Skip to main content

Advertisement

Log in

Neurofibromatosis in the Era of Precision Medicine: Development of MEK Inhibitors and Recent Successes with Selumetinib

  • Evolving Therapies (RM Bukowski, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Patients with neurofibromatosis type 1 (NF1) are at increased risk for benign and malignant neoplasms. Recently, targeted therapy with the MEK inhibitor class has helped address these needs. We highlight recent successes with selumetinib while acknowledging ongoing challenges for NF1 patients and future directions.

Recent Findings

MEK inhibitors have demonstrated efficacy for NF1-related conditions, including plexiform neurofibromas and low-grade gliomas, two common causes of NF1-related morbidity. Active investigations for NF1-related neoplasms have benefited from advanced understanding of the genomic and cell signaling alterations in these conditions and development of sound preclinical animal models.

Summary

Selumetinib has become the first FDA-approved targeted therapy for NF1 following its demonstrated efficacy for inoperable plexiform neurofibroma. Investigations of combination therapy and the development of a representative NF1 swine model hold promise for translating therapies for other NF1-associated pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Friedman JM. Neurofibromatosis 1. 1998 Oct [Updated 2019]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews. Seattle: University of Washington, Seattle; 1993-2020.

  2. • Miller DT, Freedenberg D, Schorry E, Ullrich NJ, Viskochil D, Korf BR, et al. Health supervision for children with neurofibromatosis type 1. Pediatrics. 2019;143(5):e20190660 An overview of evidence based recommendations for the evaluation and management of NF1-related pathology.

    PubMed  Google Scholar 

  3. Kehrer-Sawatzki H, Mautner V-F, Cooper DN. Emerging genotype–phenotype relationships in patients with large NF1 deletions. Hum Genet. 2017;136(4):349–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. • Markham A, Keam SJ. Selumetinib: first approval. Drugs. 2020;80(9):931–7 An overview of the PK and PD properties of Selumetinib.

    CAS  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    CAS  PubMed  Google Scholar 

  6. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome Atlas. Cell. 2018;173(2):321–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Frémin C, Meloche S. From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol. 2010;3(1):8.

    PubMed  PubMed Central  Google Scholar 

  8. Spyk S, Thomas N, Cooper DN, Upadhyaya M. Neurofibromatosis type 1-associated tumours: Their somatic mutational spectrum and pathogenesis. Hum Genomics. 2011;5(6):623–90.

    CAS  PubMed Central  Google Scholar 

  9. Rosser T. Neurocutaneous disorders. Continuum (Minneap Minn). 2018;24(1, Child Neurology):96–129.

    Google Scholar 

  10. The ICGC/TCGA pan-cancer analysis of whole genomes consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93.

    CAS  Google Scholar 

  11. Stalnecker CA, Der CJ. RAS, wanted dead or alive: advances in targeting RAS mutant cancers. Sci Signal. 2020;13:eaay6013.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer. 2015;15(10):577–92.

    CAS  PubMed  Google Scholar 

  13. Tadini G, Legius E, Brems H, editors. Multidisciplinary approach to neurofibromatosis type 1. Cham: Springer International Publishing; 2020.

    Google Scholar 

  14. Blakeley JO, Wolkenstein P, Widemann BC, Lee J, Le LQ, Jackson R, et al. Creating a comprehensive research strategy for cutaneous neurofibromas. Neurology. 2018;91(2 Supplement 1):S1–4.

    PubMed  Google Scholar 

  15. • Gross AM, Singh G, Akshintala S, Baldwin A, Dombi E, Ukwuani S, et al. Association of plexiform neurofibroma volume changes and development of clinical morbidities in neurofibromatosis 1. Neuro-Oncology. 2018;20(12):1643–51 Description of morbidities resulting from pNF in NF1.

    PubMed  PubMed Central  Google Scholar 

  16. • Lai J-S, Jensen SE, Charrow J, Listernick R. Patient reported outcomes measurement information system and quality of life in neurological disorders measurement system to evaluate quality of life for children and adolescents with neurofibromatosis type 1 associated plexiform neurofibroma. J Pediatr. 2019;206:190–0 Quality of life effects of NF1-associated pNF.

  17. • Grit JL, Johnson BK, Dischinger PS, Essenburg CJ, Campbell S, Pollard K, et al. Distinctive epigenomic alterations in NF1-deficient cutaneous and plexiform neurofibromas drive differential MKK/P38 signaling. Genomics. 2019. https://doi.org/10.1101/833467Differential epigenomic alterations between NF1-associated cNF and pNF.

  18. • Costa ADA, Gutmann DH. Brain tumors in neurofibromatosis type 1. Neuro-Oncol Adv. 2020;2(Supplement_1):i85–97 An overview of NF1-related CNS tumors with a review of preclinical animal model development.

    Google Scholar 

  19. •• Ryall S, Zapotocky M, Fukuoka K, Nobre L, Guerreiro Stucklin A, Bennett J, et al. Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell. 2020;37(4):569–583.e5 A genomic analysis of a large cohort of pediatric low-grade gliomas that reveals shared underlying biology of pediatric LGG and NF1-related LGG.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Santoro C, Picariello S, Palladino F, Spennato P, Melis D, Roth J, et al. Retrospective multicentric study on non-optic cns tumors in children and adolescents with neurofibromatosis type 1. Cancers. 2020;12(6):1426.

    CAS  PubMed Central  Google Scholar 

  21. Duong T, Sbidian E, Valeyrie-Allanore L, Vialette C, Ferkal S, Hadj-Rabia S, et al. Mortality associated with neurofibromatosis 1: a cohort study of 1895 patients in 1980-2006 in France. Orphanet J Rare Dis. 2011;6(1):18.

    PubMed  PubMed Central  Google Scholar 

  22. • Williams KB, Largaespada DA. New model systems and the development of targeted therapies for the treatment of neurofibromatosis type 1 associated malignant peripheral nerve sheath tumors. Genes. 2020;11(5):477 A detailed overview of the limitations of MEKi monotherapy for NF1-associated malignancies. Additional targets to exploit and preclinical methodologies to translate therapy are explored.

    CAS  PubMed Central  Google Scholar 

  23. Carrió M, Gel B, Terribas E, Zucchiatti AC, Moliné T, Rosas I, et al. Analysis of intratumor heterogeneity in Neurofibromatosis type 1 plexiform neurofibromas and neurofibromas with atypical features: Correlating histological and genomic findings. Hum Mutat. 2018;39(8):1112–25.

    PubMed  Google Scholar 

  24. Martin E, Flucke UE, Coert JH, van Noesel MM. Treatment of malignant peripheral nerve sheath tumors in pediatric NF1 disease. Childs Nerv Syst. 2020;36:2453–62. https://doi.org/10.1007/s00381-020-04687-3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. • Brohl AS, Kahen E, Yoder SJ, Teer JK, Reed DR. The genomic landscape of malignant peripheral nerve sheath tumors: diverse drivers of Ras pathway activation. Sci Rep. 2017;7(1):14992 A molecular analysis of MPNST demonstrating the genomic complexity of this malignancy in comparison with pNF.

    PubMed  PubMed Central  Google Scholar 

  26. •• Packer RJ, Iavarone A, Jones DTW, Blakeley JO, Bouffet E, Fisher MJ, et al. Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro-Oncology. 2020;22(6):773–84 A consensus understanding of the molecular and neuroimmunologic features of NF1-associated gliomas, including high-grade gliomas with recommendations for evaluation and management.

    PubMed  PubMed Central  Google Scholar 

  27. D’Angelo F, Ceccarelli M, Tala, Garofano L, Zhang J, Frattini V, et al. The molecular landscape of glioma in patients with neurofibromatosis 1. Nat Med. 2019;25(1):176–87.

    PubMed  Google Scholar 

  28. Nix JS, Blakeley J, Rodriguez FJ. An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol. 2020;139(4):625–41.

    PubMed  Google Scholar 

  29. Howell SJ, Hockenhull K, Salih Z, Evans DG. Increased risk of breast cancer in neurofibromatosis type 1: current insights. BCTT. 2017;9:531–6.

    Google Scholar 

  30. Yap Y-S, Munusamy P, Lim C, Chan CHT, Prawira A, Loke S-Y, et al. Breast cancer in women with neurofibromatosis type 1 (NF1): a comprehensive case series with molecular insights into its aggressive phenotype. Breast Cancer Res Treat. 2018;171(3):719–35.

    CAS  PubMed  Google Scholar 

  31. Cheng Y, Tian H. Current development status of MEK inhibitors. Molecules. 2017;22(10):1551.

    PubMed Central  Google Scholar 

  32. Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 2015;15(5):290–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosa SL, Browder V, Bakker AC, Blakeley JO, Verma SK, Wong LM, et al. Funding community collaboration to develop effective therapies for neurofibromatosis type 1 tumors. EMBO Mol Med. 2020;12(1).

  34. Stevenson DA, Schill L, Schoyer L, Andresen BS, Bakker A, Bayrak-Toydemir P, et al. The Fourth International Symposium on Genetic Disorders of the Ras/MAPK pathway. Am J Med Genet. 2016;170(8):1959–66.

    PubMed  Google Scholar 

  35. Bakker AC, Rosa SL. Rethinking the nonprofit foundation: an emerging niche in the rare disease ecosystem. EMBO Mol Med. 2017;9(9):1179–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase 1/2 inhibitor. Clin Cancer Res. 2007;13(5):1576–83.

    CAS  PubMed  Google Scholar 

  37. Luke JJ, Ott PA, Shapiro GI. The biology and clinical development of MEK inhibitors for cancer. Drugs. 2014;74(18):2111–28.

    CAS  PubMed  Google Scholar 

  38. Wu P-K, Park J-I. MEK1/2 inhibitors: molecular activity and resistance mechanisms. Semin Oncol. 2015;42(6):849–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel P, Howgate E, Martin P, Carlile DJ, Aarons L, Zhou D. Population pharmacokinetics of the MEK inhibitor selumetinib and its active N-desmethyl metabolite: data from 10 phase I trials. Br J Clin Pharmacol. 2018;84(1):52–63.

    CAS  PubMed  Google Scholar 

  40. Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME, et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest. 2013;123(1):340–7.

    CAS  PubMed  Google Scholar 

  41. Jousma E, Rizvi TA, Wu J, Janhofer D, Dombi E, Dunn RS, et al. Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of neurofibromatosis type 1: MEK Inhibition in Neurofibroma. Pediatr Blood Cancer. 2015;62(10):1709–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dombi E, Baldwin A, Marcus LJ, Fisher MJ, Weiss B, Kim A, et al. Activity of selumetinib in neurofibromatosis type 1–related plexiform neurofibromas. N Engl J Med. 2016;375(26):2550–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ. Neurofibromatosis type 1. Nat Rev Dis Primers. 2017;3(17004):1–17.

    Google Scholar 

  44. Ferner RE, Thomas M, Mercer G, Williams V, Leschziner GD, Afridi SK, et al. Evaluation of quality of life in adults with neurofibromatosis 1 (NF1) using the Impact of NF1 on Quality Of Life (INF1-QOL) questionnaire. Health Qual Life Outcomes. 2017;15(1):34.

    PubMed  PubMed Central  Google Scholar 

  45. Gutmann DH, Blakeley JO, Korf BR, Packer RJ. Optimizing biologically targeted clinical trials for neurofibromatosis. Expert Opin Investig Drugs. 2013;22(4):443–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. • Gross AM, Widemann BC. Clinical trial design in neurofibromatosis type 1 as a model for other tumor predisposition syndromes. Neuro-Oncol Adv. 2020;2(Supplement_1):i134–40 Unique considerations for clinical trial design in the NF1 populations.

    Google Scholar 

  47. • Gross AM, Dombi E, Widemann BC. Current status of MEK inhibitors in the treatment of plexiform neurofibromas. Childs Nerv Syst. 2020; Available from: https://doi.org/10.1007/s00381-020-04731-2. A review of development of MEKi for pNF treatment, including limitations and future directions

  48. Widemann BC, Plotkin SR. Consensus for NF clinical trials: recommendations of the REiNS collaboration (Supplement II). Neurology. 2016;87(7 Supplement 1):S1–3.

  49. Cai W, Steinberg SM, Bredella MA, Basinsky G, Somarouthu B, Plotkin SR, et al. Volumetric MRI analysis of plexiform neurofibromas in neurofibromatosis type 1. Acad Radiol. 2018;25(2):144–52.

    PubMed  Google Scholar 

  50. Viskochil D, Linscott LL. Volumetric MRI in neurofibromatosis type 1 (NF1) comes of age to help determine initiation and monitoring of targeted therapies for plexiform neurofibromas. Acad Radiol. 2018 Feb;25(2):141–3.

    PubMed  Google Scholar 

  51. Gripp KW, Schill L, Schoyer L, Stronach B, Bennett AM, Blaser S, et al. The sixth international RASopathies symposium: precision medicine—from promise to practice. Am J Med Genet. 2020;182(3):597–606.

    PubMed  Google Scholar 

  52. Jakacki RI, Dombi E, Steinberg SM, Goldman S, Kieran MW, Ullrich NJ, et al. Phase II trial of pegylated interferon alfa-2b in young patients with neurofibromatosis type 1 and unresectable plexiform neurofibromas. Neuro-Oncology. 2017;19(2):289–97.

    CAS  PubMed  Google Scholar 

  53. Robertson KA, Nalepa G, Yang F-C, Bowers DC, Ho CY, Hutchins GD, et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 2012;13(12):1218–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. •• Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med. 2020;382(15):1430–42 Results of the phase II SPRINT trial leading to FDA approval of selumetinib for inoperable pediatric pNF.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. • Klesse LJ, Jordan JT, Radtke HB, Rosser T, Schorry E, Ullrich N, et al. The use of mek inhibitors in neurofibromatosis type 1–associated tumors and management of toxicities. Oncologists. 2020; 25(7). MEKi therapy is associated with common toxicities. The management of these is reviewed by Klesse, et al

  56. Foiadelli T, Naso M, Licari A, Orsini A, Magistrali M, Trabatti C, et al. Advanced pharmacological therapies for neurofibromatosis type 1-related tumors. Acta Bio Medica Atenei Parmensis. 2020;91(7-S):101–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shofty B, Ben Sira L, Constantini S. Neurofibromatosis 1–associated optic pathway gliomas. Childs Nerv Syst. 2020;36:2351–61. https://doi.org/10.1007/s00381-020-04697-1.

    Article  PubMed  Google Scholar 

  58. Khatua S, Gutmann DH, Packer RJ. Neurofibromatosis type 1 and optic pathway glioma: Molecular interplay and therapeutic insights. Pediatr Blood Cancer. 2018;65(3):e26838.

    Google Scholar 

  59. Lobbous B, Coffee F, Metrock C, et al. An update on neurofibromatosis type 1-associated gliomas. Cancers. 2020;12(1):114.

    CAS  PubMed Central  Google Scholar 

  60. • Fisher MJ, Loguidice M, Gutmann DH, Listernick R, Ferner RE, Ullrich NJ, et al. Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro-Oncology. 2012;14(6):790–7 A review of NF1-associated gliomas, including optic pathway gliomas, with an emphasis on the basic science of these tumors and therapeutic development.

    PubMed  PubMed Central  Google Scholar 

  61. Farazdaghi MK, Katowitz WR, Avery RA. Current treatment of optic nerve gliomas. Curr Opin Ophthalmol. 2019;30(5):356–63.

    PubMed  PubMed Central  Google Scholar 

  62. Bandopadhayay P, Bergthold G, London WB, Goumnerova LC. Morales La Madrid A, Marcus KJ, et al. Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database: PLGG SEER Long-Term Outcome. Pediatr Blood Cancer. 2014;61(7):1173–9.

    PubMed  PubMed Central  Google Scholar 

  63. de Blank P, Bandopadhayay P, Haas-Kogan D, Fouladi M, Fangusaro J. Management of pediatric low-grade glioma. Curr Opin Pediatr. 2019;31(1):21–7.

    PubMed  PubMed Central  Google Scholar 

  64. • Banerjee A, Jakacki RI, Onar-Thomas A, Wu S, Nicolaides T, Young Poussaint T, et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a pediatric brain tumor consortium (PBTC) study. Neuro-Oncology. 2017;19(8):1135–44 Results of the phase I trial using selumetinib for recurrent/refractory pediatric LGG, including a cohort of NF1 patients.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. •• Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7):1011–22 Results of the phase II trial evaluating selumetinib for recurrent/refractory pediatric LGG, including a cohort of NF1 patients.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. • Lobbous M, Korf BR. Therapeutic development in neurofibromatosis. In: Signorelli F, Messina R, editors. Neurofibromatosis - Current Trends and Future Directions. IntechOpen; 2020. Available from: https://www.intechopen.com/books/neurofibromatosis-current-trends-and-future-directions/therapeutic-development-in-neurofibromatosis. A review of current therapeutic developments for NF1, including lists of clinical trials using diverse strategies for NF1-associated pathology

  67. Ater JL, Zhou T, Holmes E, Mazewski CM, Booth TN, Freyer DR, et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the children’s oncology group. J Clin Oncol. 2012;30(21):2641–7.

    PubMed  PubMed Central  Google Scholar 

  68. Ater JL, Xia C, Mazewski CM, Booth TN, Freyer DR, Packer RJ, et al. Non-randomized comparison between neurofibromatosis type 1 (NF1) and non-NF1 children who received carboplatin and vincristine (CV) for progressive low grade glioma (LGG): a report from the children’s oncology group (COG). Cancer. 2016;122(12):1928–36.

    CAS  PubMed  Google Scholar 

  69. Fangusaro J, Witt O, Hernáiz Driever P, Bag AK, de Blank P, Kadom N, et al. Response assessment in paediatric low-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol. 2020;21(6):e305–16.

    PubMed  Google Scholar 

  70. Rasmussen SA, Yang Q, Friedman JM. Mortality in neurofibromatosis 1: an analysis using U.S. death certificates. Am J Hum Genet. 2001;68(5):1110–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. •• Brosseau J-P, Liao C-P, Le LQ. Translating current basic research into future therapies for neurofibromatosis type 1. Br J Cancer. 2020;123(2):178–86 A review of current therapeutic targets under investigation, including MEKi and immunotherapy, and an additional focus on potential avenues for novel therapeutics in NF1 based on advances in the basic science understanding of NF1-associated tumors.

    PubMed  PubMed Central  Google Scholar 

  72. •• Martin E, Lamba N, Flucke UE, Verhoef C, Coert JH, Versleijen-Jonkers YMH, et al. Non-cytotoxic systemic treatment in malignant peripheral nerve sheath tumors (MPNST): a systematic review from bench to bedside. Crit Rev Oncol Hematol. 2019;138:223–32 An extensive review of preclinical in vivo studies and current clinical trials utilizing non-cytotoxic monotherapy and combination therapy approaches to address MPNST.

    PubMed  Google Scholar 

  73. Karmakar S, Reilly KM. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol. 2017;6(1):45–60.

    CAS  PubMed  Google Scholar 

  74. • Kumar S, Principe DR, Singh SK, Viswakarma N, Sondarva G, Rana B, et al. Mitogen-activated protein kinase inhibitors and t-cell-dependent immunotherapy in cancer. Pharmaceuticals. 2020;13(1):–9 An overview of the MAPK signaling network and its interaction with the immune system when altered, with implications for immunotherapy.

  75. Wang S, Liechty B, Patel S, Weber JS, Hollmann TJ, Snuderl M, et al. Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neuro-Oncol. 2018;138(1):183–90.

    CAS  Google Scholar 

  76. Antoszczyk S, Rabkin SD. Prospects and progress of oncolytic viruses for treating peripheral nerve sheath tumors. Expert Opin Orphan Drugs. 2016;4(2):129–38.

    CAS  PubMed  Google Scholar 

  77. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218.

    CAS  PubMed  Google Scholar 

  78. Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D, et al. Plexiform and Dermal Neurofibromas and Pigmentation Are Caused by Nf1 Loss in Desert Hedgehog-Expressing Cells. Cancer Cell. 2008;13(2):105–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Carrió M, Mazuelas H, Richaud-Patin Y, Gel B, Terribas E, Rosas I, et al. Reprogramming captures the genetic and tumorigenic properties of neurofibromatosis type 1 plexiform neurofibromas. Stem Cell Rep. 2019;12(2):411–26.

    Google Scholar 

  80. Guo J, Grovola MR, Xie H, Coggins GE, Duggan P, Hasan R, et al. Comprehensive pharmacological profiling of neurofibromatosis cell lines. Am J Cancer Res. 2017;7(4):923–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kraniak JM, Chalasani A, Wallace MR, Mattingly RR. Development of 3D culture models of plexiform neurofibroma and initial application for phenotypic characterization and drug screening. Exp Neurol. 2018;299:289–98.

    CAS  PubMed  Google Scholar 

  82. Ricker CA, Pan Y, Gutmann DH, Keller C. Challenges in drug discovery for neurofibromatosis type 1-associated low-grade glioma. Front Oncol. 2016;6. https://doi.org/10.3389/fonc.2016.00259.

  83. Watson AL, Carlson DF, Largaespada DA, Hackett PB, Fahrenkrug SC. Engineered swine models of cancer. Front Genet. 2016;7(78). https://doi.org/10.3389/fgene.2016.00078.

  84. •• Isakson SH, Rizzardi AE, Coutts AW, Carlson DF, Kirstein MN, Fisher J, et al. Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Commun Biol. 2018;1(1):158 Report on the development of a genetically engineered swine model that recapitulates key molecular and phenotypic features of NF1.

    PubMed  PubMed Central  Google Scholar 

  85. Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2017;14(1):57–66.

    CAS  PubMed  Google Scholar 

  86. Leier A, Bedwell DM, Chen AT, Dickson G, Keeling KM, Kesterson RA, et al. Mutation-directed therapeutics for neurofibromatosis type I. Mol Ther–Nucleic Acids. 2020;20:739–53.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Moertel.

Ethics declarations

Conflict of Interest

Robert Galvin, Nancy Ratner, and Christopher L. Moertel declare no conflict of interest. Adrienne L. Watson is an employee and shareholder of Recombinetics, Inc., and is supported by a grant from the Children's Tumor Foundation. David A. Largaespada is the co-founder and co-owner of several biotechnology companies including NeoClone Biotechnologies, Inc., Discovery Genomics, Inc. (recently acquired by Immusoft, Inc.), B-MoGen Biotechnologies, Inc. (recently acquired by Bio-Techne Corporation), and Luminary Therapeutics, Inc. He holds equity in, serves as a Senior Scientific Advisor for and Board of Director member for Recombinetics, a genome editing company. The business of all these companies is unrelated to the contents of this article. He consults for Genentech, Inc., which funds some of his research. Sara Osum is supported by a grant from the Children's Tumor Foundation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Evolving Therapies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvin, R., Watson, A.L., Largaespada, D.A. et al. Neurofibromatosis in the Era of Precision Medicine: Development of MEK Inhibitors and Recent Successes with Selumetinib. Curr Oncol Rep 23, 45 (2021). https://doi.org/10.1007/s11912-021-01032-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01032-y

Keywords

Navigation