Scholar 

  46. Iwamoto M, Tamamura Y, Koyama E, et al. Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis. Dev Biol. 2007;305(1):40–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Rhee DK, Marcelino J, Baker M, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest. 2005;115(3):622–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Lefebvre V, Bhattaram P. Editorial: prg4-expressing cells: articular stem cells or differentiated progeny in the articular chondrocyte lineage? Arthritis Rheumatol. 2015;67(5):1151–4.

    Article  PubMed  Google Scholar 

  49. Wilsman NJ, Leiferman EM, Fry M, Farnum CE, Barreto C. Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. J Orthop Res. 1996;14(6):927–36.

    Article  CAS  PubMed  Google Scholar 

  50. Breur G, VanEnkevort B, Farnum C, Wilsman N. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. J Orthop Res. 1991;9(3):348–59.

    Article  CAS  PubMed  Google Scholar 

  51. Kuhn JL, Delacey JH, Leenellett EE. Relationship between bone growth rate and hypertrophic chondrocyte volume in New Zealand white rabbits of varying ages. J Orthop Res. 1996;14(5):706–11.

    Article  CAS  PubMed  Google Scholar 

  52. Cooper KL, Oh S, Sung Y, Dasari RR, Kirschner MW, Tabin CJ. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature. 2013;495(7441):375–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Benninghoff A. Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Z Zellforsch Mikrosk Anat. 1925;2(5):783–862.

    Article  Google Scholar 

  54. Lui JC, Chau M, Chen W, et al. Spatial regulation of gene expression during growth of articular cartilage in juvenile mice. Pediatr Res. 2015;77(3):406–15.

    Article  CAS  PubMed  Google Scholar 

  55. Amanatullah DF, Yamane S, Reddi AH. Distinct patterns of gene expression in the superficial, middle and deep zones of bovine articular cartilage. J Tissue Eng Regen Med. 2014;8(7):505–14.

    CAS  PubMed  Google Scholar 

  56. Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today. 2005;75(3):237–48.

    Article  CAS  PubMed  Google Scholar 

  57. Tchetina EV, Squires G, Poole AR. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rhematol. 2005;32(5):876–86.

    CAS  Google Scholar 

  58. Loeser RF, Olex AL, McNulty MA, et al. Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS One. 2013;8(1):e54633.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Glasson SS, Askew R, Sheppard B, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005;434(7033):644–8.

    Article  CAS  PubMed  Google Scholar 

  60. Lin AC, Seeto BL, Bartoszko JM, et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med. 2009;15(12):1421–5.

    Article  CAS  PubMed  Google Scholar 

  61. Macica C, Liang G, Nasiri A, Broadus AE. Genetic evidence of the regulatory role of parathyroid hormone–related protein in articular chondrocyte maintenance in an experimental mouse model. Arthritis Rheum. 2011;63(11):3333–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Sampson ER, Hilton MJ, Tian Y, et al. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med. 2011;3(101):101ra193.

    Article  Google Scholar 

  63. Ruan MZ, Erez A, Guse K, et al. Proteoglycan 4 expression protects against the development of osteoarthritis. Sci Transl Med. 2013;5(176):176ra134. Prg4 gene therapy is potentially a novel tool for prevention of post-traumatic osteoarthrits.

    Article  Google Scholar 

  64. Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2(11):827–37.

    Article  CAS  PubMed  Google Scholar 

  65. Ohta Y, Okabe T, Larmour C, et al. Articular cartilage endurance and resistance to osteoarthritic changes require transcription factor Erg. Arthritis Rheum. 2015. doi:10.1002/art.39243. Erg is required for maintenance of permanent articular cartilage.

  66. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 2002;290(2):763–9.

    Article  CAS  PubMed  Google Scholar 

  67. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil. 2002;10(3):199–206.

    Article  CAS  PubMed  Google Scholar 

  68. Musumeci G, Castrogiovanni P, Leonardi R, et al. New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review. World J Orthop. 2014;5(2):80.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Hirschi KK, Li S, Roy K. Induced pluripotent stem cells for regenerative medicine. Annu Rev Biomed Eng. 2014;16:277.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Tabar V, Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet. 2014;15(2):82–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Johnson K, Zhu S, Tremblay MS, et al. A stem cell-based approach to cartilage repair. Science. 2012;336(6082):717–21. The novel small-molecule Kartogenin has chondroprotective effects in mouse OA models.

    Article  CAS  PubMed  Google Scholar 

  72. Decker RS, Koyama E, Enomoto-Iwamoto M, et al. Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin. Dev Biol. 2014;395(2):255–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work we originally carried out and summarized here was supported by NIH grants AR062908 and AR046000. R.S.D. is the recipient of a postdoctoral training grant (1F32AR064071) from the NIH. We express our gratitude to our several colleagues who contributed to the original studies described here, and apologize for not citing and describing the work of other relevant groups given the succinct format of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekah S. Decker.

Ethics declarations

Conflict of Interest

The authors of this paper declare they have no conflicts of interest

Human and Animal Rights and Informed Consent

All studies by Drs. Decker, Koyama, Pacifici involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Additional information

This article is part of the Topical Collection on Skeletal Development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decker, R.S., Koyama, E. & Pacifici, M. Articular Cartilage: Structural and Developmental Intricacies and Questions. Curr Osteoporos Rep 13, 407–414 (2015). https://doi.org/10.1007/s11914-015-0290-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0290-z

Keywords

Navigation