Skip to main content
Log in

Intratumoral Immunotherapy: Is It Ready for Prime Time?

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review presents the rationale for intratumoral immunotherapy, technical considerations and safety. Clinical results from the latest trials are provided and discussed.

Recent Findings

Intratumoral immunotherapy is feasible and safe in a wide range of cancer histologies and locations, including lung and liver. Studies mainly focused on multi-metastatic patients, with some positive trials such as T-VEC in melanoma, but evidence of clinical benefit is still lacking. Recent results showed improved outcomes in patients with a low tumor burden.

Summary

Intratumoral immunotherapy can lower systemic toxicities and boost local and systemic immune responses. Several studies have proven the feasibility, repeatability, and safety of this approach, with some promising results in clinical trials. The clinical benefit might be improved in patients with a low tumor burden. Future clinical trials should focus on adequate timing of treatment delivery during the course of the disease, particularly in the neoadjuvant setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381:1535–46.

    Article  CAS  PubMed  Google Scholar 

  2. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim S-W, Carcereny Costa E, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019;381:2020–31.

    Article  CAS  PubMed  Google Scholar 

  3. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905.

    Article  CAS  PubMed  Google Scholar 

  4. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–68.

    Article  CAS  PubMed  Google Scholar 

  5. Verma V, Sprave T, Haque W, Simone CB, Chang JY, Welsh JW, et al. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J Immunother Cancer. 2018;6:128.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA, et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers. 2020;6:38.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3:1–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Marabelle A, Andtbacka R, Harrington K, Melero I, Leidner R, de Baere T, et al. Starting the fight in the tumor: expert recommendations for the development of human intratumoral immunotherapy (HIT-IT). Ann Oncol. 2018;29:2163–74. In this article, an expert meeting sponsored by the European Society for Medical Oncology provide valuable definitions of terms to be used in intratumoral immunotherapy clinical trials. Important recommendations on data collection methodologies are also provided.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marabelle A, Tselikas L, de Baere T, Houot R. Intratumoral immunotherapy: using the tumor as the remedy. Ann Oncol. 2017;28:xii33–43.

    Article  CAS  PubMed  Google Scholar 

  10. Kimura Y, Ghosn M, Cheema W, Adusumilli PS, Solomon SB, Srimathveeralli G. Expanding the role of interventional oncology for advancing precision immunotherapy of solid tumors. Mol Ther Oncolytics. 2022;24:194–204. In this article, authors provide an important overview of the potential role of interventional radiology in immuno-oncology, particularly regarding chimeric antigen receptor T cell therapy.

    Article  PubMed  Google Scholar 

  11. Vitale I, Shema E, Loi S, Galluzzi L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. 2021;27:212–24.

    Article  CAS  PubMed  Google Scholar 

  12. Sun S, Hao H, Yang G, Zhang Y, Fu Y. Immunotherapy with CAR-modified T cells: toxicities and overcoming strategies. J Immunol Res. 2018;2018:2386187.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sagiv-Barfi I, Czerwinski DK, Levy S, Alam IS, Mayer AT, Gambhir SS, et al. Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med. 2018;10:eaan488.

    Article  Google Scholar 

  14. Tran G, Zafar SY. Financial toxicity and implications for cancer care in the era of molecular and immune therapies. Ann Transl Med. 2018;6:166.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shahrouki P, Lee JM, Barclay J, Khan SN, Genshaft S, Abtin F, et al. Technical feasibility and safety of repeated computed tomography-guided transthoracic intratumoral injection of gene-modified cellular immunotherapy in metastatic NSCLC. JTO Clin Res Rep. 2021;2:100242.

    PubMed  PubMed Central  Google Scholar 

  16. Sheth RA, Murthy R, Hong DS, Patel S, Overman MJ, Diab A, et al. Assessment of image-guided intratumoral delivery of immunotherapeutics in patients with cancer. JAMA Netw Open. 2020;3:e207911.

    Article  PubMed  Google Scholar 

  17. Suh RD, Goldin JG, Wallace AB, Sheehan RE, Heinze SB, Gitlitz BJ, et al. Metastatic renal cell carcinoma: CT-guided immunotherapy as a technically feasible and safe approach to delivery of gene therapy for treatment. Radiology. 2004;231:359–64.

    Article  PubMed  Google Scholar 

  18. Ghosn M, Cheema W, Zhu A, Livschitz J, Maybody M, Boas FE, et al. Image-guided interventional radiological delivery of chimeric antigen receptor (CAR) T cells for pleural malignancies in a phase I/II clinical trial. Lung Cancer. 2022;165:1–9.

    Article  CAS  PubMed  Google Scholar 

  19. Waddill W, Wright W, Unger E, Stopeck A, Akporiaye E, Harris D, et al. Human gene therapy for melanoma: CT-guided interstitial injection. AJR Am J Roentgenol. 1997;169:63–7.

    Article  PubMed  Google Scholar 

  20. Tselikas L, Dardenne A, de Baere T, Faron M, Ammari S, Farhane S, et al. Feasibility, safety and efficacy of human intra-tumoral immuno-therapy Gustave Roussy’s initial experience with its first 100 patients. Eur J Cancer. 2022;172:1–12.

    Article  PubMed  Google Scholar 

  21. Tselikas L, Champiat S, Sheth RA, Yevich S, Ammari S, Deschamps F, et al. Interventional radiology for local immunotherapy in oncology. Clin Cancer Res. 2021;27:2698–705.

    Article  PubMed  Google Scholar 

  22. Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol. 2021;18:558–76. This article presents all currently used immunotherapy agents in intratumoral immunotherapy studies. Rationale and history of intratumoral immunotherapy are also provided.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alvarez M, Molina C, De Andrea CE, Fernandez-Sendin M, Villalba M, Gonzalez-Gomariz J, et al. Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy. J Immunother Cancer. 2021;9:e002953.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375:2561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60.

    Article  CAS  PubMed  Google Scholar 

  26. Gordic S, Corcuera-Solano I, Stueck A, Besa C, Argiriadi P, Guniganti P, et al. Evaluation of HCC response to locoregional therapy: validation of MRI-based response criteria versus explant pathology. J Hepatol. 2017;67:1213–21.

    Article  PubMed  Google Scholar 

  27. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S-150S.

    Article  CAS  PubMed  Google Scholar 

  28. Hagemann AR, Cadungog M, Hagemann IS, Hammond R, Adams SF, Chu CS, et al. Tissue-based immune monitoring I: tumor core needle biopsies allow in-depth interrogation of the tumor microenvironment. Cancer Biol Ther. 2011;12:357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lara OD, Krishnan S, Wang Z, Corvigno S, Zhong Y, Lyons Y, et al. Tumor core biopsies adequately represent immune microenvironment of high-grade serous carcinoma. Sci Rep. 2019;9:17589.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Muñoz NM, Williams M, Dixon K, Dupuis C, McWatters A, Avritscher R, et al. Influence of injection technique, drug formulation and tumor microenvironment on intratumoral immunotherapy delivery and efficacy. J Immunother Cancer. 2021;9:e001800.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Midia M, Odedra D, Shuster A, Midia R, Muir J. Predictors of bleeding complications following percutaneous image-guided liver biopsy: a scoping review. Diagn Interv Radiol. 2019;25:71–80.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Singh AK, Shankar S, Gervais DA, Hahn PF, Mueller PR. Image-guided percutaneous splenic interventions. Radiographics. 2012;32:523–34.

    Article  PubMed  Google Scholar 

  33. Manhire A, Charig M, Clelland C, Gleeson F, Miller R, Moss H, et al. Guidelines for radiologically guided lung biopsy. Thorax. 2003;58:920–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park B-H, Hwang T, Liu T-C, Sze DY, Kim J-S, Kwon H-C, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9:533–42.

    Article  CAS  PubMed  Google Scholar 

  35. Hamid O, Ismail R, Puzanov I. Intratumoral Immunotherapy-update 2019. Oncologist. 2020;25:e423–38.

    Article  PubMed  Google Scholar 

  36. Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology. 2021;10:1984677.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother. 2018;14:839–46.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Andtbacka RHI, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.

    Article  CAS  PubMed  Google Scholar 

  39. Andtbacka RHI, Collichio F, Harrington KJ, Middleton MR, Downey G, Ӧhrling K, et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer. 2019;7:145. This is the final analysis of the first positive phase III randomized multicenter clinical trial that compared patients with unresectable stage IIIB to IV melanoma that were treated with intralesional TVEC vs. subcutaneous GM-CSF. The trial confirmed improved overall survival in the TVEC arm compared to GM-CSF.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gogas H. MASTERKEY-265: A phase III, randomized, placebo (Pbo)-controlled study of talimogene laherparepvec (T) plus pembrolizumab (P) for unresectable stage IIIB–IVM1c melanoma (MEL) [Internet]. 2021; Available from: Annals of Oncology (2021) 32 (suppl_5): S867-S905. https://doi.org/10.1016/annonc/annonc706

  41. Karime C, Wang J, Woodhead G, Mody K, Hennemeyer CT, Borad MJ, et al. Tilsotolimod: an investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin Investig Drugs. 2022;31:1–13.

    Article  CAS  PubMed  Google Scholar 

  42. Haymaker C, Johnson DH, Murthy R, Bentebibel S-E, Uemura MI, Hudgens CW, et al. Tilsotolimod with ipilimumab drives tumor responses in anti-PD-1 refractory melanoma. Cancer Discov. 2021;11:1996–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butler MO, Robert C, Negrier S, In GK, Walker JW, Krajsova I, et al. ILLUMINATE 301: A randomized phase 3 study of tilsotolimod in combination with ipilimumab compared with ipilimumab alone in patients with advanced melanoma following progression on or after anti-PD-1 therapy. JCO. 2019;37:TPS9599–TPS9599.

    Article  Google Scholar 

  44. Inc IP. Idera pharmaceuticals announces results from ILLUMINATE-301 trial of tilsotolimod + ipilimumab in anti-PD-1 refractory advanced melanoma [Internet]. GlobeNewswire News Room. 2021 [cited 2022 Mar 21];Available from: https://www.globenewswire.com/news-release/2021/03/18/2195815/33448/en/Idera-Pharmaceuticals-Announces-Results-From-ILLUMINATE-301-Trial-of-Tilsotolimod-Ipilimumab-in-anti-PD-1-Refractory-Advanced-Melanoma.html

  45. Miura JT, Zager JS. Neo-DREAM study investigating Daromun for the treatment of clinical stage IIIB/C melanoma. Future Oncol. 2019;15:3665–74.

    Article  CAS  PubMed  Google Scholar 

  46. Inc IP. Idera pharmaceuticals shares positive results from investigator-sponsored trial in melanoma patients at Amsterdam UMC [Internet]. GlobeNewswire News Room. 2022 [cited 2022 Jun 20];Available from: https://www.globenewswire.com/en/news-release/2022/05/17/2444956/33448/en/Idera-Pharmaceuticals-Shares-Positive-Results-from-Investigator-Sponsored-Trial-in-Melanoma-Patients-at-Amsterdam-UMC.html

  47. Oglesby A, Algazi AP, Daud AI. Intratumoral and combination therapy in melanoma and other skin cancers. Am J Clin Dermatol. 2019;20:781–96.

    Article  PubMed  Google Scholar 

  48. Bhatia S, Miller NJ, Lu H, Longino NV, Ibrani D, Shinohara MM, et al. Intratumoral G100, a TLR4 agonist, induces antitumor immune responses and tumor regression in patients with Merkel cell carcinoma. Clin Cancer Res. 2019;25:1185–95.

    Article  CAS  PubMed  Google Scholar 

  49. Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19:329–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moehler M, Heo J, Lee HC, Tak WY, Chao Y, Paik SW, et al. Vaccinia-based oncolytic immunotherapy pexastimogene devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology. 2019;8:1615817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abou-Alfa GK, Galle PR, Chao Y, Brown KT, Heo J, Borad MJ, et al. PHOCUS: a phase 3 randomized, open-label study comparing the oncolytic immunotherapy Pexa-Vec followed by sorafenib (SOR) vs SOR in patients with advanced hepatocellular carcinoma (HCC) without prior systemic therapy. JCO. 2016;34:TPS4146–TPS4146.

    Article  Google Scholar 

  52. Transgene provides update on PHOCUS study of Pexa-Vec in liver cancer following planned interim futility analysis [Internet]. 2019;Available from: https://www.transgene.fr/wp-content/uploads/2019/08/20190802-PHOCUS-Interim-Analysis-US-.pdf

  53. Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76:681–93.

    Article  PubMed  Google Scholar 

  54. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078–92.

    Article  CAS  PubMed  Google Scholar 

  55. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  CAS  PubMed  Google Scholar 

  56. Lin Y, Sharma S, John MS. CCL21 cancer immunotherapy. Cancers (Basel). 2014;6:1098–110.

    Article  PubMed  Google Scholar 

  57. Lee JM, Lee M-H, Garon E, Goldman JW, Salehi-Rad R, Baratelli FE, et al. Phase I trial of intratumoral injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor-specific immune responses and CD8+ T-cell infiltration. Clin Cancer Res. 2017;23:4556–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med. 2014;6:261ra151.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Adusumilli PS, Zauderer MG, Rivière I, Solomon SB, Rusch VW, O’Cearbhaill RE, et al. A Phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 2021;11:2748–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Laurell A, Lönnemark M, Brekkan E, Magnusson A, Tolf A, Wallgren AC, et al. Intratumorally injected pro-inflammatory allogeneic dendritic cells as immune enhancers: a first-in-human study in unfavourable risk patients with metastatic renal cell carcinoma. J Immunother Cancer. 2017;5:52.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lindskog M, Laurell A, Kjellman A, Melichar B, Rey PM, Zieliński H, et al. Ilixadencel, a cell-based immune primer, plus sunitinib versus sunitinib alone in metastatic renal cell carcinoma: a randomized phase 2 study. Eur Urol Open Sci. 2022;40:38–45.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fröbom R, Berglund E, Berglund D, Nilsson I-L, Åhlén J, von Sivers K, et al. Phase I trial evaluating safety and efficacy of intratumorally administered inflammatory allogeneic dendritic cells (ilixadencel) in advanced gastrointestinal stromal tumors. Cancer Immunol Immunother. 2020;69:2393–401.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Halwani AS, Panizo C, Isufi I, Herrera AF, Okada CY, Cull EH, et al. Phase 1/2 study of intratumoral G100 (TLR4 agonist) with or without pembrolizumab in follicular lymphoma. Leuk Lymphoma. 2022;63:821–33.

    Article  CAS  PubMed  Google Scholar 

  64. Hong WX, Haebe S, Lee AS, Westphalen CB, Norton JA, Jiang W, et al. Intratumoral immunotherapy for early-stage solid tumors. Clin Cancer Res. 2020;26:3091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. O’Donnell JS, Hoefsmit EP, Smyth MJ, Blank CU, Teng MWL. The promise of neoadjuvant immunotherapy and surgery for cancer treatment. Clin Cancer Res. 2019;25:5743–51.

    Article  PubMed  Google Scholar 

  66. Hong WX, Sagiv-Barfi I, Czerwinski DK, Sallets A, Levy R. Neoadjuvant intratumoral immunotherapy with TLR9 activation and anti-OX40 antibody eradicates metastatic cancer. Cancer Res. 2021;2022:Canres.1382.

    Google Scholar 

  67. Salas-Benito D, Pérez-Gracia JL, Ponz-Sarvisé M, Rodriguez-Ruiz ME, Martínez-Forero I, Castañón E, et al. Paradigms on immunotherapy combinations with chemotherapy. Cancer Discov. 2021;11:1353–67.

    Article  CAS  PubMed  Google Scholar 

  68. Meric-Bernstam F, Larkin J, Tabernero J, Bonini C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet. 2021;397:1010–22.

    Article  CAS  PubMed  Google Scholar 

  69. Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In situ vaccination as a strategy to modulate the immune microenvironment of hepatocellular carcinoma. Front Immunol. 2021;12:650486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:525–43.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Márquez-Rodas I, Longo F, Rodriguez-Ruiz ME, Calles A, Ponce S, Jove M, et al. Intratumoral nanoplexed poly I: C BO-112 in combination with systemic anti-PD-1 for patients with anti-PD-1-refractory tumors. Sci Transl Med. 2020;12:eabb0391.

    Article  PubMed  Google Scholar 

  72. Senders ZJ, Martin RCG. Intratumoral immunotherapy and tumor ablation: a local approach with broad potential. Cancers (Basel). 2022;14:1754.

    Article  CAS  PubMed  Google Scholar 

  73. Mizukoshi E, Yamashita T, Arai K, Sunagozaka H, Ueda T, Arihara F, et al. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology. 2013;57:1448–57.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang N, Li Z, Han X, Zhu Z, Li Z, Zhao Y, et al. Irreversible electroporation: an emerging immunomodulatory therapy on solid tumors. Front Immunol. 2021;12:811726.

    Article  CAS  PubMed  Google Scholar 

  75. Go E-J, Yang H, Chon HJ, Yang D, Ryu W, Kim D-H, et al. Combination of irreversible electroporation and STING agonist for effective cancer immunotherapy. Cancers (Basel). 2020;12:E3123.

    Article  Google Scholar 

  76. Goldmacher GV, Khilnani AD, Andtbacka RHI, Luke JJ, Hodi FS, Marabelle A, et al. Response criteria for intratumoral immunotherapy in solid tumors: itRECIST. J Clin Oncol. 2020;38:2667–76.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Champiat S, Tselikas L, Farhane S, Raoult T, Texier M, Lanoy E, et al. Intratumoral immunotherapy: from trial design to clinical practice. Clin Cancer Res. 2021;27:665–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Biotheris CIC is funded by DGOS and INSERM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lambros Tselikas.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosn, M., Tselikas, L., Champiat, S. et al. Intratumoral Immunotherapy: Is It Ready for Prime Time?. Curr Oncol Rep 25, 857–867 (2023). https://doi.org/10.1007/s11912-023-01422-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-023-01422-4

Keywords

Navigation