Skip to main content

Advertisement

Log in

Internal Fixation of Osteoporotic Fractures

  • Orthopedic Management of Fractures (D Little and T Miclau, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Osteoporosis leads to bone fragility and increased risk of fracture. Despite advances in diagnosis and treatment, the prevalence continues to rise. Osteoporotic fracture treatment has a unique set of difficulties related to poor bone quality and traditional approaches, and implants may not perform well. Fixation failure and repeat surgery are poorly tolerated and highly undesirable in this patient population. This review illustrates the most recent updates in internal fixation, implant design, and surgical theory regarding treatment of patients with osteoporotic fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2006;22:465–75.

    Article  Google Scholar 

  2. Looker AC, Orwoll ES, Johnston CC, Lindsay RL, Wahner HW, Dunn WL, et al. Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res. 1997;12:1761–8.

    Article  PubMed  CAS  Google Scholar 

  3. Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int. 2009;20:1633–50.

    Article  PubMed  CAS  Google Scholar 

  4. U.S. Dept. of Health and Human Services. Bone health and osteoporosis: a report of the Surgeon General. Rockville, Md: Public Health Service, Office of the Surgeon General. Washington, D.C.: U.S. G.P.O. 2004;1-436.

  5. Koehne T, Vettorazzi E, Küsters N, Lüneburg R, Kahl-Nieke B, Püschel K, et al. Trends in trabecular architecture and bone mineral density distribution in 152 individuals aged 30-90 years. Bone. 2014;66:31–8.

    Article  PubMed  CAS  Google Scholar 

  6. Willett K, Hearn TC, Cuncins AV. Biomechanical testing of a new design for Schanz pedicle screws. J Orthop Trauma. 1993;7:375–80.

    Article  PubMed  CAS  Google Scholar 

  7. Kido HW, Bossini PS, Tim CR, Parizotto NA, da Cunha AF, Malavazi I, et al. Evaluation of the bone healing process in an experimental tibial bone defect model in ovariectomized rats. Aging Clin Exp Res. 2014.

  8. Giannoudis P, Tzioupis C, Almalki T, Buckley R. Fracture healing in osteoporotic fractures: is it really different? Injury. 2007;38:S90–9.

    Article  PubMed  Google Scholar 

  9. Nikolaou VS, Efstathopoulos N, Kontakis G, Kanakaris NK, Giannoudis PV. The influence of osteoporosis in femoral fracture healing time. Injury. 2009;40:663–8.

    Article  PubMed  Google Scholar 

  10. Turner IG, Rice GN. Comparison of bone screw holding strength in healthy bovine and osteoporotic human cancellous bone. Clin Mater. 1992;9:105–7.

    Article  PubMed  CAS  Google Scholar 

  11. Sanders R, Haidukewych GJ, Milne T, Dennis J, Latta LL. Minimal versus maximal plate fixation techniques of the ulna: the biomechanical effect of number of screws and plate length. J Orthop Trauma. 2002;16:166–71.

    Article  PubMed  Google Scholar 

  12. Egol KA, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ. Biomechanics of locked plates and screws. J Orthop Trauma. 2004;18:488–93.

    Article  PubMed  Google Scholar 

  13. Cordey J, Borgeaud M, Perren SM. Force transfer between the plate and the bone: relative importance of the bending stiffness of the screws friction between plate and bone. Injury. 2000;31 Suppl 3:C21–8.

    Article  PubMed  Google Scholar 

  14. Bottlang M, Doornink J, Lujan TJ, Fitzpatrick DC, Marsh JL, Augat P, et al. Effects of construct stiffness on healing of fractures stabilized with locking plates. J Bone Joint Surg. 2010;92 Suppl 2:12–22.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sommer C, Gautier E, Müller M, Helfet DL, Wagner M. First clinical results of the locking compression plate (LCP). Injury. 2003;34 Suppl 2:B43–54.

    Article  PubMed  Google Scholar 

  16. Bottlang M, Doornink J, Byrd GD, Fitzpatrick DC, Madey SM. A nonlocking end screw can decrease fracture risk caused by locked plating in the osteoporotic diaphysis. J Bone Joint Surg. 2009;91:620–7.

    Article  PubMed  Google Scholar 

  17. O’Toole RV, Andersen RC, Vesnovsky O, Alexander M, Topoleski LDT, Nascone JW, et al. Are locking screws advantageous with plate fixation of humeral shaft fractures? A biomechanical analysis of synthetic and cadaveric bone. J Orthop Trauma. 2008;22:709–15.

    Article  PubMed  Google Scholar 

  18. Rodriguez EK, Boulton C, Weaver MJ, Herder LM, Morgan JH, Chacko AT, et al. Predictive factors of distal femoral fracture nonunion after lateral locked plating: a retrospective multicenter case-control study of 283 fractures. Injury. 2014;45:554–9.

    Article  PubMed  Google Scholar 

  19. Ricci WM, Streubel PN, Morshed S, Collinge CA, Nork SE, Gardner MJ. Risk factors for failure of locked plate fixation of distal femur fractures: an analysis of 335 cases. J Orthop Trauma. 2014;28:83–9. Ricci et al. showed a secondary reoperation rate of 19 % with the use of locked plate fixation for distal femur fractures, a fracture commonly associated with osteoporosis. The identified risk factors for reoperation to promote union included open fracture, diabetes, smoking, increased body mass index, and shorter plate length. This illustrates that plate length, a surgeon modifiable risk factor, is an important consideration in construct design when treating osteoporotic fractures.

    Article  PubMed  Google Scholar 

  20. Dalstrom DJ, Nelles DB, Patel V, Goswami T, Markert RJ, Prayson MJ. The protective effect of locking screw placement on nonlocking screw extraction torque in an osteoporotic supracondylar femur fracture model. J Orthop Trauma. 2012;26:523–7.

    Article  PubMed  Google Scholar 

  21. Cui S, Bledsoe JG, Israel H, Watson JT, Cannada LK. Locked plating of comminuted distal femur fractures: does unlocked screw placement affect stability and failure? J Orthop Trauma. 2014;28:90–6.

    Article  PubMed  Google Scholar 

  22. Beingessner D, Moon E, Barei D, Morshed S. Biomechanical analysis of the less invasive stabilization system for mechanically unstable fractures of the distal femur: comparison of titanium versus stainless steel and bicortical versus unicortical fixation. J Trauma. 2011;71:620–4.

    PubMed  Google Scholar 

  23. Bottlang M. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am. 2009;91:1985.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Gardner MJ, Nork SE, Huber P, Krieg JC. Stiffness modulation of locking plate constructs using near cortical slotted holes: a preliminary study. J Orthop Trauma. 2009;23:281–7.

    Article  PubMed  Google Scholar 

  25. Bottlang M, Fitzpatrick DC, Sheerin D, Kubiak E, Gellman R, Vande Zandschulp C, et al. Dynamic fixation of distal femur fractures using far cortical locking screws: a prospective observational study. J Orthop Trauma. 2014;28:181–8. Bottlang et al. showed that far cortical locking improved union rates in the treatment of distal femur fractures with 30 of 31 fractures uniting and only one fracture needing revision for nonunion. There were no complications of loss of fixation when using far cortical locking screws proving this novel implant to be safe and effective.

    Article  PubMed  Google Scholar 

  26. Doornink J, Fitzpatrick DC, Madey SM, Bottlang M. Far cortical locking enables flexible fixation with periarticular locking plates. J Orthop Trauma. 2011;25:S29–34.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Jupiter JB, Winters S, Sigman S, Lowe C, Pappas C, Ladd AL, et al. Repair of five distal radius fractures with an investigational cancellous bone cement: a preliminary report. J Orthop Trauma. 1997;11:110–6.

    Article  PubMed  CAS  Google Scholar 

  28. Cornell CN. Internal fracture fixation in patients with osteoporosis. JAm Acad of Orthop Surg. 2003;11:109–19.

    Google Scholar 

  29. Bogunovic L, Cherney SM, Rothermich MA, Gardner MJ. Biomechanical considerations for surgical stabilization of osteoporotic fractures. Orthop Clin North Am. 2013;44:183–200.

    Article  PubMed  Google Scholar 

  30. Moroni A, Toksvig-Larsen S, Maltarello MC, Orienti L, Stea S, Giannini S. A comparison of hydroxyapatite-coated, titanium-coated, and uncoated tapered external-fixation pins. An in vivo study in sheep. J Bone Joint Surg Am. 1998;80:547–54.

    PubMed  CAS  Google Scholar 

  31. Agholme F, Andersson T, Tengvall P, Aspenberg P. Local bisphosphonate release versus hydroxyapatite coating for stainless steel screw fixation in rat tibiae. J Mater Sci Mater Med. 2012;23:743–52.

    Article  PubMed  CAS  Google Scholar 

  32. Wermelin K, Suska F, Tengvall P, Thomsen P, Aspenberg P. Stainless steel screws coated with bisphosphonates gave stronger fixation and more surrounding bone. Histomorphometry in rats Bone. 2008;42:365–71.

    Article  CAS  Google Scholar 

  33. Gardner MJ, Boraiah S, Helfet DL, Lorich DG. Indirect medial reduction and strut support of proximal humerus fractures using an endosteal implant. J Orthop Trauma. 2008;22:195–200.

    Article  PubMed  Google Scholar 

  34. Bae JH, Oh JK, Chon C-S, Oh C-W, Hwang J-H, Yoon Y-C. The biomechanical performance of locking plate fixation with intramedullary fibular strut graft augmentation in the treatment of unstable fractures of the proximal humerus. J Bone Joint Surg (Br). 2011;93:937–41.

    Article  Google Scholar 

  35. Assal M, Christofilopoulos P, Lübbeke A, Stern R. Augmented osteosynthesis of OTA 44-B fractures in older patients: a technique allowing early weightbearing. J Orthop Trauma. 2011;25:742–7.

    Article  PubMed  Google Scholar 

  36. Kummer FJ, Koval KJ, Kauffman JI. Improving the distal fixation of intramedullary nails in osteoporotic bone. Bull (Hosp for Joint Dis (New York, NY)). 1997;56:88–90.

    CAS  Google Scholar 

  37. Paller DJ, Frenzen SW, Bartlett III CS, Beardsley CL, Beynnon BD. A three-dimensional comparison of intramedullary nail constructs for osteopenic supracondylar femur fractures. J Orthop Trauma. 2013;27:93–9.

    Article  PubMed  Google Scholar 

  38. Tejwani NC, Park S, Iesaka K, Kummer F. The effect of locked distal screws in retrograde nailing of osteoporotic distal femur fractures: a laboratory study using cadaver femurs. J Orthop Trauma. 2005;19:380–3.

    Article  PubMed  Google Scholar 

  39. Sha M, Guo Z, Fu J, Li J, Yuan CF, Shi L, et al. The effects of nail rigidity on fracture healing in rats with osteoporosis. SORT. 2009;80:135–8.

    Article  Google Scholar 

  40. Hasselman CT, Vogt MT, Stone KL, Cauley JA, Conti SF. Foot and ankle fractures in elderly white women. Incidence and risk factors. J Bone Joint Surg Am. 2003;85-A:820–4.

    PubMed  Google Scholar 

  41. Olsen JR, Hunter J, Baumhauer JF. Osteoporotic ankle fractures. Orthop Clin North Am. 2013;44:225–41.

    Article  PubMed  Google Scholar 

  42. Pollard JD, Deyhim A, Rigby RB, Dau N, King C, Fallat LM, et al. Comparison of pullout strength between 3.5-mm fully threaded, bicortical screws and 4.0-mm partially threaded, cancellous screws in the fixation of medial malleolar fractures. J foot and ankle surg: ofF publ Am College of Foot and Ankle Surg. 2010;49:248–52.

    Article  Google Scholar 

  43. King CM, Cobb M, Collman DR, Lagaay PM, Pollard JD. Bicortical fixation of medial malleolar fractures: a review of 23 cases at risk for complicated bone healing. J foot and ankle surg: ofF publ Am College of Foot and Ankle Surg. 2012;51:39–44.

    Article  Google Scholar 

  44. Fowler TT, Pugh KJ, Litsky AS, Taylor BC, French BG. Medial malleolar fractures: a biomechanical study of fixation techniques. Orthopedics. 2011;34:e349–55.

    PubMed  Google Scholar 

  45. Ricci WM, Tornetta P, Borrelli Jr J. Lag screw fixation of medial malleolar fractures: a biomechanical, radiographic, and clinical comparison of unicortical partially threaded lag screws and bicortical fully threaded lag screws. J Orthop Trauma. 2012;26:602–6.

    Article  PubMed  Google Scholar 

  46. McLaurin TM. Proximal humerus fractures in the elderly are we operating on too many? Bulletin (Hospital for Joint Diseases (New York, NY)). 2004;62:24–32.

  47. Olerud P, Ahrengart L, Ponzer S, Saving J, Tidermark J. Internal fixation versus nonoperative treatment of displaced 3-part proximal humeral fractures in elderly patients: a randomized controlled trial. J Shoulder Elbow Surg. 2011;20:747–55.

    Article  PubMed  Google Scholar 

  48. Zhu Y, Lu Y, Shen J, Zhang J, Jiang C. Locking intramedullary nails and locking plates in the treatment of two-part proximal humeral surgical neck fractures: a prospective randomized trial with a minimum of three years of follow-up. J Bone Joint Surg. 2011;93:159–68.

    Article  PubMed  Google Scholar 

  49. Yoon RS, Dziadosz D, Porter DA, Frank MA, Smith WR, Liporace FA. A comprehensive update on current fixation options for two-part proximal humerus fractures: a biomechanical investigation. Injury. 2014;45:510–4.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

DL Rothberg and MA Lee both declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Lee.

Additional information

This article is part of the Topical Collection on Orthopedic Management of Fractures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothberg, D.L., Lee, M.A. Internal Fixation of Osteoporotic Fractures. Curr Osteoporos Rep 13, 16–21 (2015). https://doi.org/10.1007/s11914-014-0245-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0245-9

Keywords

Navigation