Skip to main content

Advertisement

Log in

Lung Neuroendocrine Tumors: How Does Molecular Profiling Help?

  • Neuroendocrine Neoplasms (NS Reed, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Lung neuroendocrine tumors (NETs)—typical carcinoids and atypical carcinoids—have unique molecular alterations that are distinct from neuroendocrine carcinomas of the lung and non-small cell lung cancers. Here, we review the role of molecular profiling in the prognosis and treatment of lung NETs.

Recent Findings

There have been no recently identified molecular prognostic factors for lung NETs and none that have been routinely used to guide management of patients with lung NETs. Previous findings suggest that patients with loss of chromosome 11q may have a worse prognosis along with upregulation of anti-apoptotic pathways (e.g., loss of CD44 and OTP protein expression). Lung NETs rarely harbor driver mutations commonly found in non-small cell lung cancer (NSCLC) or TP53/RB1 mutations found universally in small cell lung cancer. Lung NETs also have low tumor mutation burden and low PD-L1 expression. Everolimus, an mTOR inhibitor and the only FDA approved therapy for unresectable lung NETs, is an effective treatment but the presence of a molecular alteration in the PI3K/AKT/mTOR pathway is not known to predict treatment response. The predominant mutations in lung NETs occur in genes regulating chromatin remodeling and histone modification, with potential targeted therapies emerging in clinical trials.

Summary

Lung NETs have recurring alterations in genes that regulate the epigenome. Future targeted therapy interfering with epigenetic pathways may hold promise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Quaedvlieg PF, Visser O, Lamers CB, Janssen-Heijen ML, Taal BG. Epidemiology and survival in patients with carcinoid disease in The Netherlands. An epidemiological study with 2391 patients. Ann Oncol Off J Eur Soc Med Oncol. 2001;12:1295–300.

    Article  CAS  Google Scholar 

  2. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97:934–59.

    Article  PubMed  Google Scholar 

  3. Hemminki K, Li X. Incidence trends and risk factors of carcinoid tumors: a nationwide epidemiologic study from Sweden. Cancer. 2001;92:2204–10.

    Article  CAS  PubMed  Google Scholar 

  4. Hauso O, et al. Neuroendocrine tumor epidemiology: contrasting Norway and North America. Cancer. 2008;113:2655–64.

    Article  PubMed  Google Scholar 

  5. Dasari A, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3:1335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Steuer CE, et al. Atypical carcinoid tumor of the lung: a surveillance, epidemiology, and end results database analysis. J Thorac Oncol. 2015;10:479–85.

    Article  PubMed  Google Scholar 

  7. Simbolo M, et al. Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D. J Pathol. 2017;241:488–500.

    Article  CAS  PubMed  Google Scholar 

  8. Skoulidis F, et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med. 2021;384:2371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Filosso PL, et al. Outcome and prognostic factors in bronchial carcinoids: a single-center experience. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2013;8:1282–8.

    Google Scholar 

  10. Machuca TN, et al. Surgical treatment of bronchial carcinoid tumors: a single-center experience. Lung Cancer Amst Neth. 2010;70:158–62.

    Article  Google Scholar 

  11. Rea F, et al. Outcome and surgical strategy in bronchial carcinoid tumors: single institution experience with 252 patients. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2007;31:186–91.

    Article  Google Scholar 

  12. Filosso PL, et al. Prognostic model of survival for typical bronchial carcinoid tumours: analysis of 1109 patients on behalf of the European Association of Thoracic Surgeons (ESTS) Neuroendocrine tumours working group. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2015;48:441–7 (discussion 447).

    Article  Google Scholar 

  13. Ramirez RA, et al. Prognostic factors in typical and atypical pulmonary carcinoids. Ochsner J. 2017;17:335–40.

    PubMed  PubMed Central  Google Scholar 

  14. Rekhtman, N. Lung neuroendocrine neoplasms: recent progress and persistent challenges. Mod Pathol. 1–15 (2021) https://doi.org/10.1038/s41379-021-00943-2.

  15. Swarts DRA, et al. Deletions of 11q22.3–q25 are associated with atypical lung carcinoids and poor clinical outcome. Am J Pathol. 2011;179:1129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brambilla E, et al. Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am J Pathol. 1996;149:1941–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zirbes TK, et al. Apoptosis and expression of bcl-2 protein are inverse factors influencing tumour cell turnover in primary carcinoid tumours of the lung. Histopathology. 1998;33:123–8.

    Article  CAS  PubMed  Google Scholar 

  18. Granberg D, Wilander E, Öberg K, Skogseid B. Prognostic markers in patients with typical bronchial carcinoid tumors*. J Clin Endocrinol Metab. 2000;85:3425–30.

    CAS  PubMed  Google Scholar 

  19. Swarts DRA, et al. CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clin Cancer Res. 2013;19:2197–207.

    Article  CAS  PubMed  Google Scholar 

  20. Granberg D, Wilander E, Oberg K, Skogseid B. Decreased survival in patients with CD44-negative typical bronchial carcinoid tumors. Int J Cancer. 1999;84:484–8.

    Article  CAS  PubMed  Google Scholar 

  21. Papaxoinis G, et al. Prognostic significance of CD44 and orthopedia homeobox protein (OTP) expression in pulmonary carcinoid tumours. Endocr Pathol. 2017;28:60–70.

    Article  CAS  PubMed  Google Scholar 

  22. • Alcala N, et al. Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids. Nat Commun. 2019;10:3407. This study examined the genomic profiles of 116 lung carcinoids (genome, exome, transcriptome, and methylome). Three distinct molecular groups were identified, and the expression of OTP was validated as a prognostic marker.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernandez-Cuesta L, et al. Frequent mutations in chromatin-remodeling genes in pulmonary carcinoids. Nat Commun. 2014;5:3518.

    Article  PubMed  CAS  Google Scholar 

  24. Derks JL, et al. New insights into the molecular characteristics of pulmonary carcinoids and large cell neuroendocrine carcinomas, and the impact on their clinical management. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2018;13:752–66.

    CAS  Google Scholar 

  25. Swarts DRA, et al. MEN1 Gene Mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J Clin Endocrinol Metab. 2014;99:E374–8.

    Article  CAS  PubMed  Google Scholar 

  26. Grosse A, Grosse C, Rechsteiner M, Soltermann A. Analysis of the frequency of oncogenic driver mutations and correlation with clinicopathological characteristics in patients with lung adenocarcinoma from Northeastern Switzerland. Diagn Pathol. 2019;14:18.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang VE, et al. A Case of metastatic atypical neuroendocrine tumor with ALK translocation and diffuse brain metastases. Oncologist. 2017;22:768–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Armengol G, et al. Driver gene mutations of non-small-cell lung cancer are rare in primary carcinoids of the lung: NGS study by ion Torrent. Lung. 2015;193:303–8.

    Article  CAS  PubMed  Google Scholar 

  29. Capodanno A, et al. Phosphatidylinositol-3-kinase α catalytic subunit gene somatic mutations in bronchopulmonary neuroendocrine tumours. Oncol Rep. 2012;28:1559–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. • Laddha SV, et al. Integrative genomic characterization identifies molecular subtypes of lung carcinoids. Cancer Res. 2019;79:4339–47. This study of 30 lung carcinoids performed targeted exome, transcriptome, and methylome analysis. Three molecular clusters were identified and separable by distinct patterns of ASCL1 and S100 expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kunnimalaiyaan M, Chen H. Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist. 2007;12:535–42.

    Article  CAS  PubMed  Google Scholar 

  32. George J, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524:47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. George J, et al. Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Commun. 2018;9:1048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tsuruoka K, et al. PD-L1 expression in neuroendocrine tumors of the lung. Lung Cancer Amst Neth. 2017;108:115–20.

    Article  Google Scholar 

  35. Vesterinen T, et al. PD-1 and PD-L1 expression in pulmonary carcinoid tumors and their association to tumor spread. Endocr Connect. 2019;8:1168–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ott PA, et al. T-cell–inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 2019;37:318–27.

    Article  PubMed  Google Scholar 

  37. Patel SP, et al. A phase II basket trial of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART SWOG 1609) in patients with nonpancreatic neuroendocrine tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26:2290–6.

    Article  CAS  Google Scholar 

  38. Yao, J. et al. 1308OActivity & safety of spartalizumab (PDR001) in patients (pts) with advanced neuroendocrine tumors (NET) of pancreatic (Pan), gastrointestinal (GI), or thoracic (T) origin, & gastroenteropancreatic neuroendocrine carcinoma (GEP NEC) who have progressed on prior treatment (Tx). Ann. Oncol. 29, (2018).

  39. Reidy-Lagunes, D. et al. Lanreotide autogel/depot (LAN) in Patients with advanced bronchopulmonary (BP) Neuroendocrine tumors (NETs): results from the phase 3 SPINET study. 2 (2021).

  40. • Fazio N, et al. Everolimus in advanced, progressive, well-differentiated, non-functional neuroendocrine tumors: RADIANT-4 lung subgroup analysis. Cancer Sci. 2018;109:174–81. This study was an analysis of the lung carcinoid subgroup (n = 90) from the phase III RADIANT-4 trial which compared everolimus to placebo in patients with lung or gastrointestinal neuroendocrine tumors, showing a 5.6-month increase in median progression-free survival.

    Article  CAS  PubMed  Google Scholar 

  41. Pavel ME, et al. Health-related quality of life for everolimus versus placebo in patients with advanced, non-functional, well-differentiated gastrointestinal or lung neuroendocrine tumours (RADIANT-4): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18:1411–22.

    Article  CAS  PubMed  Google Scholar 

  42. Chan DL, Segelov E, Singh S. Everolimus in the management of metastatic neuroendocrine tumours. Ther Adv Gastroenterol. 2017;10:132–41.

    Article  CAS  Google Scholar 

  43. Hortobagyi GN, et al. Correlative analysis of genetic alterations and everolimus benefit in hormone receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: Results From BOLERO-2. J Clin Oncol. 2016;34:419–26.

    Article  CAS  PubMed  Google Scholar 

  44. Moynahan ME, et al. Correlation between PIK3CA mutations in cell-free DNA and everolimus efficacy in HR+, HER2- advanced breast cancer: results from BOLERO-2. Br J Cancer. 2017;116:726–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mirvis E, et al. Efficacy and tolerability of peptide receptor radionuclide therapy (PRRT) in advanced metastatic bronchial neuroendocrine tumours (NETs). Lung Cancer Amst Neth. 2020;150:70–5.

    Article  Google Scholar 

  46. Ianniello A, et al. Peptide receptor radionuclide therapy with (177)Lu-DOTATATE in advanced bronchial carcinoids: prognostic role of thyroid transcription factor 1 and (18)F-FDG PET. Eur J Nucl Med Mol Imaging. 2016;43:1040–6.

    Article  CAS  PubMed  Google Scholar 

  47. Brabander T, et al. Long-term efficacy, survival, and safety of [177Lu-DOTA0, Tyr3]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23:4617–24.

    Article  CAS  Google Scholar 

  48. Jiao Y, et al. DAXX/ATRX, MEN1 and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dombret H, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126:291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fenaux P, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alexander VM, Roy M, Steffens KA, Kunnimalaiyaan M, Chen H. Azacytidine induces cell cycle arrest and suppression of neuroendocrine markers in carcinoids. Int J Clin Exp Med. 2010;3:95–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lines KE, et al. Epigenetic pathway inhibitors represent potential drugs for treating pancreatic and bronchial neuroendocrine tumors. Oncogenesis. 2017;6:e332–e332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin N, et al. A phase II trial of a histone deacetylase inhibitor panobinostat in patients with low-grade neuroendocrine tumors. Oncologist. 2016;21:785–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aguayo SM, et al. Brief report: idiopathic diffuse hyperplasia of pulmonary neuroendocrine cells and airways disease. N Engl J Med. 1992;327:1285–8.

    Article  CAS  PubMed  Google Scholar 

  55. WHO Classification of Tumours Editorial Board. Lung neuroendocrine neoplasms. in Thoracic tumors vol. WHO Classification of Tumours Editorial Board (International Agency for Research on Cancer, 2021).

  56. Almquist DR, et al. Clinical characteristics of diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: a retrospective analysis. Chest. 2020. https://doi.org/10.1016/j.chest.2020.08.012.

    Article  PubMed  Google Scholar 

  57. Yang Sun, T. et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH): clinical characteristics and progression to carcinoid tumor. Eur Respir J. 2101058 (2021) https://doi.org/10.1183/13993003.01058-2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhmani K. Padda.

Ethics declarations

Conflict of Interest

TYS and SKP declare no conflict of interest. AH is a consultant for Ipsen and Novartis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Neuroendocrine Neoplasms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T.Y., Hendifar, A. & Padda, S.K. Lung Neuroendocrine Tumors: How Does Molecular Profiling Help?. Curr Oncol Rep 24, 819–824 (2022). https://doi.org/10.1007/s11912-022-01253-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01253-9

Keywords

Navigation