Skip to main content

Advertisement

Log in

Osteoblasts: a Novel Source of Erythropoietin

  • Skeletal Development (E Schipani and E Zelzer, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Osteoblasts are an important cellular component of the bone microenvironment controlling bone formation and hematopoiesis. Understanding the cellular and molecular mechanisms by which osteoblasts regulate these processes is a rapidly growing area of research given the important implications for bone therapy, regenerative medicine, and hematopoietic stem cell transplantation. Here we summarize our current knowledge regarding the cellular and molecular crosstalk driving bone formation and hematopoiesis and will discuss the implications of a recent finding demonstrating that osteoblasts are a cellular source of erythropoietin .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006;116:1195–201.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010;19:329–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Chan CK, Chen CC, Luppen CA, et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature. 2009;457:490–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64.

    Article  PubMed  CAS  Google Scholar 

  5. Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89:765–71.

    Article  PubMed  CAS  Google Scholar 

  6. Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108:17–29.

    Article  PubMed  CAS  Google Scholar 

  7. Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–8.

    Article  PubMed  CAS  Google Scholar 

  8. Maes C, Carmeliet P, Moermans K, et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev. 2002;111:61–73.

    Article  PubMed  CAS  Google Scholar 

  9. Zelzer E, McLean W, Ng YS, et al. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development. 2002;129:1893–904.

    PubMed  CAS  Google Scholar 

  10. Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507:323–8. This paper identifies a specific population of endothelial cells in bone that are responsible for the coupling of angiogenesis and osteogenesis.

    Article  PubMed  CAS  Google Scholar 

  11. Ramasamy SK, Kusumbe AP, Wang L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. 2014;507:376–80. This paper demonstrates that Notch signaling in endothelial cells regulates osteoblast differentiation through the production of Noggin.

    Article  PubMed  CAS  Google Scholar 

  12. Schipani E, Wu C, Rankin EB, et al. Regulation of bone marrow angiogenesis by osteoblasts during bone development and homeostasis. Front Endocrinol (Lausanne). 2013;4:85.

    Google Scholar 

  13. Jaakkola P, Mole D, Tian Y, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  PubMed  CAS  Google Scholar 

  14. Bruick R, McKnight S. A conserved family of prolyl-4-hydroxilases that modify HIF. Science. 2002;294.

  15. Maxwell P, Wiesener M, Chang G, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    Article  PubMed  CAS  Google Scholar 

  16. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Schipani E, Ryan HE, Didrickson S, et al. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 2001;15:2865–76.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007;117:1616–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Tavassoli M, Crosby WH. Transplantation of marrow to extramedullary sites. Science. 1968;161:54–6.

    Article  PubMed  CAS  Google Scholar 

  20. Kaback LA, Soungdo Y, Naik A, et al. Osterix/Sp7 regulates mesenchymal stem cell mediated endochondral ossification. J Cell Physiol. 2008;214:173–82.

    Article  PubMed  CAS  Google Scholar 

  21. Deguchi K, Yagi H, Inada M, et al. Excessive extramedullary hematopoiesis in Cbfa1-deficient mice with a congenital lack of bone marrow. Biochem Biophys Res Commun. 1999;255:352–9.

    Article  PubMed  CAS  Google Scholar 

  22. Visnjic D, Kalajzic Z, Rowe DW, et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 2004;103:3258–64.

    Article  PubMed  CAS  Google Scholar 

  23. Wu JY, Purton LE, Rodda SJ, et al. Osteoblastic regulation of B lymphopoiesis is mediated by Gs{alpha}-dependent signaling pathways. Proc Natl Acad Sci U S A. 2008;105:16976–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Zhu J, Garrett R, Jung Y, et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood. 2007;109:3706–12.

    Article  PubMed  CAS  Google Scholar 

  25. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505:327–34.

    Article  PubMed  CAS  Google Scholar 

  26. Rankin EB, Wu C, Khatri R, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell. 2012;149:63–74. This paper is the first to demonstrate that cells of the osteoblastic lineage have the capacity to produce EPO under physiologic and pathophysiologic conditions.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Elliott S, Sinclair AM. The effect of erythropoietin on normal and neoplastic cells. Biogeosciences. 2012;6:163–89.

    CAS  Google Scholar 

  28. Obara N, Suzuki N, Kim K, et al. Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood. 2008;111:5223–32.

    Article  PubMed  CAS  Google Scholar 

  29. Mizoguchi T, Pinho S, Ahmed J, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell. 2014;29:340–9. This paper demonstrates that Osterix positive cells in the bone marrow give rise to primitive and definitive stromal cells as well as cells of the osteoblastic lineage.

    Article  PubMed  CAS  Google Scholar 

  30. Kertesz N, Wu J, Chen TH, et al. The role of erythropoietin in regulating angiogenesis. Dev Biol. 2004;276:101–10.

    Article  PubMed  CAS  Google Scholar 

  31. Wu C, Rankin EB, Giaccia AJ. Blood and bones: osteoblastic HIF signaling regulates erythropoiesis. Cell Cycle. 2012;11:2221–2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Lucas TS, Bab IA, Lian JB, et al. Stimulation of systemic bone formation induced by experimental blood loss. Clin Orthop Relat Res. 1997;267:75.

    Google Scholar 

  33. Wan L, Zhang F, He Q, et al. EPO promotes bone repair through enhanced cartilaginous callus formation and angiogenesis. PLoS One. 2014;9:e102010.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Garcia P, Speidel V, Scheuer C, et al. Low dose erythropoietin stimulates bone healing in mice. J Orthop Res. 2011;29:165–72.

    Article  PubMed  CAS  Google Scholar 

  35. Holstein JH, Orth M, Scheuer C, et al. Erythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice. Bone. 2011;49:1037–45.

    Article  PubMed  CAS  Google Scholar 

  36. Sun H, Jung Y, Shiozawa Y, et al. Erythropoietin modulates the structure of bone morphogenetic protein 2-engineered cranial bone. Tissue Eng Part A. 2012;18:2095–105.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Nair AM, Tsai YT, Shah KM, et al. The effect of erythropoietin on autologous stem cell-mediated bone regeneration. Biomaterials. 2013;34:7364–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Rolfing JH, Bendtsen M, Jensen J, et al. Erythropoietin augments bone formation in a rabbit posterolateral spinal fusion model. J Orthop Res. 2012;30:1083–8.

    Article  PubMed  Google Scholar 

  39. Betsch M, Thelen S, Santak L, et al. The role of erythropoietin and bone marrow concentrate in the treatment of osteochondral defects in mini-pigs. PLoS One. 2014;9:e92766.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rolfing JH, Jensen J, Jensen JN, et al. A single topical dose of erythropoietin applied on a collagen carrier enhances calvarial bone healing in pigs. Acta Orthop. 2014;85:201–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shiozawa Y, Jung Y, Ziegler AM, et al. Erythropoietin couples hematopoiesis with bone formation. PLoS One. 2010;5:e10853.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wu H, Lee SH, Gao J, et al. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development. 1999;126:3597–605.

    PubMed  CAS  Google Scholar 

  43. Rolfing JH, Baatrup A, Stiehler M, et al. The osteogenic effect of erythropoietin on human mesenchymal stromal cells is dose-dependent and involves non-hematopoietic receptors and multiple intracellular signaling pathways. Stem Cell Rev. 2014;10:69–78.

    Article  PubMed  Google Scholar 

  44. Kim J, Jung Y, Sun H, et al. Erythropoietin mediated bone formation is regulated by mTOR signaling. J Cell Biochem. 2012;113:220–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Elliott S, Sinclair A, Collins H, et al. Progress in detecting cell-surface protein receptors: the erythropoietin receptor example. Ann Hematol. 2014;93:181–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Singbrant S, Russell MR, Jovic T, et al. Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood. 2011;117:5631–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

C. Wu, A. J. Giaccia, and E. B. Rankin declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by C. Wu, A. J. Giaccia, and E. B. Rankin involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erinn B. Rankin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Giaccia, A.J. & Rankin, E.B. Osteoblasts: a Novel Source of Erythropoietin. Curr Osteoporos Rep 12, 428–432 (2014). https://doi.org/10.1007/s11914-014-0236-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0236-x

Keywords

Navigation