Skip to main content

Advertisement

Log in

Adoptive Cell Therapy in Treating Pediatric Solid Tumors

  • Pediatric Oncology (G Tian, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review will discuss the challenges facing adoptive cell techniques in the treatment of solid tumors and examine the therapies that are in development for specifically pediatric solid tumors.

Recent Findings

Targeting solid tumors with adoptive cell therapy has been limited by the inhibitory tumor microenvironment and heterogeneous expression of targetable antigens. Many creative strategies to overcome these limitations are being developed but still need to be tested clinically. Early phase clinical trials in neuroblastoma with GD2 CAR T cells are promising but results need to be validated on a larger scale. Most research in other pediatric solid tumors is still in early stages.

Summary

Adoptive cell therapy represents a useful tool to improve the outcomes of many pediatric solid tumors but significant study is still required. Several clinical trials are ongoing to test therapies that have shown promise in the lab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. https://doi.org/10.1056/NEJMoa1407222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kochenderfer JN, Somerville RPT, Lu T, Yang JC, Sherry RM, Feldman SA, et al. Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol Ther. 2017;25(10):2245–53. https://doi.org/10.1016/j.ymthe.2017.07.004.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. • Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-Cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48. https://doi.org/10.1056/NEJMoa1709866. This multi-center clinical trial describes the successful treatment of children and young adults with leukemia with CAR T cell therapy.

    Article  PubMed  CAS  Google Scholar 

  4. • Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. https://doi.org/10.1056/NEJMoa1709919. This study describes long-term outcomes of CD19 CAR T cell therapy in leukemia patients.

    Article  PubMed  CAS  Google Scholar 

  5. Moss DJ, Rickinson AB, Pope JH. Long-term T-cell-mediated immunity to Epstein-Barr virus in man. I. Complete regression of virus-induced transformation in cultures of seropositive donor leukocytes. Int J Cancer. 1978;22(6):662–8.

    Article  PubMed  CAS  Google Scholar 

  6. Smith C, Khanna R. Adoptive cellular immunotherapy for virus-associated cancers: a new paradigm in personalized medicine. Immunol Cell Biol. 2017;95(4):364–71. https://doi.org/10.1038/icb.2016.127.

    Article  PubMed  CAS  Google Scholar 

  7. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35. https://doi.org/10.1182/blood-2009-08-239186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988;319(25):1676–1680. doi:https://doi.org/10.1056/NEJM198812223192527.

  9. Rivoltini L, Arienti F, Orazi A, Cefalo G, Gasparini M, Gambacorti-Passerini C, et al. Phenotypic and functional analysis of lymphocytes infiltrating paediatric tumours, with a characterization of the tumour phenotype. Cancer Immunol Immunother. 1992;34(4):241–51.

    Article  PubMed  CAS  Google Scholar 

  10. Singh N, Kulikovskaya I, Barrett DM, Binder-Scholl G, Jakobsen B, Martinez D, et al. T cells targeting NY-ESO-1 demonstrate efficacy against disseminated neuroblastoma. Oncoimmunology. 2016;5(1):e1040216. https://doi.org/10.1080/2162402X.2015.1040216.

    Article  PubMed  CAS  Google Scholar 

  11. Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014;257(1):107–26. https://doi.org/10.1111/imr.12131.

    Article  PubMed  CAS  Google Scholar 

  12. Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K, Phase I. II study of adoptive transfer of gammadelta T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol Immunother. 2011;60(8):1075–84. https://doi.org/10.1007/s00262-011-1021-7.

    Article  PubMed  CAS  Google Scholar 

  13. Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G, et al. In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol. 2010;161(2):290–7. https://doi.org/10.1111/j.1365-2249.2010.04167.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Deniger DC, Maiti SN, Mi T, Switzer KC, Ramachandran V, Hurton LV, et al. Activating and propagating polyclonal gamma delta T cells with broad specificity for malignancies. Clin Cancer Res. 2014;20(22):5708–19. https://doi.org/10.1158/1078-0432.CCR-13-3451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cho D, Shook DR, Shimasaki N, Chang YH, Fujisaki H, Campana D. Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin Cancer Res. 2010;16(15):3901–9. https://doi.org/10.1158/1078-0432.CCR-10-0735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051–7. https://doi.org/10.1182/blood-2004-07-2974.

    Article  PubMed  CAS  Google Scholar 

  17. Song L, Asgharzadeh S, Salo J, Engell K, Wu HW, Sposto R, et al. Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest. 2009;119(6):1524–36. https://doi.org/10.1172/JCI37869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liu D, Song L, Brawley VS, Robison N, Wei J, Gao X, et al. Medulloblastoma expresses CD1d and can be targeted for immunotherapy with NKT cells. Clin Immunol. 2013;149(1):55–64. https://doi.org/10.1016/j.clim.2013.06.005.

    Article  PubMed  CAS  Google Scholar 

  19. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71. https://doi.org/10.1182/blood-2013-03-490565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Singh N, Liu X, Hulitt J, Jiang S, June CH, Grupp SA, et al. Nature of tumor control by permanently and transiently modified GD2 chimeric antigen receptor T cells in xenograft models of neuroblastoma. Cancer Immunol Res. 2014;2(11):1059–70. https://doi.org/10.1158/2326-6066.CIR-14-0051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673–83. https://doi.org/10.1056/NEJMoa1106152.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Johnson LA, Scholler J, Ohkuri T, Kosaka A, Patel PR, McGettigan SE, et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med. 2015;7(275):275ra22. https://doi.org/10.1126/scitranslmed.aaa4963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Spel L, Boelens JJ, van der Steen DM, Blokland NJ, van Noesel MM, Molenaar JJ, et al. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma. Oncotarget. 2015;6(34):35770–81. https://doi.org/10.18632/oncotarget.5657.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, et al. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids. 2013;2:e105. https://doi.org/10.1038/mtna.2013.32.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martyniszyn A, Krahl AC, Andre MC, Hombach AA, Abken H. CD20-CD19 bispecific CAR T cells for the treatment of B-cell malignancies. Hum Gene Ther. 2017;28(12):1147–57. https://doi.org/10.1089/hum.2017.126.

    Article  PubMed  CAS  Google Scholar 

  26. Slaney CY, von Scheidt B, Davenport AJ, Beavis PA, Westwood JA, Mardiana S, et al. Dual-specific chimeric antigen receptor T cells and an indirect vaccine eradicate a variety of large solid tumors in an immunocompetent, self-antigen setting. Clin Cancer Res. 2017;23(10):2478–90. https://doi.org/10.1158/1078-0432.CCR-16-1860.

    Article  PubMed  CAS  Google Scholar 

  27. Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother. 2010;33(8):780–8. https://doi.org/10.1097/CJI.0b013e3181ee6675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Moon EK, Carpenito C, Sun J, Wang LC, Kapoor V, Predina J, et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res. 2011;17(14):4719–30. https://doi.org/10.1158/1078-0432.CCR-11-0351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med. 2014;6(261):261ra151. https://doi.org/10.1126/scitranslmed.3010162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Newick K, O’Brien S, Sun J, Kapoor V, Maceyko S, Lo A, et al. Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase a localization. Cancer Immunol Res. 2016;4(6):541–51. https://doi.org/10.1158/2326-6066.CIR-15-0263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. • Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Badie B Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–9. https://doi.org/10.1056/NEJMoa1610497. Long-lasting clinical responses are observed in a glioblastoma patient receiving IL13Ra2 CAR T cells.

  32. Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther. 2005;12(5):933–41. https://doi.org/10.1016/j.ymthe.2005.04.016.

    Article  PubMed  CAS  Google Scholar 

  33. • Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90. https://doi.org/10.1038/nm.3838. This study demonstrates the different effects of co-stimulatory domains on CAR T cell function.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bollard CM, Tripic T, Cruz CR, Dotti G, Gottschalk S, Torrano V, Dakhova O, Carrum G, Ramos CA, Liu H, Wu MF, Marcogliese AN, Barese C, Zu Y, Lee DY, O’Connor O, Gee AP, Brenner MK, Heslop HE, Rooney CM Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma. J Clin Oncol 2018:JCO2017743179. doi:https://doi.org/10.1200/JCO.2017.74.3179, 36, 1128, 1139.

  35. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26(32):5233–9. https://doi.org/10.1200/JCO.2008.16.5449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Anthony SM, Rivas SC, Colpitts SL, Howard ME, Stonier SW, Schluns KS. Inflammatory signals regulate IL-15 in response to lymphodepletion. J Immunol. 2016;196(11):4544–52. https://doi.org/10.4049/jimmunol.1600219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12. https://doi.org/10.1084/jem.20050732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. • Ninomiya S, Narala N, Huye L, Yagyu S, Savoldo B, Dotti G, et al. Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood. 2015;125(25):3905–16. https://doi.org/10.1182/blood-2015-01-621474. This study illustrates that blocking the enzyme IDO which produces the suppressive molecule kynurenine can improve CAR T cell function.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Andersen R, Donia M, Ellebaek E, Borch TH, Kongsted P, Iversen TZ, et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin Cancer Res. 2016;22(15):3734–45. https://doi.org/10.1158/1078-0432.CCR-15-1879.

    Article  PubMed  CAS  Google Scholar 

  40. Chandran SS, Paria BC, Srivastava AK, Rothermel LD, Stephens DJ, Dudley ME, et al. Persistence of CTL clones targeting melanocyte differentiation antigens was insufficient to mediate significant melanoma regression in humans. Clin Cancer Res. 2015;21(3):534–43. https://doi.org/10.1158/1078-0432.CCR-14-2208.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang L, Morgan RA, Beane JD, Zheng Z, Dudley ME, Kassim SH, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res. 2015;21(10):2278–88. https://doi.org/10.1158/1078-0432.CCR-14-2085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. • Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123(24):3750–9. https://doi.org/10.1182/blood-2014-01-552174. In this pre-clinical study, cytokines are used to modulate T cell expansion and persistence.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Li S, Siriwon N, Zhang X, Yang S, Jin T, He F, et al. Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res. 2017;23(22):6982–92. https://doi.org/10.1158/1078-0432.CCR-17-0867.

    Article  PubMed  CAS  Google Scholar 

  44. Nishio N, Diaconu I, Liu H, Cerullo V, Caruana I, Hoyos V, et al. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res. 2014;74(18):5195–205. https://doi.org/10.1158/0008-5472.CAN-14-0697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. • Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med. 2015;21(5):524–9. https://doi.org/10.1038/nm.3833. This study describes the use of heparanase to improve tumor infiltration of T cells by breaking down elements of the extracellular matrix.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kakarla S, Chow KK, Mata M, Shaffer DR, Song XT, Wu MF, et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther. 2013;21(8):1611–20. https://doi.org/10.1038/mt.2013.110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gargett T, Yu W, Dotti G, Yvon ES, Christo SN, Hayball JD, et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Mol Ther. 2016;24(6):1135–49. https://doi.org/10.1038/mt.2016.63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. • Heczey A, Louis CU, Savoldo B, Dakhova O, Durett A, Grilley B, et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol Ther. 2017;25(9):2214–24. https://doi.org/10.1016/j.ymthe.2017.05.012. This clinical trial of third-generation GD2 CAR T cells demonstrates improved efficacy with lymphodepletion.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Hoos A, Eggermont AM, Janetzki S, Hodi FS, Ibrahim R, Anderson A, et al. Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst. 2010;102(18):1388–97. https://doi.org/10.1093/jnci/djq310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14(11):1264–70. https://doi.org/10.1038/nm.1882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6. https://doi.org/10.1182/blood-2011-05-354449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007;15(4):825–33. https://doi.org/10.1038/sj.mt.6300104.

    Article  PubMed  CAS  Google Scholar 

  53. Talleur AC, Triplett BM, Federico S, Mamcarz E, Janssen W, Wu J, et al. Consolidation therapy for newly diagnosed pediatric patients with high-risk neuroblastoma using busulfan/melphalan, autologous hematopoietic cell transplantation, anti-GD2 antibody, granulocyte-macrophage colony-stimulating factor, interleukin-2, and haploidentical natural killer cells. Biol Blood Marrow Transplant. 2017;23(11):1910–7. https://doi.org/10.1016/j.bbmt.2017.07.011.

    Article  PubMed  CAS  Google Scholar 

  54. Federico SM, McCarville MB, Shulkin BL, Sondel PM, Hank JA, Hutson P, et al. A pilot trial of humanized anti-GD2 monoclonal antibody (hu14.18K322A) with chemotherapy and natural killer cells in children with recurrent/refractory neuroblastoma. Clin Cancer Res. 2017;23(21):6441–9. https://doi.org/10.1158/1078-0432.CCR-17-0379.

    Article  PubMed  CAS  Google Scholar 

  55. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3(8):1094–101. https://doi.org/10.1001/jamaoncol.2017.0184.

    Article  PubMed  PubMed Central  Google Scholar 

  56. • Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric anigen receptor-modified t cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33(15):1688–96. https://doi.org/10.1200/JCO.2014.58.0225. The first clinical trial of adoptive T cell therapy in sarcomas demonstrates safety and feasibility of HER2 CAR T cells in this patient population.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Park JR, Bagatell R, London WB, Maris JM, Cohn SL, Mattay KK, et al. Children’s Oncology Group’s 2013 blueprint for research: neuroblastoma. Pediatr Blood Cancer. 2013;60(6):985–93. https://doi.org/10.1002/pbc.24433.

    Article  PubMed  Google Scholar 

  58. Schulz G, Cheresh DA, Varki NM, Yu A, Staffileno LK, Reisfeld RA. Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res. 1984;44(12 Pt 1):5914–20.

    PubMed  CAS  Google Scholar 

  59. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363(14):1324–34. https://doi.org/10.1056/NEJMoa0911123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Goding SR, Yu S, Bailey LM, Lotze MT, Basse PH. Adoptive transfer of natural killer cells promotes the anti-tumor efficacy of T cells. Clin Immunol. 2017;177:76–86. https://doi.org/10.1016/j.clim.2016.06.013.

    Article  PubMed  CAS  Google Scholar 

  61. Prapa M, Caldrer S, Spano C, Bestagno M, Golinelli G, Grisendi G, et al. A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing. Oncotarget. 2015;6(28):24884–94. https://doi.org/10.18632/oncotarget.4670.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817–28. https://doi.org/10.1182/blood-2011-04-348540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. • Tanaka M, Tashiro H, Omer B, Lapteva N, Ando J, Ngo M, et al. Vaccination targeting native receptors to enhance the function and proliferation of chimeric antigen receptor (CAR)-modified T cells. Clin Cancer Res. 2017;23(14):3499–509. https://doi.org/10.1158/1078-0432.CCR-16-2138. This study demonstrates that T cell exhaustion can be overcome by using vaccination to stimulate virus-specific CAR T cells through their native TCR.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. • Seidel D, Shibina A, Siebert N, Wels WS, Reynolds CP, Huebener N, et al. Disialoganglioside-specific human natural killer cells are effective against drug-resistant neuroblastoma. Cancer Immunol Immunother. 2015;64(5):621–34. https://doi.org/10.1007/s00262-015-1669-5. NK cells expressing GD2 specific CARs demonstrate anti-tumor activity against resistant neuroblastoma cell lines in a pre-clinical model, illustrating a promising potential for future clinical study.

    Article  PubMed  CAS  Google Scholar 

  65. Heczey A, Liu D, Tian G, Courtney AN, Wei J, Marinova E, et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood. 2014;124(18):2824–33. https://doi.org/10.1182/blood-2013-11-541235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ou JY, Spraker-Perlman H, Dietz AC, Smits-Seemann RR, Kaul S, Kirchhoff AC. Conditional survival of pediatric, adolescent, and young adult soft tissue sarcoma and bone tumor patients. Cancer Epidemiol. 2017;50(Pt A):150–7. https://doi.org/10.1016/j.canep.2017.08.015.

    Article  PubMed  Google Scholar 

  67. Roth M, Linkowski M, Tarim J, Piperdi S, Sowers R, Geller D, et al. Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer. 2014;120(4):548–54. https://doi.org/10.1002/cncr.28461.

    Article  PubMed  CAS  Google Scholar 

  68. Kailayangiri S, Altvater B, Meltzer J, Pscherer S, Luecke A, Dierkes C, et al. The ganglioside antigen G(D2) is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting. Br J Cancer. 2012;106(6):1123–33. https://doi.org/10.1038/bjc.2012.57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. • Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S, et al. Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol Res. 2016;4(10):869–80. https://doi.org/10.1158/2326-6066.CIR-15-0230. This study describes a novel way to reduce suppressive cells in tumor microenvironment and improve CAR T cell efficacy in solid tumors by using ATRA.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24. https://doi.org/10.1200/JCO.2010.32.2537.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ahmed N, Salsman VS, Yvon E, Louis CU, Perlaky L, Wels WS, et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther. 2009;17(10):1779–87. https://doi.org/10.1038/mt.2009.133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51. https://doi.org/10.1038/mt.2010.24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Huang G, Yu L, Cooper LJ, Hollomon M, Huls H, Kleinerman ES. Genetically modified T cells targeting interleukin-11 receptor alpha-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res. 2012;72(1):271–81. https://doi.org/10.1158/0008-5472.CAN-11-2778.

    Article  PubMed  CAS  Google Scholar 

  74. Lewis VO, Ozawa MG, Deavers MT, Wang G, Shintani T, Arap W, et al. The interleukin-11 receptor alpha as a candidate ligand-directed target in osteosarcoma: consistent data from cell lines, orthotopic models, and human tumor samples. Cancer Res. 2009;69(5):1995–9. https://doi.org/10.1158/0008-5472.CAN-08-4845.

    Article  PubMed  CAS  Google Scholar 

  75. Evans CH, Liu F, Porter RM, O’Sullivan RP, Merghoub T, Lunsford EP, et al. EWS-FLI-1-targeted cytotoxic T-cell killing of multiple tumor types belonging to the Ewing sarcoma family of tumors. Clin Cancer Res. 2012;18(19):5341–51. https://doi.org/10.1158/1078-0432.CCR-12-1985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. • Kirschner A, Thiede M, Grunewald TG, Alba Rubio R, Richter GH, Kirchner T, et al. Pappalysin-1 T cell receptor transgenic allo-restricted T cells kill Ewing sarcoma in vitro and in vivo. Oncoimmunology. 2017;6(2):e1273301. https://doi.org/10.1080/2162402X.2016.1273301. This study identifies a potential target of TCR-based therapy for Ewing Sarcoma.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gattenlohner S, Marx A, Markfort B, Pscherer S, Landmeier S, Juergens H, et al. Rhabdomyosarcoma lysis by T cells expressing a human autoantibody-based chimeric receptor targeting the fetal acetylcholine receptor. Cancer Res. 2006;66(1):24–8. https://doi.org/10.1158/0008-5472.CAN-05-0542.

    Article  PubMed  CAS  Google Scholar 

  78. Lehner M, Gotz G, Proff J, Schaft N, Dorrie J, Full F, et al. Redirecting T cells to Ewing’s sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection. PLoS One. 2012;7(2):e31210. https://doi.org/10.1371/journal.pone.0031210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Li Z, Peng H, Xu Q, Ye Z. Sensitization of human osteosarcoma cells to Vgamma9Vdelta2 T-cell-mediated cytotoxicity by zoledronate. J Orthop Res. 2012;30(5):824–30. https://doi.org/10.1002/jor.21579.

    Article  PubMed  CAS  Google Scholar 

  80. Li Z, Xu Q, Peng H, Cheng R, Sun Z, Ye Z. IFN-gamma enhances HOS and U2OS cell lines susceptibility to gammadelta T cell-mediated killing through the Fas/Fas ligand pathway. Int Immunopharmacol. 2011;11(4):496–503. https://doi.org/10.1016/j.intimp.2011.01.001.

    Article  PubMed  CAS  Google Scholar 

  81. Verhoeven DH, de Hooge AS, Mooiman EC, Santos SJ, ten Dam MM, Gelderblom H, et al. NK cells recognize and lyse Ewing sarcoma cells through NKG2D and DNAM-1 receptor dependent pathways. Mol Immunol. 2008;45(15):3917–25. https://doi.org/10.1016/j.molimm.2008.06.016.

    Article  PubMed  CAS  Google Scholar 

  82. Pahl JH, Ruslan SE, Buddingh EP, Santos SJ, Szuhai K, Serra M, et al. Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clin Cancer Res. 2012;18(2):432–41. https://doi.org/10.1158/1078-0432.CCR-11-2277.

    Article  PubMed  CAS  Google Scholar 

  83. Buddingh EP, Schilham MW, Ruslan SE, Berghuis D, Szuhai K, Suurmond J, et al. Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15-activated allogeneic and autologous NK cells. Cancer Immunol Immunother. 2011;60(4):575–86. https://doi.org/10.1007/s00262-010-0965-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Sampson JH, Maus MV, June CH. Immunotherapy for brain tumors. J Clin Oncol. 2017;35(21):2450–6. https://doi.org/10.1200/JCO.2017.72.8089.

    Article  PubMed  Google Scholar 

  85. Hong JJ, Rosenberg SA, Dudley ME, Yang JC, White DE, Butman JA, et al. Successful treatment of melanoma brain metastases with adoptive cell therapy. Clin Cancer Res. 2010;16(19):4892–8. https://doi.org/10.1158/1078-0432.CCR-10-1507.

    Article  PubMed  CAS  Google Scholar 

  86. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51. https://doi.org/10.1097/CJI.0b013e3182829903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kawakami M, Kawakami K, Takahashi S, Abe M, Puri RK. Analysis of interleukin-13 receptor alpha2 expression in human pediatric brain tumors. Cancer. 2004;101(5):1036–42. https://doi.org/10.1002/cncr.20470.

    Article  PubMed  CAS  Google Scholar 

  88. Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72. https://doi.org/10.1158/1078-0432.CCR-15-0428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018;37:1561–75. https://doi.org/10.1038/s41388-017-0045-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A, Kew Y, et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther. 2013;21(11):2087–101. https://doi.org/10.1038/mt.2013.185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. • Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA, et al. Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumor antigen escape. J Clin Invest. 2016;126(8):3036–52. https://doi.org/10.1172/JCI83416. This pre-clinical study describes the use of CAR T cells targeting two antigens to prevent antigen escape by glioblastoma cells.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, et al. Trivalent CAR T-cells overcome interpatient antigenic variability in glioblastoma. Neuro-Oncology. 2017;20:506–18. https://doi.org/10.1093/neuonc/nox182.

    Article  Google Scholar 

  93. Sampson JH, Choi BD, Sanchez-Perez L, Suryadevara CM, Snyder DJ, Flores CT, et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res. 2014;20(4):972–84. https://doi.org/10.1158/1078-0432.CCR-13-0709.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported, in part, by the National Institutes of Health (NIH) grant T32HL007057 (MT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Savoldo.

Ethics declarations

Conflict of Interest

Mekdem Tesfaye declares that she has no conflict of interest.

Barbara Savoldo has received research funding through grants from the National Heart, Lung, and Blood Institute, Hyundai Hope on Wheels, and the Leukemia & Lymphoma Society, and has research agreements with both Cell Medica and bluebird bio.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatric Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesfaye, M., Savoldo, B. Adoptive Cell Therapy in Treating Pediatric Solid Tumors. Curr Oncol Rep 20, 73 (2018). https://doi.org/10.1007/s11912-018-0715-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-018-0715-9

Keywords

Navigation