Skip to main content

Advertisement

Log in

How Recent Advances in Biology of Waldenström’s Macroglobulinemia May Affect Therapy Strategy

  • Lymphomas (MR Smith, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Waldenström macroglobulinemia (WM) is a rare lymphoproliferative disorder. Up to now, therapeutic choice was not influenced by the biological characteristics of the disease. Here, we will review how recent advances in biology in WM may affect therapy strategy.

Recent Findings

Recently, WM has been described as a new oncogenic model. MyD88 mutation has been described as a key driver mutation and has functional consequences which could be targeted. Other mutations, such as CXCR4 or TP53, have been reported. These mutations are associated with different clinical presentation, prognosis, and treatment response.

Summary

Mutational status may influence therapeutic choice in some patients but additional data are required. New targeted therapies are on development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Simon L, Baron M, Leblond V. How we manage patients with Waldenström macroglobulinaemia. Br J Haematol. 2018;181:737–51. https://doi.org/10.1111/bjh.15202.

    Article  CAS  PubMed  Google Scholar 

  2. Leblond V, Kastritis E, Advani R, Ansell SM, Buske C, Castillo JJ, et al. Treatment recommendations from the eighth international workshop on Waldenström’s macroglobulinemia. Blood. 2016;128:1321–8.

    Article  CAS  Google Scholar 

  3. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–46.

    Article  CAS  Google Scholar 

  4. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012;367:826–33.

    Article  CAS  Google Scholar 

  5. Tessoulin B, Eveillard M, Lok A, Chiron D, Moreau P, Amiot M, et al. p53 dysregulation in B-cell malignancies: more than a single gene in the pathway to hell. Blood Rev. 2017;31:251–9.

    Article  CAS  Google Scholar 

  6. Farooqui MZH, Valdez J, Martyr S, Aue G, Saba N, Niemann CU, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16:169–76.

    Article  CAS  Google Scholar 

  7. Poulain S, Roumier C, Decambron A, Renneville A, Herbaux C, Bertrand E, et al. MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood. 2013;121:4504–11.

    Article  CAS  Google Scholar 

  8. Magierowicz M, Tomowiak C, Leleu X, Poulain S. Working toward a genomic prognostic classification of Waldenström macroglobulinemia: C-X-C chemokine receptor type 4 mutation and beyond. Hematol Oncol Clin North Am. 2018;32:753–63.

    Article  Google Scholar 

  9. Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X, et al. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood. 2013;121:2051–8.

    Article  CAS  Google Scholar 

  10. Yu W, Li J, Chen L. Prognostic value and efficacy evaluation of novel drugs for cytogenetic aberrations in multiple myeloma: a meta-analysis. Int J Clin Exp Med. 2014;7:4051–62.

    PubMed  PubMed Central  Google Scholar 

  11. Abeykoon JP, Paludo J, King RL, Ansell SM, Gertz MA, LaPlant BR, et al. MYD88 mutation status does not impact overall survival in Waldenström macroglobulinemia. Am J Hematol. 2018;93:187–94.

    Article  CAS  Google Scholar 

  12. Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123:2791–6.

    Article  CAS  Google Scholar 

  13. Treon SP, Gustine J, Xu L, Manning RJ, Tsakmaklis N, Demos M, et al. MYD88 wild-type Waldenstrom macroglobulinaemia: differential diagnosis, risk of histological transformation, and overall survival. Br J Haematol. 2018;180:374–80.

    Article  CAS  Google Scholar 

  14. Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood. 2013;122:1222–32.

    Article  CAS  Google Scholar 

  15. • Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med. 2015;372:1430–40. This is the first prospective study reporting highly activity of ibrutinb for previously treated WM patients. The overall response rate was 90.5% and responses were highest among patients with MyD88 L265P CXCR4 WT patients.

    Article  CAS  Google Scholar 

  16. Treon SP, Xu L, Hunter Z. MYD88 mutations and response to ibrutinib in Waldenström’s macroglobulinemia. N Engl J Med. 2015;373:584–6.

    Article  CAS  Google Scholar 

  17. Dimopoulos MA, Trotman J, Tedeschi A, Matous JV, Macdonald D, Tam C, et al. Ibrutinib for patients with rituximab-refractory Waldenström’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18:241–50.

    Article  CAS  Google Scholar 

  18. Dimopoulos MA, Tedeschi A, Trotman J, García-Sanz R, Macdonald D, Leblond V, et al. Phase 3 trial of ibrutinib plus rituximab in Waldenström’s macroglobulinemia. N Engl J Med. 2018;378:2399–410.

    Article  CAS  Google Scholar 

  19. Paludo J, Abeykoon JP, Shreders A, Ansell SM, Kumar S, Ailawadhi S, et al. Bendamustine and rituximab (BR) versus dexamethasone, rituximab, and cyclophosphamide (DRC) in patients with Waldenström macroglobulinemia. Ann Hematol. 2018;97:1417–25.

    Article  CAS  Google Scholar 

  20. Laribi K, Poulain S, Willems L et al (2018) Bendamustine plus rituximab in newly-diagnosed Waldenstrom macroglobulinemia patients. A study on behalf of the French Innovative Leukemia Organization (FILO). Br J Haematol. In press.

  21. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470:115–9.

    Article  CAS  Google Scholar 

  22. • Yang G, Liu X, Chen J, et al. Targeting IRAK1/IRAK4 signaling in Waldenstrom’s macroglobulinemia. Blood. 2015;126:4004. This abstract reported for the first time that combined BTK and IRAK inhibition led to augmented blockade of NF-κB signaling and enhanced WM cell killing.

    Article  Google Scholar 

  23. Gutiérrez NC, Ocio EM, de Las Rivas J, Maiso P, Delgado M, Fermiñán E, et al. Gene expression profiling of B lymphocytes and plasma cells from Waldenström’s macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia. 2007;21:541–9.

    Article  Google Scholar 

  24. • Yang G, Buhrlage SJ, Tan L, et al. HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood. 2016;127:3237–52. In this study, the authors demonstrated that mutated MYD88 WM cell lines had enhanced HCK transcription and activation and that HCK was activated by IL-6. Docking and pull-down studies showed that ibrutinib targets HCK. These findings presented HCK as a novel target for therapeutic development.

    Article  CAS  Google Scholar 

  25. • Liu X, Hunter ZR, Xu L, et al. Targeting myddosome assembly in Waldenstrom Macroglobulinaemia. Br J Haematol. 2017;177:808–13. This short report demonstrated for the first time that disrupting myddosome signaling with mini-peptides designed to compete with MyD88 domain interaction can have clinical relevance.

    Article  Google Scholar 

  26. Wang D, Jiang W, Sullivan T, Bhagat L. Novel approach to the potential treatment of patients with B-cell lymphomas harboring the MYD88 L265P mutation: combination treatment with TLR antagonist and rituximab. Blood. 2014;124:508.

    Google Scholar 

  27. Wang JQ, Beutler B, Goodnow CC, Horikawa K. Inhibiting TLR9 and other UNC93B1-dependent TLRs paradoxically increases accumulation of MYD88L265P plasmablasts in vivo. Blood. 2016;128:1604–8.

    Article  CAS  Google Scholar 

  28. Nelde A, Walz JS, Kowalewski DJ, Schuster H, Wolz OO, Peper JK, et al. HLA class I-restricted MYD88 L265P-derived peptides as specific targets for lymphoma immunotherapy. OncoImmunology. 2017;6:e1219825.

    Article  Google Scholar 

  29. Ngo HT, Leleu X, Lee J, Jia X, Melhem M, Runnels J, et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood. 2008;112:150–8.

    Article  CAS  Google Scholar 

  30. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34:70–4.

    Article  CAS  Google Scholar 

  31. Hunter ZR, Xu L, Yang G, Tsakmaklis N, Vos JM, Liu X, et al. Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia. Blood. 2016;128:827–38.

    Article  CAS  Google Scholar 

  32. Poulain S, Roumier C, Venet-Caillault A, Figeac M, Herbaux C, Marot G, et al. Genomic landscape of CXCR4 mutations in Waldenström macroglobulinemia. Clin Cancer Res. 2016;22:1480–8.

    Article  CAS  Google Scholar 

  33. • Cao Y, Hunter ZR, Liu X, et al. The WHIM-like CXCR4S338X somatic mutation activates AKT and ERK and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s macroglobulinemia. Leukemia. 2015;29:169–76. In this study, WM cells engineered to express CXCR4 mutation showed decreased apoptotic changes following ibrutibib treatment compared to CXCR4 WT cells. This study suggested therapeutic resistance for CXCR4 mutated cells.

    Article  Google Scholar 

  34. Roccaro AM, Sacco A, Jimenez C, Maiso P, Moschetta M, Mishima Y, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123:4120–31.

    Article  CAS  Google Scholar 

  35. • Treon SP, Gustine J, Meid K, et al. Ibrutinib monotherapy in symptomatic, treatment-naïve patients with Waldenström macroglobulinemia. J Clin Oncol. 2018;36(27):2755–61. This is the first clinical prospective trial evaluating ibrutinib activity among 30 naïve WM patients. The findings confirmed that time to response was significantly delayed in patients with CXCR4 mutated disease (1.8 vs 7.3 months).

    Article  CAS  Google Scholar 

  36. Kashyap MK, Kumar D, Jones H, Amaya-Chanaga CI, Choi MY, Melo-Cardenas J, et al. Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget. 2016;7:2809–22.

    PubMed  Google Scholar 

  37. Ghobrial IM, Perez R, Baz R, et al. Phase Ib study of the novel anti-CXCR4 antibody ulocuplumab (BMS-936564) in combination with lenalidomide plus low-dose dexamethasone, or with bortezomib plus dexamethasone in subjects with relapsed or refractory multiple myeloma. Blood. 2014;124:3483.

    Article  Google Scholar 

  38. Zhang Y, Saavedra E, Tang R, et al. Targeting acute myeloid leukemia with a new CXCR4 antagonist IgG1 antibody (PF-06747143)in NOD/SCID mice. Blood. 2015;126:1362.

    Google Scholar 

  39. Sabapathy K, Lane DP. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 2017;15:13–30.

    Article  Google Scholar 

  40. Xu-Monette ZY, Medeiros LJ, Li Y, Orlowski RZ, Andreeff M, Bueso-Ramos CE, et al. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood. 2012;119:3668–83.

    Article  CAS  Google Scholar 

  41. Marinelli M, Peragine N, Di Maio V, et al. Identification of molecular and functional patterns of p53 alterations in chronic lymphocytic leukemia patients in different phases of the disease. Haematologica. 2013;98:371–5.

    Article  CAS  Google Scholar 

  42. Parry M, Rose-Zerilli MJ, Ljungström V, et al. Genetics and prognostication in splenic marginal zone lymphoma: revelations from deep sequencing. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21:4174–83.

    Article  CAS  Google Scholar 

  43. Nguyen-Khac F, Lambert J, Chapiro E, Grelier A, Mould S, Barin C, et al. Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenström’s macroglobulinemia. Haematologica. 2013;98:649–54.

    Article  CAS  Google Scholar 

  44. • Poulain S, Roumier C, Bertrand E, et al. TP53 Mutation and its prognostic significance in Waldenstrom’s macroglobulinemia. Clin Cancer Res. 2017;23:6325–35. This is the first report which analyzed the TP53 mutation incidence and genomic features and their functional consequences in MW patients. TP53 mutation was observed in 7.3% of 125 patients and was highly correlated with deletion 17p. The patients had shorter survival and may benefit from BTK inhibitors.

    Article  CAS  Google Scholar 

  45. Gustine JN, Tsakmaklis N, Demos MG, Kofides A, Chen JG, Liu X, et al. TP53 mutations are associated with mutated MYD88 and CXCR4, and confer an adverse outcome in Waldenström macroglobulinaemia. Br J Haematol. 2018. https://doi.org/10.1111/bjh.15560.

  46. Varettoni M, Zibellini S, Defrancesco I, Ferretti VV, Rizzo E, Malcovati L, et al. Pattern of somatic mutations in patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance. Haematologica. 2017;102:2077–85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MB and LS contributed in writing the manuscript; VL and SP contributed in revising the manuscript.

Corresponding author

Correspondence to Marine Baron.

Ethics declarations

Conflict of Interest

Marine Baron declares that she has no conflict of interest.

Laurence Simon declares that he has no conflict of interest.

Stéphanie Poulain declares that she has no conflict of interest.

Véronique Leblond has received research funding from Roche, and has received compensation from Roche, Janssen, Gilead, AbbVie, and Servier for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lymphomas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baron, M., Simon, L., Poulain, S. et al. How Recent Advances in Biology of Waldenström’s Macroglobulinemia May Affect Therapy Strategy. Curr Oncol Rep 21, 27 (2019). https://doi.org/10.1007/s11912-019-0768-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-019-0768-4

Keywords

Navigation