Skip to main content

Advertisement

Log in

Updates on Surgical Management and Advances for Brain Tumors

  • Neuro-oncology (KS Nevel, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes the modern approach to surgical management of malignant brain tumors, highlighting new technology and multimodal treatment paradigms.

Recent Findings

Outcomes in patients with glioblastoma are strongly correlated with extent of initial surgical resection. Intraoperative MRI, 5-ALA, and neuronavigation are surgical tools that can help achieve a maximal safe resection. Stereotactic radiosurgery and brachytherapy can be used to enhance local control for brain metastases in conjunction with surgery, while combinatorial approaches are increasingly employed in patients with multiple metastases. Advances in surgical techniques allow for minimally invasive approaches, including the use of tubular retractors, endoscopes, and laser interstitial thermal therapy.

Summary

Primary and metastatic brain tumors require a multimodal, multidisciplinary approach to treatment. Surgical resection can be paired with radiation for metastases to maximize tumor control, expanding systemic options. Technological innovations have improved the safety of surgical resection, while expanding the surgical options and indications for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-Oncol. 2019;21(Supplement_5):v1–100.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Davis M. Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs. 2016;20(5):S2–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sanai N, Berger MS. Surgical oncology for gliomas: the state of the art. Nat Rev Clin Oncol. 2018;15(2):112–25.

    Article  PubMed  Google Scholar 

  4. Anjum K, Shagufta BI, Abbas SQ, Patel S, Khan I, Shah SAA, et al. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: a review. Biomed Pharmacother. 2017;92:681–9.

    Article  CAS  PubMed  Google Scholar 

  5. Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszawski KL, et al. Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol. 2016;2(11):1460–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li YM, Suki D, Hess K, Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg. 2016;124(4):977–88.

    Article  PubMed  Google Scholar 

  7. Wijnenga MMJ, French PJ, Dubbink HJ, WNM D, Atmodimedjo PN, Kros JM, et al. The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis. Neuro-Oncol. 2018;20(1):103–12 This paper advocates maximal resection as first line for molecularly characterized low-grade gliomas. In addition, a second operation may be warranted in IDH-mutant subtype astrocytomas for monitoring or resection of even small amounts of residual tumor.

    Article  CAS  PubMed  Google Scholar 

  8. Hollon TC, Pandian B, Adapa AR, Urias E, Save AV, Khalsa SSS, et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med. 2020;26(1):52–8 This paper characterizes a novel strategy for facilitating fast and accurate intraoperative tissue diagnosis combining by an optical imaging tool with deep convolutional neural networks. This automated parallel-workflow strategy is not inferior to existing laboratory-based pathology and provides a framework for streamlining tissue diagnosis during surgery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rahman M, Abbatematteo J, De Leo EK, Kubilis PS, Vaziri S, Bova F, et al. The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J Neurosurg. 2017;127(1):123–31.

    Article  PubMed  Google Scholar 

  10. Golub D, Hyde J, Dogra S, Nicholson J, Kirkwood KA, Gohel P, Loftus S, Schwartz TH. Intraoperative MRI versus 5-ALA in high-grade glioma resection: a network meta-analysis. J Neurosurg 2020;1–15.

  11. Stepp H, Stummer W. 5-ALA in the management of malignant glioma. Lasers Surg Med. 2018;50(5):399–419.

    Article  PubMed  Google Scholar 

  12. Gandhi S, Tayebi Meybodi A, Belykh E, Cavallo C, Zhao X, Syed MP, et al. Survival outcomes among patients with high-grade glioma treated with 5-aminolevulinic acid–guided surgery: a systematic review and meta-analysis. Front Oncol. 2019;9:620.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Haider SA, Lim S, Kalkanis SN, Lee IY. The impact of 5-aminolevulinic acid on extent of resection in newly diagnosed high grade gliomas: a systematic review and single institutional experience. J Neuro-Oncol. 2019;141(3):507–15.

    Article  Google Scholar 

  14. Hakozaki T, Okuma Y. Management of non-small cell lung cancer harboring epidermal growth factor receptor mutations in the era of first-line osimertinib. J Thorac Dis. 2019;11(7):2664–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hatiboglu MA, Akdur K, Sawaya R. Neurosurgical management of patients with brain metastasis. Neurosurg Rev. 2020;43(2):483–95.

    Article  PubMed  Google Scholar 

  16. Fuentes R, Osorio D, Expósito Hernandez J, Simancas-Racines D, Martinez-Zapata MJ, Bonfill Cosp X. Surgery versus stereotactic radiotherapy for people with single or solitary brain metastasis. Cochrane Gynaecological, Neuro-oncology and Orphan Cancer Group, editor. Cochrane Database Syst Rev. 2018 [cited 2020 Aug 19]; Available from: http://doi.wiley.com/10.1002/14651858.CD012086.pub2

  17. Tanguturi S, Warren LEG. The current and evolving role of radiation therapy for central nervous system metastases from breast cancer. Curr Oncol Rep. 2019;21(6):50.

    Article  PubMed  Google Scholar 

  18. Brown PD, Ballman KV, Cerhan JH, Anderson SK, Carrero XW, Whitton AC, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8):1049–60 This study randomly assigned patients with prior resection of brain metastasis to either postoperative SRS or WBRT. It showed no difference in overall survival between the 2 treatment groups and decreased cognitive function in the WBRT cohort.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grosu A-L, Frings L, Bentsalo I, Oehlke O, Brenner F, Bilger A, et al. Whole-brain irradiation with hippocampal sparing and dose escalation on metastases: neurocognitive testing and biological imaging (HIPPORAD) – a phase II prospective randomized multicenter trial (NOA-14, ARO 2015–3, DKTK-ROG). BMC Cancer. 2020;20(1):532.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chu L, Ni J, Yang X, Tong T, Wang J, Yin F, et al. Radiographic features of metastatic brain tumors from ALK-rearranged non-small cell lung cancer: implications for optimal treatment modalities. J Cancer. 2019;10(26):6660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nguyen TK, Sahgal A, Detsky J, Soliman H, Myrehaug S, Tseng C-L, et al. Single-fraction stereotactic radiosurgery versus hippocampal-avoidance whole brain radiation therapy for patients with 10 to 30 brain metastases: a dosimetric analysis. Int J Radiat Oncol. 2019;105(2):394–9.

    Article  Google Scholar 

  22. Churilla TM, Chowdhury IH, Handorf E, Collette L, Collette S, Dong Y, et al. Comparison of local control of brain metastases with stereotactic radiosurgery vs surgical resection: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2019;5(2):243 This secondary analysis of a randomized trial stratified patients into cohorts of surgical resection versus SRS to determine whether local control of brain metastases differed between the two treatment groups. The investigation showed similar control of brain metastases between the two cohorts over time; SRS initially had better control over tumor recurrence than surgical resection, but this benefit decreased with time.

    Article  PubMed  Google Scholar 

  23. Patil CG, Pricola K, Sarmiento JM, Garg SK, Bryant A, Black KL. Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases. Cochrane Gynaecological, Neuro-oncology and Orphan Cancer Group, editor. Cochrane Database Syst Rev [Internet]. 2017 [cited 2020 Aug 19]; Available from: http://doi.wiley.com/10.1002/14651858.CD006121.pub4

  24. Marchan EM, Peterson J, Sio TT, Chaichana KL, Harrell AC, Ruiz-Garcia H, et al. Postoperative cavity stereotactic radiosurgery for brain metastases. Front Oncol. 2018;8:342.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Navarria P, Pessina F, Clerici E, Franceschini D, Gay LG, De Rose F, et al. Surgery followed by hypofractionated radiosurgery on the tumor bed in oligometastatic patients with large brain metastases. Results of a phase 2 study. Int J Radiat Oncol. 2019 Dec;105(5):1095–105.

    Article  CAS  Google Scholar 

  26. Dumont Lecomte D, Lequesne J, Geffrelot J, Lesueur P, Barraux V, Loiseau C, et al. Hypofractionated stereotactic radiotherapy for challenging brain metastases using 36 Gy in six fractions. Cancer/Radiothérapie. 2019;23(8):860–6.

    Article  CAS  Google Scholar 

  27. Soliman H, Myrehaug S, Tseng C-L, Ruschin M, Hashmi A, Mainprize T, et al. Image-guided, Linac-based, surgical cavity-hypofractionated stereotactic radiotherapy in 5 daily fractions for brain metastases. Neurosurgery. 2019;85(5):E860–9 A 5-fraction paradigm for delivery of SRS demonstrated improved local control in the management of brain metastases after resection.

    Article  PubMed  Google Scholar 

  28. D’Andrea MA, Reddy GK. Extracranial abscopal responses in advanced lung cancer induced by brain radiation: Am J Clin Oncol. 2019.

  29. Hamilton AJ, Seid J, Verdecchia K, Chuba P. Abscopal effect after radiosurgery for solitary brain metastasis from non-small cell lung cancer. Cureus. 2018 [cited 2020 Aug 19]; Available from: https://www.cureus.com/articles/16001-abscopal-effect-after-radiosurgery-for-solitary-brain-metastasis-from-non-small-cell-lung-cancer.

  30. Lithgow K, Siqueira I, Senthil L, Chew HS, Chavda SV, Ayuk J, et al. Pituitary metastases: presentation and outcomes from a pituitary center over the last decade. Pituitary. 2020;23(3):258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marchioni D, Gulino A, Sacchetto L, Pinna G, Musumeci A, Molteni G. Expanded endoscopic approach for anterior skull base tumors: experience of a multidisciplinary skull base team. J Craniofac Surg. 2019;30(6):1730–3.

    Article  PubMed  Google Scholar 

  32. Zacharia BE, Romero FR, Rapoport SK, Raza SM, Anand VK, Schwartz TH. Endoscopic endonasal management of metastatic lesions of the anterior skull base: case series and literature review. World Neurosurg. 2015;84(5):1267–77.

    Article  PubMed  Google Scholar 

  33. Shafiq AR, Wernicke AG, Riley CA, Morgenstern PF, Nedialkova L, Pannullo SC, et al. Placement of cesium-131 permanent brachytherapy seeds using the endoscopic endonasal approach for recurrent anaplastic skull base meningioma: case report and technical note. J Neurosurg. 2020;132(3):921–6 This case report describes for the first time the feasibility of using an endoscopic endonasal approach for the permanent placement of Cs-131 brachytherapy seeds, and a thorough discussion of techniques. The authors discuss comparisons with I-125 seeds and additional means of complication minimization.

    Article  Google Scholar 

  34. Jackson C, Gallia G, Chaichana K. Minimally invasive biopsies of deep-seated brain lesions using tubular retractors under exoscopic visualization. J Neurol Surg Part Cent Eur Neurosurg. 2017;78(06):588–94.

    Article  Google Scholar 

  35. Gassie K, Alvarado-Estrada K, Bechtle P, Chaichana K. Surgical management of deep-seated metastatic brain tumors using minimally invasive approaches. J Neurol Surg Part Cent Eur Neurosurg. 2019;80(03):198–204.

    Article  Google Scholar 

  36. Patel B, Kim AH. Laser Interstitial Thermal Therapy. 6.

  37. Chaunzwa TL, Deng D, Leuthardt EC, Tatter SB, Mohammadi AM, Barnett GH, et al. Laser thermal ablation for metastases failing radiosurgery: a multicentered retrospective study. Neurosurgery. 2018;82(1):56–63.

    Article  PubMed  Google Scholar 

  38. Shah AH, Semonche A, Eichberg DG, Borowy V, Luther E, Sarkiss CA, et al. The role of laser interstitial thermal therapy in surgical neuro-oncology: series of 100 consecutive patients. Neurosurgery. 2020;87(2):266–75 As one of the largest trials of LITT to date, this study served to expand the safety and outcomes profile of this methodology. In particular for treatment-failed or surgically inaccessible tumors, LITT presents a safe and reliable option for tumor management.

    Article  PubMed  Google Scholar 

  39. Salem U, Kumar VA, Madewell JE, Schomer DF, de Almeida Bastos DC, Zinn PO, et al. Neurosurgical applications of MRI guided laser interstitial thermal therapy (LITT). Cancer Imaging. 2019;19(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rao MS, Hargreaves EL, Khan AJ, Haffty BG, Danish SF. Magnetic resonance-guided laser ablation improves local control for postradiosurgery recurrence and/or radiation necrosis. Neurosurgery. 2014;74(6):658–67.

    Article  PubMed  Google Scholar 

  41. Ali MA, Carroll KT, Rennert RC, Hamelin T, Chang L, Lemkuil BP, et al. Stereotactic laser ablation as treatment for brain metastases that recur after stereotactic radiosurgery: a multiinstitutional experience. Neurosurg Focus. 2016;41(4):E11.

    Article  PubMed  Google Scholar 

  42. Ivan ME, Mohammadi AM, De Deugd N, Reyes J, Rodriguez G, Shah A, et al. Laser Ablation of Newly Diagnosed Malignant Gliomas: a Meta-Analysis. Neurosurgery. 2016;79(1):17–23. https://doi.org/10.1227/NEU.0000000000001446

  43. Appelboom G, Detappe A, LoPresti M, Kunjachan S, Mitrasinovic S, Goldman S, et al. Stereotactic modulation of blood-brain barrier permeability to enhance drug delivery. Neuro-Oncol. 2016;18(12):1601–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Iorio-Morin C, Mercure-Cyr R, Figueiredo G, Touchette CJ, Masson-Côté L, Mathieu D. Repeat stereotactic radiosurgery for the management of locally recurrent brain metastases. J Neurooncol. 2019;145(3):551–9 Repeat SRS provides a meaningful palliative and therapeutic strategy for patients with locally recurrent metastases. This study emphasizes the potential for longer-term relief provided by repeat SRS in a select group of patients.

    Article  PubMed  Google Scholar 

  45. Parikh BB, Neil EC. Evolving strategies to potentially further optimize surgical interventions in brain cancer. Curr Oncol Rep. 2020;22(4):32.

    Article  PubMed  Google Scholar 

  46. Wernicke AG, Lazow SP, Taube S, Yondorf MZ, Kovanlikaya I, Nori D, et al. Surgical technique and clinically relevant resection cavity dynamics following implantation of Cesium-131 brachytherapy in patients with brain metastases. Oper Neurosurg. 2016;12(1):49–60.

    Article  Google Scholar 

  47. Routman DM, Yan E, Vora S, Peterson J, Mahajan A, Chaichana KL, et al. Preoperative stereotactic radiosurgery for brain metastases. Front Neurol. 2018;9:959.

    Article  PubMed  PubMed Central  Google Scholar 

  48. El Shafie R, Tonndorf-Martini E, Schmitt D, Weber D, Celik A, Dresel T, et al. Pre-operative versus post-operative radiosurgery of brain metastases—volumetric and dosimetric impact of treatment sequence and margin concept. Cancers. 2019;11(3):294.

    Article  PubMed Central  Google Scholar 

  49. Huff W, Agrawal N, Shapiro S, Miller J, Kulwin CG, Shah M, et al. Efficacy of pre-operative stereotactic radiosurgery followed by surgical resection and correlative radiobiological analysis for patients with Q_4 brain metastases: study protocol for a phase II trial. Radiat Oncol Lond Engl. 2018;13.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupa Juthani.

Ethics declarations

Conflict of Interest

None of the authors has any potential conflicts of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, M., Norman, S., Sehgal, R. et al. Updates on Surgical Management and Advances for Brain Tumors. Curr Oncol Rep 23, 35 (2021). https://doi.org/10.1007/s11912-020-01005-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-020-01005-7

Keywords

Navigation