Skip to main content

Advertisement

Log in

New Targets in Lung Cancer (Excluding EGFR, ALK, ROS1)

  • Lung Cancer (H Borghaei, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Over the last two decades, the identification of targetable oncogene drivers has revolutionized the therapeutic landscape of non-small cell lung cancer (NSCLC). The extraordinary progresses made in molecular biology prompted the identification of several rare molecularly defined subgroups. In this review, we will focus on the novel and emerging actionable oncogenic drivers in NSCLC.

Recent Findings

Recently, novel oncogene drivers emerged as promising therapeutic targets besides the well-established EGFR mutations, and ALK/ROS1 rearrangements, considerably expanding the list of potential exploitable genetic aberrations. However, the therapeutic algorithm in these patients is far less defined.

Summary

The identification of uncommon oncogene drivers is reshaping the diagnostic and therapeutic approach to NSCLC. The introduction of novel highly selective inhibitors is expanding the use of targeted therapies to rare and ultra-rare subsets of patients, further increasing the therapeutic armamentarium of advanced NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  CAS  PubMed  Google Scholar 

  2. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.

    Article  CAS  PubMed  Google Scholar 

  3. Cardarella S, Ogino A, Nishino M, Butaney M, Shen J, Lydon C, et al. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res. 2013;19:4532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Villaruz LC, Socinski MA, Abberbock S, Berry LD, Johnson BE, Kwiatkowski DJ, et al. Clinicopathologic features and outcomes of patients with lung adenocarcinomas harboring BRAF mutations in the Lung Cancer Mutation Consortium. Cancer. 2015;121:448–56.

    Article  CAS  PubMed  Google Scholar 

  5. Marchetti A, Felicioni L, Malatesta S, Grazia Sciarrotta M, Guetti L, Chella A, et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol. 2011;29:3574–9.

    Article  CAS  PubMed  Google Scholar 

  6. Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 2011;29:2046–51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dudnik E, Peled N, Nechushtan H, Wollner M, Onn A, Agbarya A, et al. BRAF mutant lung cancer: programmed death ligand 1 expression, tumor mutational burden, microsatellite instability status, and response to immune check-point inhibitors. J Thorac Oncol. 2018;13:1128–37.

    Article  PubMed  CAS  Google Scholar 

  8. • Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019;30:1321–8. A large retrospective study evaluating the role of ICIs in oncogene-addicted NSCLCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Couraud S, Barlesi F, Fontaine-Deraluelle C, Debieuvre D, Merlio J-P, Moreau L, et al. Clinical outcomes of non-small-cell lung cancer patients with BRAF mutations: results from the French Cooperative Thoracic Intergroup biomarkers France study. Eur J Cancer. 2019;116:86–97.

    Article  CAS  PubMed  Google Scholar 

  10. Yao Z, Yaeger R, Rodrik-Outmezguine VS, Tao A, Torres NM, Chang MT, et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature. 2017;548:234–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dagogo-Jack I, Martinez P, Yeap BY, Ambrogio C, Ferris LA, Lydon C, et al. Impact of BRAF mutation class on disease characteristics and clinical outcomes in. Clin Cancer Res. 2019;25:158–65.

    Article  PubMed  Google Scholar 

  12. Horn L, Bauml J, Forde PM, Davis KL, Myall NJ, Sasane M, et al. Real-world treatment patterns and survival of patients with BRAF V600-mutated metastatic non-small cell lung cancer. Lung Cancer. 2019;128:74–90.

    Article  PubMed  Google Scholar 

  13. Planchard D, Kim TM, Mazieres J, Quoix E, Riely G, Barlesi F, et al. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17:642–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Subbiah V, Gervais R, Riely G, Hollebecque A, Blay J-Y, Felip E, et al. Efficacy of vemurafenib in patients with non–small-cell lung cancer with BRAF V600 mutation: an open-label, single-arm cohort of the histology-independent VE-BASKET study. JCO Precis Oncol. 2019;3:1–9.

  15. Dudnik E, Bar J, Peled N, Bshara E, Kuznetsov T, Cohen AY, et al. Efficacy and safety of BRAF inhibitors with or without MEK inhibitors in BRAF-mutant advanced non-small-cell lung cancer: findings from a real-life cohort. Clin Lung Cancer. 2019;20:278–286.e1.

    Article  CAS  PubMed  Google Scholar 

  16. Gautschi O, Milia J, Cabarrou B, Bluthgen M-V, Besse B, Smit EF, et al. Targeted therapy for patients with BRAF-mutant lung cancer: results from the European EURAF cohort. J Thorac Oncol. 2015;10:1451–7.

    Article  CAS  PubMed  Google Scholar 

  17. •• Planchard D, Besse B, Groen HJM, Souquet P-J, Quoix E, Baik CS, et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 2016;17:984–93. The registrative study of dabrafenib-trametinib in BRAF-mutated NSCLCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland Å, et al. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18:1307–16.

    Article  CAS  PubMed  Google Scholar 

  19. Tan I, Stinchcombe TE, Ready NE, Crawford J, Datto MB, Nagy RJ, et al. Therapeutic outcomes in non-small cell lung cancer with BRAF mutations: a single institution, retrospective cohort study. Transl Lung Cancer Res. 2019;8:258–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Drilon A, Cappuzzo F, Ou S-HI, Camidge DR. Targeting MET in lung cancer: will expectations finally be MET? J Thorac Oncol. 2017;12:15–26.

    Article  PubMed  Google Scholar 

  21. Van Der Steen N, Giovannetti E, Pauwels P, Peters GJ, Hong DS, Cappuzzo F, et al. cMET exon 14 skipping: from the structure to the clinic. J Thorac Oncol. 2016;11:1423–32.

    Article  Google Scholar 

  22. Tsakonas G, Botling J, Micke P, Rivard C, LaFleur L, Mattsson J, et al. c-MET as a biomarker in patients with surgically resected non-small cell lung cancer. Lung Cancer. 2019;133:69–74.

    Article  PubMed  Google Scholar 

  23. Bubendorf L, Dafni U, Schobel M, Finn SP, Tischler V, Sejda A, et al. Prevalence and clinical association of MET gene overexpression and amplification in patients with NSCLC: results from the European Thoracic Oncology Platform (ETOP) Lungscape project. Lung Cancer. 2017;111:143–9.

    Article  PubMed  Google Scholar 

  24. Huang L, An S-J, Chen Z-H, Su J, Yan H-H, Wu Y-L. MET expression plays differing roles in non-small-cell lung cancer patients with or without EGFR mutation. J Thorac Oncol. 2014;9:725–8.

    Article  CAS  PubMed  Google Scholar 

  25. Noonan SA, Berry L, Lu X, Gao D, Baron AE, Chesnut P, et al. Identifying the appropriate FISH criteria for defining MET copy number-driven lung adenocarcinoma through oncogene overlap analysis. J Thorac Oncol. 2016;11:1293–304.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

    Article  CAS  PubMed  Google Scholar 

  27. Ramalingam SS, Yang JC-H, Lee CK, Kurata T, Kim D-W, John T, et al. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J Clin Oncol. 2018;36:841–9.

    Article  CAS  PubMed  Google Scholar 

  28. Ramalingam SS, Cheng Y, Zhou C, Ohe Y, Imamura F, Cho BC, et al. LBA50Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. Ann Oncol. 2018;29. Available from:. https://doi.org/10.1093/annonc/mdy424.063.

    Article  Google Scholar 

  29. Baldacci S, Figeac M, Antoine M, Descarpentries C, Kherrouche Z, Jamme P, et al. Brief report : High MET overexpression does not predict the presence of MET exon 14 splice mutations in NSCLC : results from the IFCT Predict.amm study. J Thorac Oncol. 2020;15(1):120–124.

  30. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  CAS  Google Scholar 

  31. Schrock AB, Frampton GM, Suh J, Chalmers ZR, Rosenzweig M, Erlich RL, et al. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations. J Thorac Oncol. 2016;11:1493–502.

    Article  PubMed  Google Scholar 

  32. Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J Clin Oncol. 2016;34:721–30.

    Article  CAS  PubMed  Google Scholar 

  33. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–9.

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Jia Y, Stoopler MB, Shen Y, Cheng H, Chen J, et al. Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol. 2016;34:794–802.

    Article  CAS  PubMed  Google Scholar 

  35. Guo R, Berry LD, Aisner DL, Sheren J, Boyle T, Bunn PAJ, et al. MET IHC is a poor screen for MET amplification or MET exon 14 mutations in lung adenocarcinomas: data from a tri-institutional cohort of the lung cancer mutation consortium. J Thorac Oncol. 2019;14:1666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanizaki J, Okamoto I, Okamoto K, Takezawa K, Kuwata K, Yamaguchi H, et al. MET tyrosine kinase inhibitor crizotinib (PF-02341066) shows differential antitumor effects in non-small cell lung cancer according to MET alterations. J Thorac Oncol. 2011;6:1624–31.

    Article  PubMed  Google Scholar 

  37. Camidge DR, Otterson GA, Clark JW, Ou S-HI, Weiss J, Ades S, et al. Crizotinib in patients (pts) with MET-amplified non-small cell lung cancer (NSCLC): updated safety and efficacy findings from a phase 1 trial. J Clin Oncol. 2018;36:9062.

    Article  Google Scholar 

  38. Drilon A, Clark J, Weiss J, Ou S, Camidge DR, Solomon B, et al. OA12.02 updated antitumor activity of crizotinib in patients with MET exon 14-altered advanced non-small cell lung cancer. J Thorac Oncol. 2018;13:S348.

    Article  Google Scholar 

  39. Moro-Sibilot D, Cozic N, Perol M, Mazieres J, Otto J, Souquet PJ, et al. Crizotinib in c-MET- or ROS1-positive NSCLC: results of the AcSe phase II trial. Ann Oncol 2019;30(12):1985-1991.

    Article  CAS  PubMed  Google Scholar 

  40. Landi L, Chiari R, Tiseo M, D’Inca F, Dazzi C, Chella A, et al. Crizotinib in MET-deregulated or ROS1-rearranged pretreated non-small cell lung cancer (METROS): a phase II, prospective, multicenter, two-arms trial. Clin Cancer Res. 2019;25(24):7312–7319.

    Article  PubMed  Google Scholar 

  41. Awad MM, Leonardi GC, Kravets S, Dahlberg SE, Drilon A, Noonan SA, et al. Impact of MET inhibitors on survival among patients with non-small cell lung cancer harboring MET exon 14 mutations: a retrospective analysis. Lung Cancer. 2019;133:96–102.

    Article  PubMed  Google Scholar 

  42. Wolf J, Seto T, Han J-Y, Reguart N, Garon EB, Groen HJM, et al. Capmatinib (INC280) in METΔex14-mutated advanced non-small cell lung cancer (NSCLC): efficacy data from the phase II GEOMETRY mono-1 study. J Clin Oncol. 2019;37:9004.

    Article  Google Scholar 

  43. Russo A, Franchina T, Ricciardi GRR, Ferraro G, Scimone A, Bronte G, et al. Central nervous system involvement in ALK-rearranged NSCLC: promising strategies to overcome crizotinib resistance. Expert Rev Anticancer Ther. 2016;16:615–23.

    Article  CAS  PubMed  Google Scholar 

  44. Paik PK, Veillon R, Cortot AB, Felip E, Sakai H, Mazieres J, et al. Phase II study of tepotinib in NSCLC patients with METex14 mutations. J Clin Oncol. 2019;37:9005.

    Article  Google Scholar 

  45. Fujino T, Kobayashi Y, Suda K, Koga T, Nishino M, Ohara S, et al. Sensitivity and resistance of MET exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro. J Thorac Oncol. 2019;14:1753–65.

    Article  CAS  PubMed  Google Scholar 

  46. Sabari JK, Leonardi GC, Shu CA, Umeton R, Montecalvo J, Ni A, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29:2085–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Plenker D, Bertrand M, de Langen AJ, Riedel R, Lorenz C, Scheel AH, et al. Structural alterations of MET trigger response to MET kinase inhibition in lung adenocarcinoma patients. Clin Cancer Res. 2018;24:1337–43.

    Article  CAS  PubMed  Google Scholar 

  48. Davies KD, Ng TL, Estrada-Bernal A, Le AT, Ennever PR, Camidge DR, et al. Dramatic Response to Crizotinib in a Patient with Lung Cancer Positive for an HLA-DRB1-MET Gene Fusion. JCO Precis Oncol. 2017;1:1–6.

  49. Ricciardi GRR, Russo A, Franchina T, Ferraro G, Zanghi M, Picone A, et al. NSCLC and HER2: between lights and shadows. J Thorac Oncol. 2014;9:1750–62.

    Article  PubMed  Google Scholar 

  50. Langer CJ, Stephenson P, Thor A, Vangel M, Johnson DH. Trastuzumab in the treatment of advanced non-small-cell lung cancer: is there a role? Focus on Eastern Cooperative Oncology Group study 2598. J Clin Oncol. 2004;22:1180–7.

    Article  CAS  PubMed  Google Scholar 

  51. Gatzemeier U, Groth G, Butts C, Van Zandwijk N, Shepherd F, Ardizzoni A, et al. Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in. Ann Oncol. 2004;15:19–27.

    Article  CAS  PubMed  Google Scholar 

  52. Krug LM, Miller VA, Patel J, Crapanzano J, Azzoli CG, Gomez J, et al. Randomized phase II study of weekly docetaxel plus trastuzumab versus weekly paclitaxel plus trastuzumab in patients with previously untreated advanced non-small cell lung carcinoma. Cancer. 2005;104:2149–55.

    Article  CAS  PubMed  Google Scholar 

  53. Lara PNJ, Laptalo L, Longmate J, Lau DHM, Gandour-Edwards R, Gumerlock PH, et al. Trastuzumab plus docetaxel in HER2/neu-positive non-small-cell lung cancer: a California Cancer consortium screening and phase II trial. Clin Lung Cancer. 2004;5:231–6.

    Article  CAS  PubMed  Google Scholar 

  54. Zinner RG, Glisson BS, Fossella FV, Pisters KMW, Kies MS, Lee PM, et al. Trastuzumab in combination with cisplatin and gemcitabine in patients with Her2-overexpressing, untreated, advanced non-small cell lung cancer: report of a phase II trial and findings regarding optimal identification of patients with Her2-overexpressing disease. Lung Cancer. 2004;44:99–110.

    Article  PubMed  Google Scholar 

  55. Peters S, Stahel R, Bubendorf L, Bonomi P, Villegas A, Kowalski DM, et al. Trastuzumab emtansine (T-DM1) in patients with previously treated. Clin Cancer Res. 2019;25:64–72.

    Article  PubMed  Google Scholar 

  56. Hotta K, Aoe K, Kozuki T, Ohashi K, Ninomiya K, Ichihara E, et al. A phase II study of trastuzumab emtansine in HER2-positive non-small cell lung cancer. J Thorac Oncol. 2018;13:273–9.

    Article  CAS  PubMed  Google Scholar 

  57. Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature. 2004;431:525–6.

    Article  CAS  PubMed  Google Scholar 

  58. Li BT, Ross DS, Aisner DL, Chaft JE, Hsu M, Kako SL, et al. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J Thorac Oncol. 2016;11:414–9.

    Article  PubMed  Google Scholar 

  59. Ninomiya K, Hata T, Yoshioka H, Ohashi K, Bessho A, Hosokawa S, et al. A prospective cohort study to define the clinical features and outcome of lung cancers harboring HER2 aberration in Japan (HER2-CS STUDY). Chest. 2019;156:357–66.

    Article  PubMed  Google Scholar 

  60. Kris MG, Camidge DR, Giaccone G, Hida T, Li BT, O’Connell J, et al. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann Oncol. 2015;26:1421–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dziadziuszko R, Smit EF, Dafni U, Wolf J, Wasag B, Biernat W, et al. Afatinib in NSCLC with HER2 mutations: results of the prospective, open-label phase II NICHE trial of European Thoracic Oncology Platform (ETOP). J Thorac Oncol. 2019;14:1086–94.

    Article  CAS  PubMed  Google Scholar 

  62. Arcila ME, Chaft JE, Nafa K, Roy-Chowdhuri S, Lau C, Zaidinski M, et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res. 2012;18:4910–8.

    Article  CAS  PubMed  Google Scholar 

  63. Mazieres J, Barlesi F, Filleron T, Besse B, Monnet I, Beau-Faller M, et al. Lung cancer patients with HER2 mutations treated with chemotherapy and. Ann Oncol. 2016;27:281–6.

    Article  CAS  PubMed  Google Scholar 

  64. Cappuzzo F, Bemis L, Varella-Garcia M. HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N Engl J Med. 2006;354:2619–21.

    Article  CAS  PubMed  Google Scholar 

  65. Hyman DM, Piha-Paul SA, Won H, Rodon J, Saura C, Shapiro GI, et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature. 2018;554:189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Greve J, Moran T, Graas M-P, Galdermans D, Vuylsteke P, Canon J-L, et al. Phase II study of afatinib, an irreversible ErbB family blocker, in demographically and genotypically defined lung adenocarcinoma. Lung Cancer. 2015;88:63–9.

    Article  PubMed  Google Scholar 

  67. Lai WV, Lebas L, Barnes TA, Milia J, Ni A, Gautschi O, et al. Afatinib in patients with metastatic or recurrent HER2-mutant lung cancers: a retrospective international multicentre study. Eur J Cancer. 2019;109:28–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peters S, Curioni-Fontecedro A, Nechushtan H, Shih J-Y, Liao W-Y, Gautschi O, et al. Activity of afatinib in heavily pretreated patients with ERBB2 mutation-positive advanced NSCLC: findings from a global named patient use program. J Thorac Oncol. 2018;13:1897–905.

    Article  CAS  PubMed  Google Scholar 

  69. Hainsworth JD, Meric-Bernstam F, Swanton C, Hurwitz H, Spigel DR, Sweeney C, et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol. 2018;36:536–42.

    Article  CAS  PubMed  Google Scholar 

  70. Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol. 2018;36:2532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsurutani J, Park H, Doi T, Modi S, Takahashi S, Nakagawa K, et al. OA02.07 updated results of phase 1 study of DS-8201a in HER2-expressing or –mutated advanced non-small-cell lung cancer. J Thorac Oncol. 2018;13:S324.

    Article  Google Scholar 

  72. Wang Y, Jiang T, Qin Z, Jiang J, Wang Q, Yang S, et al. HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann Oncol. 2019;30:447–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Robichaux JP, Elamin YY, Tan Z, Carter BW, Zhang S, Liu S, et al. Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med. 2018;24:638–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Offin M, Feldman D, Ni A, Myers ML, Lai WV, Pentsova E, et al. Frequency and outcomes of brain metastases in patients with HER2-mutant lung cancers. Cancer. 2019;125(24):4380–4387.

    Article  CAS  PubMed  Google Scholar 

  75. Chuang JC, Stehr H, Liang Y, Das M, Huang J, Diehn M, et al. ERBB2-mutated metastatic non-small cell lung cancer: response and resistance to targeted therapies. J Thorac Oncol. 2017;12:833–42.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Eng J, Hsu M, Chaft JE, Kris MG, Arcila ME, Li BT. Outcomes of chemotherapies and HER2 directed therapies in advanced HER2-mutant lung cancers. Lung Cancer. 2016;99:53–6.

    Article  PubMed  Google Scholar 

  77. Farago AF, Taylor MS, Doebele RC, Zhu VW, Kummar S, Spira AI, et al. Clinicopathologic features of non-small-cell lung cancer harboring an NTRK gene fusion. JCO Precis Oncol. 2018;2:1–12.

  78. Ou S-HI, Sokol ES, Trabucco SE, Jin DX, Frampton GM, Graziano SL, et al. 1549PNTRK1-3 genomic fusions in non-small cell lung cancer (NSCLC) determined by comprehensive genomic profiling. Ann Oncol. 2019;30. Available from:. https://doi.org/10.1093/annonc/mdz260.071.

    Article  Google Scholar 

  79. Miyamoto S, Matsumoto S, Yoh K, Kato T, Nishino K, Sugawara S, et al. 1481OClinical development of molecular-targeted therapies for non-small cell lung cancer through nationwide genome screening in Japan (LC-SCRUM-Japan). Ann Oncol. 2019;30. Available from:. https://doi.org/10.1093/annonc/mdz260.003.

    Article  Google Scholar 

  80. Passiglia F, Caparica R, Giovannetti E, Giallombardo M, Listi A, Diana P, et al. The potential of neurotrophic tyrosine kinase (NTRK) inhibitors for treating lung cancer. Expert Opin Investig Drugs. 2016;25:385–92.

    Article  CAS  PubMed  Google Scholar 

  81. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15:731–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wilson TR, Sokol ES, Trabucco SE, Newberg JY, Simmons B, Riehl T, et al. 443PDGenomic characteristics and predicted ancestry of NTRK1/2/3 and ROS1 fusion-positive tumours from >165,000 pan-solid tumours. Ann Oncol. 2019;30. Available from:. https://doi.org/10.1093/annonc/mdz244.005.

    Article  Google Scholar 

  83. Helman E, Nguyen M, Karlovich CA, Despain D, Choquette AK, Spira AI, et al. Cell-free DNA next-generation sequencing prediction of response and resistance to third-generation EGFR inhibitor. Clin Lung Cancer. 2018;19:518–530.e7.

    Article  CAS  PubMed  Google Scholar 

  84. Xia H, Xue X, Ding H, Ou Q, Wu X, Nakasaga M, et al. Evidence of NTRK1 fusions as resistance mechanism to EGFR TKI in EGFR+ NSCLC. Results from a large-scale survey of NTRK1 fusions in Chinese lung cancer patients. Clin Lung Cancer. 2019; Available from:. https://doi.org/10.1016/j.cllc.2019.09.004.

    Article  CAS  PubMed  Google Scholar 

  85. • Marchio C, Scaltriti M, Ladanyi M, Iafrate AJ, Bibeau F, Dietel M, et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol. 2019;30:1417–27. The first recommendations on NTRK testing in clinical practice.

    Article  CAS  PubMed  Google Scholar 

  86. •• Drilon A, Laetsch TW, Kummar S, SG DB, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378:731–9. The registrative study of the first tumor agnostic targeted therapy approved.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hyman DM, van Tilburg CM, Albert CM, Tan DSW, Geoerger B, Farago AF, et al. 445PDDurability of response with larotrectinib in adult and pediatric patients with TRK fusion cancer. Ann Oncol. 2019;30. Available from:. https://doi.org/10.1093/annonc/mdz244.007.

    Article  Google Scholar 

  88. De Braud FG, Siena S, Barlesi F, Drilon A, Simmons BP, Huang X, et al. 1488PDEntrectinib in locally advanced/metastatic ROS1 and NTRK fusion-positive non-small cell lung cancer (NSCLC): updated integrated analysis of STARTRK-2, STARTRK-1 and ALKA-372-001. Ann Oncol. 2019;30. Available from:. https://doi.org/10.1093/annonc/mdz260.010.

    Article  Google Scholar 

  89. Rolfo C, Dziadziuszko R, Doebele RC, Demetri G, Simmons B, Huang X, et al. 476PUpdated efficacy and safety of entrectinib in patients with NTRK fusion-positive tumors: integrated analysis of STARTRK-2, STARTRK-1 and ALKA-372-001. Ann Oncol. 2019, 30. Available from:. https://doi.org/10.1093/annonc/mdz244.038.

    Article  Google Scholar 

  90. Doebele RC, Dziadziuszko R, Drilon A, Shaw A, Wolf J, Farago AF, et al. LBA28Genomic landscape of entrectinib resistance from ctDNA analysis in STARTRK-2. Ann Oncol. 2019:30. Available from:. https://doi.org/10.1093/annonc/mdz394.017.

    Article  Google Scholar 

  91. Cocco E, Schram AM, Kulick A, Misale S, Won HH, Yaeger R, et al. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat Med. 2019;25:1422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fernandez-Cuesta L, Plenker D, Osada H, Sun R, Menon R, Leenders F, et al. CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov. 2014;4:415–22.

    Article  CAS  PubMed  Google Scholar 

  93. Jonna S, Feldman RA, Swensen J, Gatalica Z, Korn WM, Borghaei H, et al. Detection of NRG1 gene fusions in solid tumors. Clin Cancer Res. 2019;25:4966–72.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gay ND, Wang Y, Beadling C, Warrick A, Neff T, Corless CL, et al. Durable response to afatinib in lung adenocarcinoma harboring NRG1 gene fusions. J Thorac Oncol. 2017;12:e107–10.

    Article  PubMed  Google Scholar 

  95. Nagasaka M, Ou S-HI. Neuregulin 1 fusion-positive NSCLC. J Thorac Oncol. 2019;14:1354–9.

    Article  PubMed  Google Scholar 

  96. Nakaoku T, Tsuta K, Ichikawa H, Shiraishi K, Sakamoto H, Enari M, et al. Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin Cancer Res. 2014;20:3087–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shin DH, Lee D, Hong DW, Hong SH, Hwang J-A, Lee BI, et al. Oncogenic function and clinical implications of SLC3A2-NRG1 fusion in invasive mucinous adenocarcinoma of the lung. Oncotarget. 2016;7:69450–65.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Trombetta D, Graziano P, Scarpa A, Sparaneo A, Rossi G, Rossi A, et al. Frequent NRG1 fusions in Caucasian pulmonary mucinous adenocarcinoma predicted by Phospho-ErbB3 expression. Oncotarget. 2018;9:9661–71.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Muscarella LA, Trombetta D, Fabrizio FP, Scarpa A, Fazio VM, Maiello E, et al. ALK and NRG1 fusions coexist in a patient with signet ring cell lung adenocarcinoma. J Thorac Oncol. 2017;12:e161–3.

    Article  PubMed  Google Scholar 

  100. Drilon A, Somwar R, Mangatt BP, Edgren H, Desmeules P, Ruusulehto A, et al. Response to ERBB3-directed targeted therapy in NRG1-rearranged cancers. Cancer Discov. 2018;8:686–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. • Benayed R, Offin M, Mullaney K, Sukhadia P, Rios K, Desmeules P, et al. High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden. Clin Cancer Res. 2019;25:4712–22. A study reporting the increased detection of gene rearrangements with RNA-seq.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Duruisseaux M, McLeer-Florin A, Antoine M, Alavizadeh S, Poulot V, Lacave R, et al. NRG1 fusion in a French cohort of invasive mucinous lung adenocarcinoma. Cancer Med. 2016;5:3579–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cheema PK, Doherty M, Tsao M-S. A case of invasive mucinous pulmonary adenocarcinoma with a CD74-NRG1 fusion protein targeted with afatinib. J Thorac Oncol. 2017;12:e200–2.

    Article  PubMed  Google Scholar 

  104. Duruisseaux M, Liu SV, Han J-Y, Gounant V, Shih J-Y, Schram AM, et al. NRG1 fusion-positive lung cancers: clinicopathologic profile and treatment outcomes from a global multicenter registry. J Clin Oncol. 2019;37:9081.

    Article  Google Scholar 

  105. Geuijen CAW, De Nardis C, Maussang D, Rovers E, Gallenne T, Hendriks LJA, et al. Unbiased combinatorial screening identifies a bispecific IgG1 that potently inhibits HER3 signaling via HER2-guided ligand blockade. Cancer Cell. 2018;33:922–936.e10.

    Article  CAS  PubMed  Google Scholar 

  106. Li AY, McCusker MG, Russo A, Scilla KA, Gittens A, Arensmeyer K, et al. RET fusions in solid tumors. Cancer Treat Rev. 2019;81:101911.

    Article  PubMed  CAS  Google Scholar 

  107. Kohno T, Tabata J, Nakaoku T. REToma: a cancer subtype with a shared driver oncogene. Carcinogenesis. 2019. https://doi.org/10.1093/carcin/bgz184.

    Article  Google Scholar 

  108. Ju YS, Lee W-C, Shin J-Y, Lee S, Bleazard T, Won J-K, et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012;22:436–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18:375–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18:382–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–81.

    Article  CAS  PubMed  Google Scholar 

  112. Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol. 2012;30:4352–9.

    Article  CAS  PubMed  Google Scholar 

  113. Pan Y, Zhang Y, Li Y, Hu H, Wang L, Li H, et al. ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features. Lung Cancer. 2014;84:121–6.

    Article  PubMed  Google Scholar 

  114. Cai W, Su C, Li X, Fan L, Zheng L, Fei K, et al. KIF5B-RET fusions in Chinese patients with non-small cell lung cancer. Cancer. 2013;119:1486–94.

    Article  CAS  PubMed  Google Scholar 

  115. Rich TA, Reckamp KL, Chae YK, Doebele RC, Iams WT, Oh M, et al. Analysis of cell-free DNA from 32,989 advanced cancers reveals novel co-occurring activating RET alterations and oncogenic signaling pathway aberrations. Clin Cancer Res. 2019;25:5832–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zugazagoitia J, Ramos I, Trigo JM, Palka M, Gomez-Rueda A, Jantus-Lewintre E, et al. Clinical utility of plasma-based digital next-generation sequencing in patients with advance-stage lung adenocarcinomas with insufficient tumor samples for tissue genotyping. Ann Oncol. 2019;30:290–6.

    Article  CAS  PubMed  Google Scholar 

  117. Supplee JG, Milan MSD, Lim LP, Potts KT, Sholl LM, Oxnard GR, et al. Sensitivity of next-generation sequencing assays detecting oncogenic fusions in plasma cell-free DNA. Lung Cancer. 2019;134:96–9.

    Article  PubMed  Google Scholar 

  118. Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, Albano M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 2016;17:1653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yoh K, Seto T, Satouchi M, Nishio M, Yamamoto N, Murakami H, et al. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. Lancet Respir Med. 2017;5:42–50.

    Article  CAS  PubMed  Google Scholar 

  120. Hida T, Velcheti V, Reckamp KL, Nokihara H, Sachdev P, Kubota T, et al. A phase 2 study of lenvatinib in patients with RET fusion-positive lung adenocarcinoma. Lung Cancer. 2019;138:124–30.

    Article  PubMed  Google Scholar 

  121. Lee S-H, Lee J-K, Ahn M-J, Kim D-W, Sun J-M, Keam B, et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann Oncol. 2017;28:292–7.

    Article  PubMed  Google Scholar 

  122. Gautschi O, Milia J, Filleron T, Wolf J, Carbone DP, Owen D, et al. Targeting RET in patients with RET-rearranged lung cancers: results from the global. Multicenter RET Registry J Clin Oncol. 2017;35:1403–10.

    Article  CAS  PubMed  Google Scholar 

  123. •• Drilon A, Oxnard G, Wirth L, Besse B, Gautschi O, SWD T, et al. PL02.08 Registrational results of LIBRETTO-001: a phase 1/2 trial of LOXO-292 in patients with RET fusion-positive lung cancers. J Thorac Oncol. 2019;14:S6–7. The pivotal trial of selpercatinib in RET fusion-positive tumors.

    Article  Google Scholar 

  124. Gainor JF, Lee DH, Curigliano G, Doebele RC, Kim D-W, Baik CS, et al. Clinical activity and tolerability of BLU-667, a highly potent and selective RET inhibitor, in patients (pts) with advanced RET-fusion+ non-small cell lung cancer (NSCLC). J Clin Oncol. 2019;37:9008.

    Article  Google Scholar 

  125. Drilon A, Bergagnini I, Delasos L, Sabari J, Woo KM, Plodkowski A, et al. Clinical outcomes with pemetrexed-based systemic therapies in RET-rearranged lung cancers. Ann Oncol. 2016;27:1286–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Offin M, Guo R, Wu SL, Sabari J, Land JD, Ni A, et al. Immunophenotype and response to immunotherapy of RET-rearranged lung cancers. JCO Precis Oncol. 2019;3:1–8.

  127. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  128. Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19:1469–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rolfo.

Ethics declarations

Conflict of Interest

Christian Rolfo has received speaker’s honoraria from MSD and Guardant Health; has received compensation from Mylan for service as a scientific advisor; has participated in institutional research collaboration with Biomark, Inc.; has participated in non-remunerated collaboration with OncoDNA; and has participated on a steering scientific committee for Oncopass. Ranee Mehra has received research funding from AstraZeneca and compensation from Genentech for service as a consultant. All other authors have no conflicts of interest to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, A., Lopes, A.R., McCusker, M.G. et al. New Targets in Lung Cancer (Excluding EGFR, ALK, ROS1). Curr Oncol Rep 22, 48 (2020). https://doi.org/10.1007/s11912-020-00909-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-020-00909-8

Keywords

Navigation