Skip to main content

Advertisement

Log in

Asparaginase: How to Better Manage Toxicities in Adults

  • Leukemia (A Aguayo, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to help oncologists who predominantly treat adults better understand and manage asparaginase associated toxicities and prevent unnecessary discontinuation or reluctance of its use.

Recent Findings

Given the data supporting the benefit of incorporating multiple doses of asparaginase in pediatric type regimens, it is prudent to promote deeper understanding of this drug, particularly its toxicities, and its use so as to optimize treatment of ALL.

Summary

Although asparaginase is associated with a variety of toxicities, the vast majority are not life threatening and do not preclude repeat dosing of this important drug. Understanding the pharmacology and toxicity profile of asparaginase is critical to dosing asparaginase appropriately in order to minimize these toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The authors confirm that the data described in this case are available from the corresponding author upon request.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121:2517–28.

    Article  Google Scholar 

  2. Moorman AV. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev. 2012;26(3):123–35.

    Article  CAS  Google Scholar 

  3. Aldoss I, Douer D. How I treat the toxicities of pegasparaginase in adults with acute lymphoblastic leukemia. Blood. 2020;135(13):987–995. This review describes real-life cases of adults with ALL who were treated with pediatric-inspired regimens that incorporated pegasparaginase to illustrate the management of several adverse effects and guide whether and how to continue the drug.

  4. Pui CH. Childhood leukemias. N Engl J Med. 1995;332(24):1618–30.

    Article  CAS  Google Scholar 

  5. Avramis VI, et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood. 2002;99(6):1986–94.

    Article  CAS  Google Scholar 

  6. Broome JD. Studies on the mechanism of tumor inhibition by L-asparaginase. Effects of the enzyme on asparagine levels in the blood, normal tissues, and 6C3HED lymphomas of mice: differences in asparagine formation and utilization in asparaginase-sensitive and -resistant lymphoma cells. J Exp Med. 1968;127(6):1055–72. https://doi.org/10.1084/jem.127.6.1055.

  7. Avramis VI, Spence SA. Clinical pharmacology of asparaginases in the United States: asparaginase population pharmacokinetic and pharmacodynamic (PK-PD) models (NONMEM) in adult and pediatric ALL patients. J Pediatr Hematol Oncol. 2007;29:239–47.

    Article  CAS  Google Scholar 

  8. Kurtzberg J, Asselin B, Bernstein M, Buchanan GR, Pollock BH, Camitta BM. Polyethylene glycol-conjugated L-asparaginase versus native L-asparaginase in combination with standard agents for children with acute lymphoblastic leukemia in second bone marrow relapse: a Children’s Oncology Group Study (POG 8866). J Pediatr Hematol Oncol. 2011;33:610–6.

    Article  CAS  Google Scholar 

  9. Pession A, Valsecchi MG, Masera G, Kamps WA, Magyarosy E, Rizzari C, et al. Long-term results of a randomized trial on extended use of high dose L-asparaginase for standard risk childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23:7161–7.

    Article  CAS  Google Scholar 

  10. Asselin BL, Whitin JC, Coppola DJ, Rupp IP, Sallan SE, Cohen HJ. Comparative pharmacokinetic studies of three asparaginase preparations. J Clin Oncol. 1993;11:1780–6.

    Article  CAS  Google Scholar 

  11. Zalewska-Szewczyk B, Andrzejewski W, Mlynarski W, Jedrychowska-Danska K, Witas H, Bodalski J. The anti-asparagines antibodies correlate with L-asparagines activity and may affect clinical outcome of childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2007;48(5):931–6.

    Article  CAS  Google Scholar 

  12. Sallan SE, Hitchcock-Bryan et al. Influence of intensive asparaginase in the treatment of childhood non-T-cell acute lymphoblastic leukemia. Cancer Res. 1983;43(11):5601–5607.

  13. Nachman JB, Sather HN, et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med. 1998;338(23):1663–71.

    Article  CAS  Google Scholar 

  14. Amylon MD, Shuster J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia. 1999;13(3):335–42.

    Article  CAS  Google Scholar 

  15. Stock W, Luger SM, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood. 2019;133(14):1548–59.

    Article  CAS  Google Scholar 

  16. Douer D, Aldoss I, et al. Pharmacokinetics-based integration of multiple doses of intravenous pegaspargase in a pediatric regimen for adults with newly diagnosed acute lymphoblastic leukemia. J Clin Oncol. 2014;32(9):905–11.

    Article  CAS  Google Scholar 

  17. Douer D. Is asparaginase a critical component in the treatment of acute lymphoblastic leukemia? Best Pract Res Clin Haematol. 2008;21(4):647–58.

    Article  CAS  Google Scholar 

  18. Albertsen BK, Grell K et al. Intermittent versus continuous PEG-asparaginase to reduce asparaginase-associated toxicities: a NOPHO ALL2008 randomized study. J Clin Oncol. 2019;37(19):1638–1646.

  19. Grace RF, DeAngelo DJ, et al. The use of prophylactic anticoagulation during induction and consolidation chemotherapy in adults with acute lymphoblastic leukemia. J Thromb Thrombolysis. 2018;45(2):306–14.

    Article  CAS  Google Scholar 

  20. DeAngelo DJ, Stevenson et al. A multicenter phase II study using a dose intensified pegylated-asparaginase pediatric regimen in adults with untreated acute lymphoblastic leukemia: A DFCI ALL Consortium trial [abstract]. Blood. 2015;126(23). Abstract 80.

  21. Goekbuget N, Baumann A, et al. PEG-asparaginase intensification in adult acute lymphoblastic leukemia (ALL): Significant improvement of outcome with moderate increase of liver toxicity in the German Multicenter Study Group for Adult ALL (GMALL) study 07/2003 [abstract]. Blood. 2010;116(21). Abstract 494.

  22. Panosyan EH, Seibel NL, Martin-Aragon S. Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: Children’s Cancer Group Study CCG-1961. J Pediatr Hematol Oncol. 2004;26(4):217–26.

    Article  Google Scholar 

  23. Zalewska-Szewczyk B, Andrzejewski W, Mlynarski W, Jedrychowska-Danska K, Witas H, Bodalski J. The anti-asparagines antibodies correlate with L-asparagines activity and may affect clinical outcome of childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2007;48(5):931–6.

    Article  CAS  Google Scholar 

  24. Woo MH, Hak LJ, Storm MC. Anti-asparaginase antibodies following E. coli asparaginase therapy in pediatric acute lymphoblastic leukemia. Leukemia. 1998;12(10):1527–1533.

  25. Rytting ME, Thomas DA, O’Brien SM, et al. Augmented Berlin-Frankfurt-Munster therapy in adolescents and young adults (AYAs) with acute lymphoblastic leukemia (ALL). Cancer. 2014;120(23):3660–8.

    Article  CAS  Google Scholar 

  26. Aldoss I, Douer D, Behrendt CE, et al. Toxicity profile of repeated doses of PEG-asparaginase incorporated into a pediatric-type regimen for adult acute lymphoblastic leukemia. Eur J Haematol. 2016;96(4):375–380. This study aimed to characterize the spectrum of toxicity of repeated doses of pegasparaginase in adults and suggests that repeated dosing is safe in adults aged 18–60 yr, even after occurrence of a drug-related toxicity.

  27. Pieters R, Hunger SP, Boos J. L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer. 2011;117(2):238–49.

    Article  CAS  Google Scholar 

  28. Maury S, Chevret S, Thomas X, et al. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med. 2016;375(11):1044–53.

    Article  CAS  Google Scholar 

  29. Burke MJ, Devidas M, Maloney K, et al. Severe pegaspargase hypersensitivity reaction rates (grade >/=3) with intravenous infusion vs. intramuscular injection: analysis of 54,280 doses administered to 16,534 patients on children’s oncology group (COG) clinical trials. Leuk Lymphoma. 2018;59(7):1624–1633.

  30. Cooper SL, Young DJ, Bowen CJ, Arwood NM, Poggi SG, Brown PA. Universal premedication and therapeutic drug monitoring for asparaginase-based therapy prevents infusion-associated acute adverse events and drug substitutions. Pediatr Blood Cancer. 2019;66(8):e27797. This study showed that universal premedication reduced substitutions to Erwinia chrysanthemi and acute adverse events rate.

  31. Vrooman LM, Stevenson KE, Supko JG, et al. Postinduction dexamethasone and individualized dosing of Escherichia coli L-asparaginase each improve outcome of children and adolescents with newly diagnosed acute lymphoblastic leukemia: results from a randomized study–Dana-Farber Cancer Institute ALL Consortium Protocol 00–01. J Clin Oncol. 2013;31(9):1202–10.

    Article  CAS  Google Scholar 

  32. Tong WH, Pieters R, Kaspers GJ, et al. A prospective study on drug monitoring of PEGasparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia. Blood. 2014;123(13):2026–33.

    Article  CAS  Google Scholar 

  33. Van der Sluis IM, Vrooman LM, Pieters R, et al. Consensus expert recommendations for identification and management of asparaginase hypersensitivity and silent inactivation. Haematologica. 2016;101(3):279–85.

    Article  Google Scholar 

  34. Salzer WL, Asselin B, Supko JG, et al. Erwinia asparaginase achieves therapeutic activity after pegaspargase allergy: a report from the Children’s Oncology Group. Blood. 2013;122(4):507–14.

    Article  CAS  Google Scholar 

  35. NLM Citation: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Asparaginase. [Updated 2018 Jul 1].

  36. Burke PW, Aldoss I, Lunning MA, et al. Pegaspargase-related high-grade hepatotoxicity in a pediatric-inspired adult acute lymphoblastic leukemia regimen does not predict recurrent hepatotoxicity with subsequent doses. Leuk Res. 2018;66:49–56.

    Article  CAS  Google Scholar 

  37. Rausch CR, Marini BL, Benitez LL, et al. PEGging down risk factors for peg-asparaginase hepatotoxicity in patients with acute lymphoblastic leukemia (dagger). Leuk Lymphoma. 2018;59(3):617–24.

    Article  CAS  Google Scholar 

  38. Patel B, Kirkwood AA, Dey A, et al. Pegylated-asparaginase during induction therapy for adult acute lymphoblastic leukaemia: toxicity data from the UKALL14 trial. Leukemia. 2017;31(1):58–64.

    Article  CAS  Google Scholar 

  39. Christ TN, Stock W, Knoebel RW. Incidence of asparaginase-related hepatotoxicity, pancreatitis, and thrombotic events in adults with acute lymphoblastic leukemia treated with a pediatric-inspired regimen. J Oncol Pharm Pract. 2018;24(4):299–308.

    Article  CAS  Google Scholar 

  40. Denton CC, Rawlins YA, Oberley MJ, Bhojwani D, Orgel E. Predictors of hepatotoxicity and pancreatitis in children and adolescents with acute lymphoblastic leukemia treated according to contemporary regimens. Pediatr Blood Cancer. 2018;65(3):e26891.

    Article  Google Scholar 

  41. Kamal N, Koh C, Samala N, et al. Asparaginase-induced hepatotoxicity: rapid development of cholestasis and hepatic steatosis. Hepatol Int. 2019;13(5):641–8.

    Article  Google Scholar 

  42. Meunier L, Larrey D. Chemotherapy-associated steatohepatitis. Ann Hepatol. 2020 Nov-Dec;19(6):597–601. Haematologica. 2016;101(3):279–85.

  43. Lazo M, Hernaez R, Eberhardt MS, Bonekamp S, Kamel I, Guallar E, et al. Prevalence of nonalcoholic fatty liver disease in the United States: the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol. 2013;178:38–45.

    Article  Google Scholar 

  44. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–95.

    Article  Google Scholar 

  45. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114:147–52.

    Article  CAS  Google Scholar 

  46. Quiroz E, Aldoss I, Pullarkat V, Rego E, Marcucci G, Douer D. The emerging story of acute lymphoblastic leukemia among the Latin American population - biological and clinical implications. Blood Rev. 2019;33:98–105.51. This is a review that examines the increasing amount of empirical information on the epidemiology, outcomes and genomics of Latinos with ALL and is one of the few of its type.

  47. Alshiekh-Nasany R, Douer D. L-carnitine for treatment of pegasparaginase-induced hepatotoxicity. Acta Haematol. 2016;135(4):208–10.

    Article  CAS  Google Scholar 

  48. Özdemir ZC, Turhan AB, Eren M, Bor O. Is N-acetylcysteine infusion an effective treatment option in L-asparaginase associated hepatotoxicity? Blood Res. 2017;52(1):69–71.

    Article  Google Scholar 

  49. Lu G, Karur V, Herrington JD, Walker MG. Successful treatment of pegaspargase-induced acute hepatotoxicity with vitamin B complex and L-carnitine. Proc Bayl Univ Med Cent. 2016;29(1):46–7.

    Article  Google Scholar 

  50. Schulte R, Hinson A, et al. Levocarnitine for pegaspargase-induced hepatotoxicity in older children and young adults with acute lymphoblastic leukemia. Cancer Med. 2021;10(21):7551–60.

    Article  CAS  Google Scholar 

  51. Underwood, Brynne et al. Incidence of venous thrombosis after peg-asparaginase in adolescent and young adults with acute lymphoblastic leukemia. Int J Hematol Oncol. 2020;9(3):IJH28.

  52. De Stefano V, Za T, Ciminello A, Betti S, Rossi E. Haemostatic alterations induced by treatment with asparaginases and clinical consequences. Thromb Haemost. 2015;113(2):247–61.

    Article  Google Scholar 

  53. Nowak-Gött U, Heinecke A, von Kries R, Nurnberger W, Munchow N, Junker R. Thrombotic events revisited in children with acute lymphoblastic leukemia: impact of concomitant Escherichia coli asparaginase/prednisone administration. Thromb Res. 2001;103(3):165–72.

    Article  Google Scholar 

  54. Caruso V, Iacoviello L, Di Castelnuovo A, et al. Thrombotic complications in childhood acute lymphoblastic leukemia: a meta-analysis of 17 prospective studies comprising 1752 pediatric patients. Blood. 2006;108(7):2216–2222.

  55. Mitchell LG, Andrew M, Hanna K, et al. A prospective cohort study determining the prevalence of thrombotic events in children with acute lymphoblastic leukemia and a central venous line who are treated with L-asparaginase: results of the Prophylactic Antithrombin Replacement in Kids with Acute Lymphoblastic Leukemia Treated with Asparaginase (PARKAA) Study. Cancer. 2003;97(2):508–516.

  56. Grace RF, Dahlberg SE, Neuberg D, et al. The frequency and management of asparaginase-related thrombosis in paediatric and adult patients with acute lymphoblastic leukaemia treated on Dana-Farber Cancer Institute consortium protocols. Br J Haematol. 2011:152(4);452–459.

  57. Rank CU, Toft N, Tuckuviene R, et al. Thromboembolism in acute lymphoblastic leukemia: results of NOPHO ALL2008 protocol treatment in patients aged 1 to 45 years. Blood. 2018;131:2475–84.

    Article  CAS  Google Scholar 

  58. Sui J, Zhang Y, Yang L, et al. Successful treatment with rivaroxaban of cerebral venous thrombosis and bone marrow necrosis induced by pegaspargase: a case report and literature review. Medicine. 2017;96:e8715.

    Article  Google Scholar 

  59. Plander M, Szendrei T, Bodo I, Ivanyi JL. Successful treatment with rivaroxaban of an extended superficial vein thrombosis in a patient with acquired antithrombin deficiency due to Peg-asparaginase treatment. Ann Hematol. 2015;94:1257–8.

    Article  Google Scholar 

  60. Talamo L, Douvas M, Macik BG, Ornan D. Successful treatment with apixaban of sinus venous thrombosis due to pegylated asparaginase in a young adult with T cell acute lymphoblastic leukemia: case report and review of management. Ann Hematol. 2017;96:691–3.

    Article  Google Scholar 

  61. Raskob GE, van Es N, Verhamme P, et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N Engl J Med. 2018;378:615–24.

    Article  CAS  Google Scholar 

  62. Orvain C, et al. Thromboembolism prophylaxis in adult patients with acute lymphoblastic leukemia treated in the GRAALL-2005 study. Blood. 2020;136:328–3857. This study was central to conveying that in ALL patients receiving l-asparaginase therapy, the use of fibrinogen concentrates may increase the risk of thrombosis and should be restricted to rare patients with hypofibrinogenemia-induced hemorrhage. It also illustrated that VTE developed despite extensive antithrombin supplementation, which suggests the need for additional prophylactic measures.

  63. Couturier MA, Huguet F, Chevallier P, et al. Cerebral venous thrombosis in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma during induction chemotherapy with l-asparaginase: The GRAALL experience. Am J Hematol. 2015;90(11):986–91.

    Article  CAS  Google Scholar 

  64. Greiner J, Schrappe M, Claviez A, et al. THROMBOTECT - a randomized study comparing low molecular weight heparin, antithrombin and unfractionated heparin for thromboprophylaxis during induction therapy of acute lymphoblastic leukemia in children and adolescents. Haematologica. 2019;104:756–65.

    Article  CAS  Google Scholar 

  65. Meister B, Kropshofer G, Klein-Franke A, Strasak AM, Hager J, Streif W. Comparison of low-molecular-weight heparin and antithrombin versus antithrombin alone for the prevention of symptomatic venous thromboembolism in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008;50:298–303.

    Article  Google Scholar 

  66. Douer D, Yampolsky H, Cohen LJ, et al. Pharmacodynamics and safety of intravenous pegaspargase during remission induction in adults aged 55 years or younger with newly diagnosed acute lymphoblastic leukemia. Blood. 2007;109(7):2744–50.

    Article  CAS  Google Scholar 

  67. Chen J, Ngo D, Aldoss I, et al. Antithrombin supplementation did not impact the incidence of pegylated asparaginase-induced venous thromboembolism in adults with acute lymphoblastic leukemia. Leuk Lymphoma. 2019;60(5):1187–92.

    Article  CAS  Google Scholar 

  68. Place AE, Stevenson KE, Vrooman LM, et al. Intravenous pegylated asparaginase versus intramuscular native Escherichia coli L-asparaginase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05–001): a randomised, open-label phase 3 trial. Lancet Oncol. 2015;16(16):1677–90.

    Article  CAS  Google Scholar 

  69. Persson L, Harila-Saari A, Hed Myrberg I, Heyman M, Nilsson A, Ranta S. Hypertriglyceridemia during asparaginase treatment in children with acute lymphoblastic leukemia correlates with antithrombin activity in adolescents. Pediatr Blood Cancer. 2017;64(10):e26559.

    Article  Google Scholar 

  70. Raja RA, Schmiegelow K, Sorensen DN, Frandsen TL. Asparaginase-associated pancreatitis is not predicted by hypertriglyceridemia or pancreatic enzyme levels in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2017;64(1):32–8.

    Article  CAS  Google Scholar 

  71. Scherer J, Singh VP, Pitchumoni CS, Yadav D. Issues in hypertriglyceridemic pancreatitis: an update. J Clin Gastroenterol. 2014;48(3):195–203.

    Article  CAS  Google Scholar 

  72. Khan R, Jehangir W, Regeti K, Yousif A. Hypertriglyceridemia-induced pancreatitis: choice of treatment. Gastroenterology Res. 2015;8(3–4):234–6.

    Article  Google Scholar 

  73. Bhojwani D, Darbandi R, Pei D, et al. Severe hypertriglyceridaemia during therapy for childhood acute lymphoblastic leukaemia. Eur J Cancer. 2014;50(15):2685–94.

    Article  CAS  Google Scholar 

  74. Tong WH, Pieters R, de Groot-Kruseman HA, et al. The toxicity of very prolonged courses of PEGasparaginase or Erwinia asparaginase in relation to asparaginase activity, with a special focus on dyslipidemia. Haematologica. 2014;99(11):1716–21.

    Article  CAS  Google Scholar 

  75. Schmiegelow K, Attarbaschi A, et al. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. Lancet Oncol. 2016;17(6):e231–9.

    Article  Google Scholar 

  76. Göekbuget N, Baumann A, et al. PEG-asparaginase intensification in adult acute lymphoblastic leukemia (ALL): significant improvement of outcome with moderate increase of liver toxicity in the German Multicenter Study Group for Adult ALL (GMALL) study 07/2003. Blood. 2010;116(21):494.

    Article  Google Scholar 

  77. Advani A, Earl M, et al. Toxicities of intravenous (IV) pegasparaginase (ONCASPAR®) in adults with acute lymphoblastic leukemia (ALL). Blood. 2007;110(11):2811.

  78. Oparaji JA, Rose F, Okafor D, et al. Risk factors for asparaginase-associated pancreatitis: a systematic review. J Clin Gastroenterol. 2017;51(10):907–13.

    Article  CAS  Google Scholar 

  79. • Bartram T, Schütte P, et al. Genetic variation in ABCC4 and CFTR and acute pancreatitis during treatment of pediatric acute lymphoblastic leukemia. J Clin Med. 2021;10(21):4815. This study illustrated the genetic variation within the ABCC4 gene and its association with acute pancreatitis during the treatment of ALL.

    Article  CAS  Google Scholar 

  80. Wolthers BO, Frandsen TL, Abrahamsson J, et al. Asparaginase-associated pancreatitis: a study on phenotype and genotype in the NOPHO ALL2008 protocol. Leukemia. 2017;31(2):325–32.

    Article  CAS  Google Scholar 

  81. Raja RA, Schmiegelow K, Albertsen BK, et al. Asparaginase-associated pancreatitis in children with acute lymphoblastic leukaemia in the NOPHO ALL2008 protocol. Br J Haematol. 2014;165(1):126–33.

    Article  CAS  Google Scholar 

  82. Wolthers BO, Frandsen TL, Baruchel A, et al. Asparaginase-associated pancreatitis in childhood acute lymphoblastic leukaemia: an observational Ponte di Legno Toxicity Working Group study. Lancet Oncol. 2017;18(9):1238–48.

    Article  CAS  Google Scholar 

  83. Kearney SL, Dahlberg SE, Levy DE, Voss SD, Sallan SE, Silverman LB. Clinical course and outcome in children with acute lymphoblastic leukemia and asparaginase-associated pancreatitis. Pediatr Blood Cancer. 2009;53(2):162–7.

    Article  Google Scholar 

  84. Aldoss I, Stein AS. Advances in adult acute lymphoblastic leukemia therapy. Leuk Lymphoma. 2018;59(5):1033–50.

    Article  Google Scholar 

  85. Stock W, Douer D, et al. Prevention and management of asparaginase/ pegasparaginase-associated toxicities in adults and older adolescents: recommendations of an expert panel. Leuk Lymphoma. 2011;52(12):2237–53.

    Article  CAS  Google Scholar 

  86. Pui CH, Burghen GA, Bowman WP, et al. Risk factors for hyperglycemia in children with leukemia receiving L-asparaginase and prednisone. J Pediatr. 1981;99:46–50.

    Article  CAS  Google Scholar 

  87. Lowas SR, Marks D, Malempati S. Prevalence of transient hyperglycemia during induction chemotherapy for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer. 2009;52:814–8.

    Article  Google Scholar 

  88. Cetin M, Yetgin S, Kara A, et al. Hyperglycemia, ketoacidosis and other complications of L-asparaginase in children with acute lymphoblastic leukemia. J Med. 1994;25:219–29.

    CAS  Google Scholar 

  89. Belgaumi AF, Al-Bakrah M, Al-Mahr M, et al. Dexamethasone-associated toxicity during induction chemotherapy for childhood acute lymphoblastic leukemia is augmented by concurrent use of daunomycin. Cancer. 2003;97:2898–903.

    Article  CAS  Google Scholar 

  90. Plourde PV, Jeha S, et al. Safety profile of asparaginase Erwinia chrysanthemi in a large compassionate-use trial. Pediatr Blood Cancer. 2014;61(7):1232–8.

    Article  CAS  Google Scholar 

  91. Howard SC, Pui CH. Endocrine complications in pediatric patients with acute lymphoblastic leukemia. Blood Rev. 2002;16:225–43.

    Article  Google Scholar 

  92. Carpentieri U, Balch MT. Hyperglycemia associated with the therapeutic use of L-asparaginase: possible role of insulin receptors. J Pediatr. 1978;93:775–8.

    Article  CAS  Google Scholar 

  93. Olefsky JM, Kimmerling G. Effects of glucocorticoids on carbohydrate metabolism. Am J Med Sci. 1976;271:202–10.

    Article  CAS  Google Scholar 

  94. Chan JC, Cockram CS, Critchley JA. Drug-induced disorders of glucose metabolism. Mechanisms and management. Drug Saf. 1996;15:135–57.

    Article  CAS  Google Scholar 

  95. Jaing TH, Lin JL, Lin YP, et al. Hyperammonemic encephalopathy after induction chemotherapy for acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2009;31:955–6.

    Article  Google Scholar 

  96. Frantzeskaki F, Rizos M, Papathanassiou M, et al. L-asparaginase fatal toxic encephalopathy during consolidation treatment in an adult with acute lymphoblastic leukemia. Am J Case Rep. 2013;14:311–4.

    Article  Google Scholar 

  97. Sudour H, Schmitt C, Contet A, et al. Acute metabolic encephalopathy in two patients treated with asparaginase and ondasetron. Am J Hematol. 2011;86:323–5.

    Article  Google Scholar 

  98. Butterworth RF. Pathophysiology of brain dysfunction in hyperammonemic syndromes: the many faces of glutamine. Mol Genet Metab. 2014;113:113–7.

    Article  CAS  Google Scholar 

  99. Jorck C, Kiess W, Weigel JF, et al. Transient hyperammonemia due to L-asparaginase therapy in children with acute lymphoblastic leukemia or non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2011;28:3–9.

    Article  CAS  Google Scholar 

  100. D’Onofrio V, Poma F, Enea A, et al. Hyperammonemic coma in a patient with late-onset OTC deficiency. Pediatr Med Chir. 2014;36:9.

    Article  Google Scholar 

  101. Kuhlen Michaela, Kunstreich Marina, Gökbuget Nicola. Osteonecrosis in adults with acute lymphoblastic leukemia: an unmet clinical need. HemaSphere. 2021;5(4).

  102. Kawedia JD, Kaste SC, Pei D, et al. Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2011;117:2340–2347; quiz 2556.

  103. Finch ER, Smith CA, Yang W, et al. Asparaginase formulation impacts hypertriglyceridemia during therapy for acute lymphoblastic leukemia. Pediatr Blood Cancer. 2020;67:e28040.

    Article  CAS  Google Scholar 

  104. Mogensen SS, Schmiegelow K, Grell K, et al. Hyperlipidemia is a risk factor for osteonecrosis in children and young adults with acute lymphoblastic leukemia. Haematologica. 2017;102:e175–8.

    Article  Google Scholar 

  105. Van Atteveld JE, et al. Effect of post-consolidation regimen on symptomatic osteonecrosis in three DCOG acute lymphoblastic leukemia protocols. Haematologica. 2021;106(4):1198–1201. https://doi.org/10.3324/haematol.2020.257550.

  106. Karol SE, Janke LJ, Panetta JC, et al. Asparaginase combined with discontinuous dexamethasone improves antileukemic efficacy without increasing osteonecrosis in preclinical models. PLoS ONE. 2019;14:e0216328.

    Article  Google Scholar 

  107. Liu C, Janke LJ, Kawedia JD, et al. Asparaginase potentiates glucocorticoid-induced osteonecrosis in a mouse model. PLoS ONE. 2016;11:e0151433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Aldoss.

Ethics declarations

Conflict of Interest

Hoda Pourhassan: none. Dan Douer: Advisory boards for and lecture and research funding from Pfizer, Amgen, Servier, Spectrum, Jazz, Gilead, and Bristol Myers Squibb. Vinod Pullarkat: Advisory board fees and fees for serving on a speaker’s bureau from AbbVie, Genentech, Pfizer, Jazz, Novartis, Servier, and Amgen; consultancy for AbbVie. Ibrahim Aldoss: Advisory boards for Amgen, Kite pharmaceuticals, AbbVie, JAZZ and Agios Pharmaceuticals, and is a consultant for Autolus Therapeutics and Amgen, research support by MacroGenics and Abbvie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Leukemia

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourhassan, H., Douer, D., Pullarkat, V. et al. Asparaginase: How to Better Manage Toxicities in Adults. Curr Oncol Rep 25, 51–61 (2023). https://doi.org/10.1007/s11912-022-01345-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01345-6

Keywords

Navigation