Skip to main content

Advertisement

Log in

Cell Cycle Regulation and Melanoma

  • Melanoma (RJ Sullivan, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Dysregulation of cell cycle control is a hallmark of melanomagenesis. Agents targeting the G1-S and G2-M checkpoints, as well as direct anti-mitotic agents, have all shown promising preclinical activity in melanoma. However, in vivo, standalone single agents targeting cell cycle regulation have only demonstrated modest efficacy in unselected patients. The advent of specific CDK 4/6 inhibitors targeting the G1-S transition, with an improved therapeutic index, is a significant step forward. Potential synergy exists with the combination of CDK4/6 inhibitors with existing therapies targeting the MAPK pathway, particularly in subsets of metastatic melanomas such as NRAS and BRAF mutants. This reviews summaries of the latest developments in both preclinical and clinical data with cell cycle-targeted therapies in melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATM:

Ataxia telangiectasia mutated

ATR:

Ataxia telangiectasia and Rad3-related

AURKA:

Aurora kinase A

AURKB:

Aurora kinase B

CDK 2:

Cyclin-dependent kinase 2

CDK1:

Cyclin-dependent kinase 1

CDK4/6:

Cyclin-dependent kinase 4/6

CDKN2A:

Cyclin-dependent kinase inhibitor 2A gene

CHK1:

Checkpoint kinase 1

CHK2:

Checkpoint kinase 2

E2F:

E2F transcription factors

MK2:

Mitogen-activated protein kinase-activated protein kinase 2

p16INK4A:

Cyclin-dependent inhibitory protein p16INK4A

P21cip1:

Cyclin-dependent inhibitory protein P21cip1

P27kip1:

Cyclin-dependent inhibitory protein P27kip1

p38:

p38 mitogen-activated protein kinase

PLK1:

Polo-like kinase 1

RB:

Retinoblastoma protein

Restriction point:

A point in G1 of the cell cycle at which the cell becomes committed to cycling, marking the transition from growth factor-dependent to growth factor-independent cell cycle progression

WEE1:

WEE1 kinase

References

References of special interest published within the last 2 years have been highlights as: • Of importance •• Of major importance

  1. Morgan DO. Principles of CDK regulation. Nature. 1995;374(6518):131–4.

    Article  CAS  PubMed  Google Scholar 

  2. Hartwell LH. Nobel lecture. Yeast and cancer. Biosci Rep. 2002;22(3-4):373–94.

    Article  CAS  PubMed  Google Scholar 

  3. Hunt T. Nobel lecture. Protein synthesis, proteolysis, and cell cycle transitions. Biosci Rep. 2002;22(5-6):465–86.

    Article  CAS  PubMed  Google Scholar 

  4. Nurse PM. Nobel lecture. Cyclin dependent kinases and cell cycle control. Biosci Rep. 2002;22(5-6):487–99.

    Article  CAS  PubMed  Google Scholar 

  5. Nurse P, Masui Y, Hartwell L. Understanding the cell cycle. Nat Med. 1998;4(10):1103–6.

    Article  CAS  PubMed  Google Scholar 

  6. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.

    Article  CAS  PubMed  Google Scholar 

  7. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14(2):130–46. Excellent overview of the history, biology, evolution and development of targeting CDK in oncology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vesely J, Havlicek L, Strnad M, et al. Inhibition of cyclin-dependent kinases by purine analogues. Eur J Biochem. 1994;224(2):771–86.

    Article  CAS  PubMed  Google Scholar 

  9. De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem. 1997;243(1-2):518–26.

    Article  PubMed  Google Scholar 

  10. Benson C, White J, De Bono J, et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer. 2007;96(1):29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Le Tourneau C, Faivre S, Laurence V, et al. Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur J Cancer. 2010;46(18):3243–50.

    Article  PubMed  Google Scholar 

  12. Lee B, McArthur G. CDK4 inhibitors as an emerging strategy for the treatment of melanoma. Melanoma Manag Future Medicine. 2015;2(3):255–66.

    Article  Google Scholar 

  13. Clinical Trials Database: NCT00003690. https://clinicaltrials.gov/ct2/show/NCT00003690. Accessed 17 June 2015.

  14. Clinical Trials Database: NCT00005971. https://clinicaltrials.gov/ct2/show/NCT00005971. Accessed 12 Sep 2015.

  15. Burdette-Radoux S, Tozer RG, Lohmann RC, et al. Phase II trial of flavopiridol, a cyclin dependent kinase inhibitor, in untreated metastatic malignant melanoma. Invest New Drugs. 2004;22(3):315–22.

    Article  CAS  PubMed  Google Scholar 

  16. Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36(3):131–49.

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Nichols MA, Shay JW, Xiong Y. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res. 1994;54(23):6078–82.

    CAS  PubMed  Google Scholar 

  18. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.

    Article  CAS  PubMed  Google Scholar 

  19. Sheppard KE, McArthur GA. The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res. 2013;19(19):5320–8.

    Article  CAS  PubMed  Google Scholar 

  20. Walker GJ, Flores JF, Glendening JM, Lin AH, Markl ID, Fountain JW. Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosomes Cancer. 1998;22(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  21. Young RJ, Waldeck K, Martin C, et al. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines. Pigment Cell Melanoma Res. 2014;27(4):590–600. Identifies loss of CDKN2A expression or loss of p16INK4A as a marker of sensitivity, and loss of RB1 as a marker of resistance to CDK4 inhibition in melanoma.

    Article  CAS  PubMed  Google Scholar 

  22. Griewank KG, Scolyer RA, Thompson JF, Flaherty KT, Schadendorf D, Murali R. Genetic alterations and personalized medicine in melanoma: progress and future prospects. J Natl Cancer Inst. 2014;106(2):djt435. Overviews the key genetic alterations in melanoma and outlines the potential future role of next generation sequencing in personalised management of melanoma.

    Article  PubMed  Google Scholar 

  23. Eliason MJ, Larson AA, Florell SR, et al. Population-based prevalence of CDKN2A mutations in Utah melanoma families. J Invest Dermatol. 2006;126(3):660–6.

    Article  CAS  PubMed  Google Scholar 

  24. Goldstein AM, Chan M, Harland M, et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet. 2007;44(2):99–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zuo L, Weger J, Yang Q, et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet. 1996;12(1):97–9.

    Article  CAS  PubMed  Google Scholar 

  26. Sanki A, Li W, Colman M, Karim RZ, Thompson JF, Scolyer RA. Reduced expression of p16 and p27 is correlated with tumour progression in cutaneous melanoma. Pathology. 2007;39(6):551–7.

    Article  CAS  PubMed  Google Scholar 

  27. Karim RZ, Li W, Sanki A, et al. Reduced p16 and increased cyclin D1 and pRb expression are correlated with progression in cutaneous melanocytic tumors. Int J Surg Pathol. 2009;17(5):361–7.

    Article  PubMed  Google Scholar 

  28. Shain AH, Yeh I, Kovalyshyn I, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373(20):1926–36.

    Article  PubMed  Google Scholar 

  29. Fung C, Pupo GM, Scolyer RA, Kefford RF, Rizos H. p16(INK) (4a) deficiency promotes DNA hyper-replication and genetic instability in melanocytes. Pigment Cell Melanoma Res. 2013;26(2):236–46.

    Article  CAS  PubMed  Google Scholar 

  30. Lee B, Sandhu S, McArthur G. Cell cycle control as a promising target in melanoma. Curr Opin Oncol. 2015;27(2):141–50. Comprehensive overview of the clinical data in targeting CDK, checkpoint kinases and p53 reactivation compounds in melanoma.

    Article  CAS  PubMed  Google Scholar 

  31. Flaherty KT, Lorusso PM, Demichele A, et al. Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res. 2012;18(2):568–76.

    Article  CAS  PubMed  Google Scholar 

  32. Schwartz GK, LoRusso PM, Dickson MA, et al. Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (Schedule 2/1). Br J Cancer. 2011;104(12):1862–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clinical Trial Database: NCT01037790. https://clinicaltrial.gov/ct2/show/nct01037790. Accessed 17 June 2015.

  34. Infante JR, Shapiro G, Witteveen P. A Phase I study of the single-agent CDK4/6 inhibitor LEE011 in patients with advanced solid tumors and lymphomas. American Society of Clinical Oncology (ASCO) Annual Meeting 2014 Chicago, IL, USA, 30 May-3 June 2014 2014.

  35. Sanchez-Martinez C, Gelbert LM, Shannon H, et al. LY2835219, a potent oral inhibitor of the cyclin-dependent kinases 4 and 6 (CDK4/6) that crosses the blood-brain barrier and demonstrates in vivo activity against intracranial human brain tumor xenografts. Abstract B234, Mol Canc Therapeut. 2011;10(11 Suppl):B234-B.

    Article  Google Scholar 

  36. Raub T, Gelbert LM, Wishart GN, et al. Abemaciclib (LY2835219) is an oral inhibitor of the cyclin-dependent kinases 4/6 that crosses the blood-brain barrier and demonstrates in vivo activity against intracranial human brain tumor xenografts. Drug Metab Dispos. 2015.

  37. Shapiro G, Rosen L, Tolcher A. al. e. A first in human Phase I study of the CDK4/6 inhibitor, LY2835219, for patients with advanced cancer. ASCO Annual Meeting, Chicago, IL, USA 2013; Abstract 2500.

  38. Dean JL, McClendon AK, Hickey TE, et al. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle. 2012;11(14):2756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dean JL, Thangavel C, McClendon AK, Reed CA, Knudsen ES. Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene. 2010;29(28):4018–32.

    Article  CAS  PubMed  Google Scholar 

  40. Konecny GE, Winterhoff B, Kolarova T, et al. Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res. 2011;17(6):1591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Logan JE, Mostofizadeh N, Desai AJ, et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res. 2013;33(8):2997–3004.

    CAS  PubMed  Google Scholar 

  42. Michaud K, Solomon DA, Oermann E, et al. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res. 2010;70(8):3228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Finn RS, Crown JP, Lang I, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  44. Nathanson KL, Martin AM, Wubbenhorst B, et al. Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor dabrafenib (GSK2118436). Clin Cancer Res. 2013;19(17):4868–78. Identifies that copy number alterations in CDKN2A and CCND1 correlate with shortening duration of disease control with Dabrafenib in treatment of BRAF-mutant melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smalley KS, Lioni M, Dalla Palma M, et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther. 2008;7(9):2876–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xing F, Persaud Y, Pratilas CA, et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene. 2012;31(4):446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yadav V, Burke TF, Huber L, et al. The CDK4/6 inhibitor LY2835219 overcomes vemurafenib resistance resulting from MAPK reactivation and cyclin D1 upregulation. Mol Cancer Ther. 2014;13(10):2253–63.

    Article  CAS  PubMed  Google Scholar 

  48. Clinical Trials Database: NCT01777776. Https://clinicaltrials.Gov/ct2/show/NCT01777776. Accessed 12 Sep 2015.

  49. Taylor M, Sosman JA, Gonzalez R, Carlino M, Postow M, al. e. Phase Ib/Ii Study Of LEE011 (Cdk4/6 Inhibitor) And LGX818 (Braf Inhibitor) In Braf-Mutant Melanoma. ESMO 2014, Marid Spain Annals of Oncology 2014; 25 (suppl 4). Preliminary Phase I results from the combination of a CDK4/6 inhibitor and BRAF inhibitor showing promising efficacy and tolerable toxicities.

  50. Clinical Trials Database: NCT01820364. https://clinicaltrials.gov/ct2/show/nct01820364. Accessed 17 June 2015.

  51. Clinical Trials Database: NCT02159066 https://clinicaltrials.gov/ct2/show/NCT02159066. Accessed 10 Aug 2015.

  52. Jakob JA, Bassett Jr RL, Ng CS, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118(16):4014–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Herpen C, Agarwala SS, Hauschild A, al. e. Overall survival and biomarker results from a phase 2 study of mek1/2 inhibitor binimetinib (mek162) in patients with advanced nras-mutant melanoma. Annals of Oncology 2014; 25 (suppl 4). Updated data from an ongoing Phase Ib/II study showing promising response and disease control rates in the combination of a CDK4/6 inhibitor with a MEK inhibitor in NRAS mutant metastatic melanoma

  54. Kwong LN, Costello JC, Liu H, et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med. 2012;18(10):1503–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clinical Trials Database: NCT01781572. https://clinicaltrials.gov/ct2/show/nct01781572. Accessed 05 Nov 2015.

  56. van Herpen C, Postow M, Carlino M, al. e. A Phase 1b/2 Study of Ribociclib (LEE011; CDK4/6 inhibitor) in Combination With Binimetinib (MEK162; MEK inhibitor) in Patients With NRAS‐Mutant Melanoma. European Cancer Conference, Vienna Austria 2015.

  57. Sullivan RJ, Amaria R, Lawrence D et al. Phase 1b dose-escalation study of trametinib (MEKi) plus palbociclib (CDK4/6i) in patients with advanced solid tumors. AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics Nov 5-9 2015; (Boston, Massachusetts, USA).

  58. McClendon AK, Dean JL, Rivadeneira DB, et al. CDK4/6 inhibition antagonizes the cytotoxic response to anthracycline therapy. Cell Cycle. 2012;11(14):2747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roberts PJ, Bisi JE, Strum JC, et al. Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. J Natl Cancer Inst. 2012;104(6):476–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thompson R, Eastman A. The cancer therapeutic potential of Chk1 inhibitors: how mechanistic studies impact on clinical trial design. Br J Clin Pharmacol. 2013;76(3):358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Santamaria D, Barriere C, Cerqueira A, et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature. 2007;448(7155):811–5.

    Article  CAS  PubMed  Google Scholar 

  62. Vassilev LT, Tovar C, Chen S, et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A. 2006;103(28):10660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lainchbury M, Collins I. Checkpoint kinase inhibitors: a patent review (2009-2010). Expert Opin Ther Pat. 2011;21(8):1191–210.

    Article  CAS  PubMed  Google Scholar 

  64. Brooks K, Oakes V, Edwards B, et al. A potent Chk1 inhibitor is selectively cytotoxic in melanomas with high levels of replicative stress. Oncogene. 2013;32(6):788–96.

    Article  CAS  PubMed  Google Scholar 

  65. Perez RP, Lewis LD, Beelen AP, et al. Modulation of cell cycle progression in human tumors: a pharmacokinetic and tumor molecular pharmacodynamic study of cisplatin plus the Chk1 inhibitor UCN-01 (NSC 638850). Clin Cancer Res. 2006;12(23):7079–85.

    Article  CAS  PubMed  Google Scholar 

  66. Sausville E, Lorusso P, Carducci M, et al. Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;73(3):539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sakurikar N, Eastman A. Will targeting Chk1 have a role in the future of cancer therapy? J Clin Oncol. 2015;33(9):1075–7.

    Article  CAS  PubMed  Google Scholar 

  68. Daud AI, Ashworth MT, Strosberg J, et al. Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J Clin Oncol. 2015;33(9):1060–6. Phase 1 study evaluating a Chk1 inhibitor (MK-8776) as monotherapy and in combination with Gemcitabine, showing acceptable toxicity and promising early efficacy in melanoma.

    Article  CAS  PubMed  Google Scholar 

  69. Lindqvist A, Rodriguez-Bravo V, Medema RH. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol. 2009;185(2):193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Magnussen GI, Holm R, Emilsen E, Rosnes AK, Slipicevic A, Florenes VA. High expression of Wee1 is associated with poor disease-free survival in malignant melanoma: potential for targeted therapy. PLoS One. 2012;7(6):e38254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Do K, Doroshow JH, Kummar S. Wee1 kinase as a target for cancer therapy. Cell Cycle. 2013;12(19):3159–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Do K, Wilsker D, Ji J, et al. Phase I study of single-agent AZD1775 (MK-1775), a Wee1 kinase inhibitor, in patients with refractory solid tumors. J Clin Oncol. 2015;33(30):3409–15.

    Article  PubMed  Google Scholar 

  73. Carrassa L, Chila R, Lupi M, et al. Combined inhibition of Chk1 and Wee1: in vitro synergistic effect translates to tumor growth inhibition in vivo. Cell Cycle. 2012;11(13):2507–17.

    Article  CAS  PubMed  Google Scholar 

  74. Davies KD, Cable PL, Garrus JE, et al. Chk1 inhibition and Wee1 inhibition combine synergistically to impede cellular proliferation. Cancer Biol Ther. 2011;12(9):788–96.

    Article  CAS  PubMed  Google Scholar 

  75. Magnussen GI, Emilsen E, Giller Fleten K, et al. Combined inhibition of the cell cycle related proteins Wee1 and Chk1/2 induces synergistic anti-cancer effect in melanoma. BMC Cancer. 2015;15:462. Demonstrated pre-clinical anti-tumour synergy in targeting the G2/M checkpoint using combined inhibition of Chk1/2 and WEE1.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol. 2013;14(9):563–80.

    Article  CAS  PubMed  Google Scholar 

  77. Dietlein F, Kalb B, Jokic M, et al. A Synergistic Interaction between Chk1- and MK2 Inhibitors in KRAS-Mutant Cancer. Cell. 2015;162(1):146–59. Demonstrated impressive preclinical efficacy with dual G2/M checkpoint kinase abrogation by targeting CHK1 and MK2 in KRAS mutant, and to a lesser extent, BRAF mutant cell lines.

  78. Chan KS, Koh CG, Li HY. Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis. 2012;3:e411.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jackson JR, Patrick DR, Dar MM, Huang PS. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer. 2007;7(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  80. Kneisel L, Strebhardt K, Bernd A, Wolter M, Binder A, Kaufmann R. Expression of polo-like kinase (PLK1) in thin melanomas: a novel marker of metastatic disease. J Cutan Pathol. 2002;29(6):354–8.

    Article  PubMed  Google Scholar 

  81. de Oliveira JC, Brassesco MS, Pezuk JA, et al. In vitro PLK1 inhibition by BI 2536 decreases proliferation and induces cell-cycle arrest in melanoma cells. J Drugs Dermatol. 2012;11(5):587–92.

    PubMed  Google Scholar 

  82. Schmit TL, Zhong W, Setaluri V, Spiegelman VS, Ahmad N. Targeted depletion of Polo-like kinase (Plk) 1 through lentiviral shRNA or a small-molecule inhibitor causes mitotic catastrophe and induction of apoptosis in human melanoma cells. J Invest Dermatol. 2009;129(12):2843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Posch C, Cholewa BD, Vujic I, et al. Combined inhibition of MEK and Plk1 has synergistic antitumor activity in NRAS mutant melanoma. J Invest Dermatol. 2015;135(10):2475–83. Demonstrated preliminary synergy with combination of a PLK1 inhibitor and a MEK inhibitor in NRAS-mutant melanoma cell lines and xenografts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fu J, Bian M, Jiang Q, Zhang C. Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res. 2007;5(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  85. Bavetsias V, Linardopoulos S. Aurora kinase inhibitors: current status and outlook. Front Oncol. 2015;5:278.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Xie L, Meyskens Jr FL. The pan-Aurora kinase inhibitor, PHA-739358, induces apoptosis and inhibits migration in melanoma cell lines. Melanoma Res. 2013;23(2):102–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bonet C, Giuliano S, Ohanna M, et al. Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells. J Biol Chem. 2012;287(35):29887–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Phadke MS, Sini P, Smalley KS. The novel ATP-competitive MEK/Aurora kinase inhibitor BI-847325 overcomes acquired BRAF inhibitor resistance through suppression of Mcl-1 and MEK expression. Mol Cancer Ther. 2015;14(6):1354–64.

    Article  CAS  PubMed  Google Scholar 

  89. Porcelli L, Guida G, Quatrale AE, et al. Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy. J Transl Med. 2015;13:26.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Komlodi-Pasztor E, Sackett DL, Fojo AT. Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin Cancer Res. 2012;18(1):51–63.

    Article  CAS  PubMed  Google Scholar 

  91. Liu Y, Hawkins OE, Su Y, et al. Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-kappaB impairs this drug-induced senescence. EMBO Mol Med. 2013;5(1):149–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Caputo E, Miceli R, Motti ML, et al. AurkA inhibitors enhance the effects of B-RAF and MEK inhibitors in melanoma treatment. J Transl Med. 2014;12:216. Demonstrated superior preclinical efficacy in the combination of an AurkA inhibitor with BRAF inhibitors; with MEK inhibitors and with a triple combination of all 3 drugs.

  93. Vilgelm AE, Pawlikowski JS, Liu Y, et al. Mdm2 and aurora kinase a inhibitors synergize to block melanoma growth by driving apoptosis and immune clearance of tumor cells. Cancer Res. 2015;75(1):181–93. Demonstrated preclinical synergy in combined targeting of AURKA and MDM2 (restoring wildtype p53 function).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu Y, Hawkins OE, Vilgelm AE, et al. Combining an aurora kinase inhibitor and a death receptor ligand/agonist antibody triggers apoptosis in melanoma cells and prevents tumor growth in preclinical mouse models. Clin Cancer Res. 2015;21(23):5338–48.

    Article  CAS  PubMed  Google Scholar 

  95. Nemunaitis JJ, Small KA, Kirschmeier P, et al. A first-in-human, phase 1, dose-escalation study of dinaciclib, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies. J Transl Med. 2013;11:259.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Clinical Trial Database: NCT01026324. https://clinicaltrial.gov/ct2/show/nct01026324. Accessed 17 June 2015.

  97. Clinical Trial Database: NCT00937937. https://clinicaltrial.gov/ct2/show/nct00937937. Accessed 17 June 2015.

  98. Diab A, Martin A, Simpson L, Daud A, al. e. Phase I trial of the CDK 4/6 inhibitor, P1446A-05 (voruciclib) in combination with the BRAF inhibitor (BRAFi), vemurafenib in advanced, BRAF-mutant melanoma. 2015 ASCO ANNUAL MEETING 2015.

  99. Clinical Trial Database: NCT00835419. https://clinicaltrial.gov/ct2/show/nct00835419. Accessed 17 June 2015.

  100. Clinical Trials Database: NCT01820364.https://clinicaltrials.gov/ct2/show/NCT01820364. Accessed 17 June 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant McArthur.

Ethics declarations

Conflict of Interest

Wen Xu declares that he has no conflict of interest.

Grant McArthur has received financial support through grants from Pfizer, Celgene, and Ventana Medical Systems, and has served as a consultant for Provectus Biopharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Melanoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., McArthur, G. Cell Cycle Regulation and Melanoma. Curr Oncol Rep 18, 34 (2016). https://doi.org/10.1007/s11912-016-0524-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-016-0524-y

Keywords

Navigation