Skip to main content

Advertisement

Log in

Impact of Body Weight and Body Composition on Ovarian Cancer Prognosis

  • Integrative Care (C Lammersfeld, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Measures of body weight and anthropometrics such as body mass index (BMI) are commonly used to assess nutritional status in clinical conditions including cancer. Extensive research has evaluated associations between body weight and prognosis in ovarian cancer patients, yet little is known about the potential impact of body composition (fat mass (FM) and fat-free mass (FFM)) in these patients. Thus, the purpose of this publication was to review the literature (using PubMed and EMBASE) evaluating the impact of body weight and particularly body composition on surgical complications, morbidity, chemotherapy dosing and toxicity (as predictors of prognosis), and survival in ovarian cancer patients. Body weight is rarely associated with intra-operative complications, but obesity predicts higher rates of venous thromboembolism and wound complications post-operatively in ovarian cancer patients. Low levels of FM and FFM are superior predictors of length of hospital stay compared to measures of body weight alone, but the role of body composition on other surgical morbidities is unknown. Obesity complicates chemotherapy dosing due to altered pharmacokinetics, imprecise dosing strategies, and wide variability in FM and FFM. Measurement of body composition has the potential to reduce toxicity if the results are incorporated into chemotherapy dosing calculations. Some findings suggest that excess body weight adversely affects survival, while others find no such association. Limited studies indicate that FM is a better predictor of survival than body weight in ovarian cancer patients, but the direction of this relationship has not been determined. In conclusion, body composition as an indicator of nutritional status is a better prognostic tool than body weight or BMI alone in ovarian cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. Cancer incidence and mortality worldwide: IARC CancerBase no. 11. Lyon: World Health Organization; 2012.

    Google Scholar 

  2. American Cancer Society. Cancer facts and figures 2014. Atlanta: American Cancer Society; 2014.

    Google Scholar 

  3. Laky B, Janda M, Bauer J, Vavra C, Cleghorn G, Obermair A. Malnutrition among gynaecological cancer patients. Eur J Clin Nutr. 2007;61(5):642–6. doi:10.1038/sj.ejcn.1602540.

    CAS  PubMed  Google Scholar 

  4. Fuchs-Tarlovsky V, Alvarez-Altamirano K, Turquie-Sacal D, Alvarez-Flores C, Hernandez-Steller H. Nutritional status and body composition are already affected before oncology treatment in ovarian cancer. Asia Pac J Clin Nutr. 2013;22(3):426–30. doi:10.6133/apjcn.2013.22.3.12.

    CAS  PubMed  Google Scholar 

  5. American Cancer Society. What are the risk factors for ovarian cancer? Alanta: American Cancer Society; 2014.

    Google Scholar 

  6. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35. doi:10.1016/s1470-2045(08)70153-0.

    Article  PubMed  Google Scholar 

  7. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–47. doi:10.1200/jco.2012.45.2722.

    Article  PubMed  Google Scholar 

  8. Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol. 1996;143(3):228–39.

    Article  CAS  PubMed  Google Scholar 

  9. Gadducci A, Cosio S, Fanucchi A, Genazzani AR. Malnutrition and cachexia in ovarian cancer patients: pathophysiology and management. Anticancer Res. 2001;21(4B):2941–7.

    CAS  PubMed  Google Scholar 

  10. Donadio C, Lucchesi A, Ardini M, Cosio S, Fanucchi A, Gadducci A. Dose individualization can minimize nephrotoxicity due to carboplatin therapy in patients with ovarian cancer. Ther Drug Monit. 2009;31(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  11. Gil KM, Frasure HE, Hopkins MP, Jenison EL, von Gruenigen VE. Body weight and composition changes in ovarian cancer patients during adjuvant chemotherapy. Gynecol Oncol. 2006;103(1):247–52.

    Article  PubMed  Google Scholar 

  12. Prado CM, Baracos VE, Xiao J, Birdsell L, Stuyckens K, Park YC, et al. The association between body composition and toxicities from the combination of Doxil and trabectedin in patients with advanced relapsed ovarian cancer. Appl Physiol Nutr Metab. 2014;39(6):693–8. This study suggests that certain patterns of body composition can predict and explain dose-limiting toxicities.

    Article  CAS  PubMed  Google Scholar 

  13. Slaughter KN, Thai T, Penaroza S, Benbrook DM, Thavathiru E, Ding K, et al. Measurements of adiposity as clinical biomarkers for first-line bevacizumab-based chemotherapy in epithelial ovarian cancer. Gynecol Oncol. 2014;133(1):11–5. Results from this study suggest that body composition (fat mass in particular) may determine who will benefit most from certain chemotherapy agents.

    Article  CAS  PubMed  Google Scholar 

  14. Torres ML, Hartmann LC, Cliby WA, Kalli KR, Young PM, Weaver AL, et al. Nutritional status, CT body composition measures and survival in ovarian cancer. Gynecol Oncol. 2013;129(3):548–53. doi:10.1016/j.ygyno.2013.03.003. This study measures body composition by computerized tomography to predict outcomes in advanced ovarian cancer.

  15. Modesitt SC, van Nagell Jr JR. The impact of obesity on the incidence and treatment of gynecologic cancers: a review. Obstet Gynecol Surv. 2005;60(10):683–92.

    Article  PubMed  Google Scholar 

  16. McTiernan A, Irwin M, Vongruenigen V. Weight, physical activity, diet, and prognosis in breast and gynecologic cancers. J Clin Oncol. 2010;28(26):4074–80. doi:10.1200/jco.2010.27.9752.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Yang HS, Yoon C, Myung SK, Park SM. Effect of obesity on survival of women with epithelial ovarian cancer: a systematic review and meta-analysis of observational studies. Int J Gynecol Cancer. 2011;21(9):1525–32.

    Article  PubMed  Google Scholar 

  18. Protani MM, Nagle CM, Webb PM. Obesity and ovarian cancer survival: a systematic review and meta-analysis. Cancer Prev Res. 2012;5(7):901–10.

    Article  Google Scholar 

  19. Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol. 2002;20(5):1248–59.

    Article  PubMed  Google Scholar 

  20. Kumar A, Bakkum-Gamez JN, Weaver AL, McGree ME, Cliby WA. Impact of obesity on surgical and oncologic outcomes in ovarian cancer. Gynecol Oncol. 2014;135(1):19–24. doi:10.1016/j.ygyno.2014.07.103.

    Article  PubMed  Google Scholar 

  21. Skirnisdottir I, Sorbe B. Prognostic impact of body mass index and effect of overweight and obesity on surgical and adjuvant treatment in early-stage epithelial ovarian cancer. Int J Gynecol Cancer. 2008;18(2):345–51.

    Article  CAS  PubMed  Google Scholar 

  22. Barrett SV, Paul J, Hay A, Vasey PA, Kaye SB, Glasspool RM. Does body mass index affect progression-free or overall survival in patients with ovarian cancer? Results from SCOTROC I trial. Ann Oncol. 2008;19(5):898–902.

    Article  CAS  PubMed  Google Scholar 

  23. Smits A, Lopes A, Das N, Kumar A, Cliby W, Smits E, et al. Surgical morbidity and clinical outcomes in ovarian cancer—the role of obesity. BJOG. 2015. doi:10.1111/1471-0528.13585.

    Google Scholar 

  24. Matthews KS, Straughn Jr JM, Kemper MK, Hoskins KE, Wang W, Rocconi RP. The effect of obesity on survival in patients with ovarian cancer. Gynecol Oncol. 2009;112(2):389–93. doi:10.1016/j.ygyno.2008.10.016.

    Article  PubMed  Google Scholar 

  25. Suh DH, Kim HS, Chung HH, Kim JW, Park NH, Song YS, et al. Body mass index and survival in patients with epithelial ovarian cancer. J Obstet Gynaecol Res. 2012;38(1):70–6.

    Article  PubMed  Google Scholar 

  26. Salman MC, Usubutun A, Ozlu T, Boynukalin K, Yuce K. Obesity does not affect the number of retrieved lymph nodes and the rate of intraoperative complications in gynecologic cancers. J Gynecol Oncol. 2010;21(1):24–8. doi:10.3802/jgo.2010.21.1.24.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Fotopoulou C, Richter R, Braicu EI, Kuhberg M, Feldheiser A, Schefold JC, et al. Impact of obesity on operative morbidity and clinical outcome in primary epithelial ovarian cancer after optimal primary tumor debulking. Ann Surg Oncol. 2011;18(9):2629–37.

    Article  PubMed  Google Scholar 

  28. Kerimoglu OS, Pekin A, Yilmaz SA, Yavas G, Beyhekim F, Demirtas AA, et al. Effect of the percentage of body fat on surgical, clinical and pathological outcomes in women with endometrial cancer. J Obstet Gynaecol Res. 2015;41(3):449–55. doi:10.1111/jog.12554.

    Article  PubMed  Google Scholar 

  29. Vonlanthen R, Slankamenac K, Breitenstein S, Puhan MA, Muller MK, Hahnloser D, et al. The impact of complications on costs of major surgical procedures: a cost analysis of 1200 patients. Ann Surg. 2011;254(6):907–13. doi:10.1097/SLA.0b013e31821d4a43.

    Article  PubMed  Google Scholar 

  30. Brown SR, Mathew R, Keding A, Marshall HC, Brown JM, Jayne DG. The impact of postoperative complications on long-term quality of life after curative colorectal cancer surgery. Ann Surg. 2014;259(5):916–23. doi:10.1097/sla.0000000000000407.

    Article  PubMed  Google Scholar 

  31. Abu Saadeh F, Norris L, O’Toole S, Gleeson N. Venous thromboembolism in ovarian cancer: incidence, risk factors and impact on survival. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):214–8. doi:10.1016/j.ejogrb.2013.06.004.

    Article  PubMed  Google Scholar 

  32. Strasberg SM, Linehan DC, Hawkins WG. The accordion severity grading system of surgical complications. Ann Surg. 2009;250(2):177–86. doi:10.1097/SLA.0b013e3181afde41.

    Article  PubMed  Google Scholar 

  33. Erekson EA, Yip SO, Ciarleglio MM, Fried TR. Postoperative complications after gynecologic surgery. Obstet Gynecol. 2011;118(4):785–93.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Fotopoulou C, Dubois A, Karavas AN, Trappe R, Aminossadati B, Schmalfeldt B, et al. Incidence of venous thromboembolism in patients with ovarian cancer undergoing platinum/paclitaxel-containing first-line chemotherapy: an exploratory analysis by the Arbeitsgemeinschaft Gynaekologische Onkologie Ovarian Cancer Study Group. J Clin Oncol. 2008;26(16):2683–9.

    Article  CAS  PubMed  Google Scholar 

  35. Maksimovic M, Gojnic M, Maksimovic Z, Petkovic S, Ljubic A, Stefanovic A, et al. Surgical treatment of ovarian cancer and early detection of venous thromboembolism. Eur J Gynaecol Oncol. 2011;32(4):415–8.

    PubMed  Google Scholar 

  36. Tateo S, Mereu L, Salamano S, Klersy C, Barone M, Spyropoulos AC, et al. Ovarian cancer and venous thromboembolic risk. Gynecol Oncol. 2005;99(1):119–25.

    Article  CAS  PubMed  Google Scholar 

  37. Nugent EK, Hoff JT, Gao F, Massad LS, Case A, Zighelboim I, et al. Wound complications after gynecologic cancer surgery. Gynecol Oncol. 2011;121(2):347–52.

    Article  PubMed  Google Scholar 

  38. Worley Jr MJ, Guseh SH, Rauh-Hain JA, Esselen KM, Muto MG, Feltmate CM, et al. What is the optimal treatment for obese patients with advanced ovarian carcinoma? Am J Obstet Gynecol. 2014;211(3):231.e1–.e9.

    Article  Google Scholar 

  39. Pierpont YN, Dinh TP, Salas RE, Johnson EL, Wright TG, Robson MC, et al. Obesity and surgical wound healing: a current review. ISRN Obes. 2014;2014:638936. doi:10.1155/2014/638936.

    PubMed Central  PubMed  Google Scholar 

  40. Ebadi M, Mazurak VC. Evidence and mechanisms of fat depletion in cancer. Nutrients. 2014;6(11):5280–97. doi:10.3390/nu6115280.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Malietzis G, Aziz O, Bagnall NM, Johns N, Fearon KC, Jenkins JT. The role of body composition evaluation by computerized tomography in determining colorectal cancer treatment outcomes: a systematic review. Eur J Surg Oncol. 2015;41(2):186–96. doi:10.1016/j.ejso.2014.10.056.

    Article  CAS  PubMed  Google Scholar 

  42. Smith AB, Deal AM, Yu H, Boyd B, Matthews J, Wallen EM, et al. Sarcopenia as a predictor of complications and survival following radical cystectomy. J Urol. 2014;191(6):1714–20. doi:10.1016/j.juro.2013.12.047.

    Article  PubMed  Google Scholar 

  43. Joglekar S, Asghar A, Mott SL, Johnson BE, Button AM, Clark E, et al. Sarcopenia is an independent predictor of complications following pancreatectomy for adenocarcinoma. J Surg Oncol. 2014. doi:10.1002/jso.23862.

    PubMed Central  PubMed  Google Scholar 

  44. Hunter RJ, Navo MA, Thaker PH, Bodurka DC, Wolf JK, Smith JA. Dosing chemotherapy in obese patients: actual versus assigned body surface area (BSA). Cancer Treat Rev. 2009;35(1):69–78.

    Article  CAS  PubMed  Google Scholar 

  45. Horowitz NS, Wright AA. Impact of obesity on chemotherapy management and outcomes in women with gynecologic malignancies. Gynecol Oncol. 2015;138(1):201–6. doi:10.1016/j.ygyno.2015.04.002.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Joerger M, Huitema AD, van den Bongard DH, Schellens JH, Beijnen JH. Quantitative effect of gender, age, liver function, and body size on the population pharmacokinetics of Paclitaxel in patients with solid tumors. Clin Cancer Res. 2006;12(7 Pt 1):2150–7. doi:10.1158/1078-0432.CCR-05-2069.

    Article  CAS  PubMed  Google Scholar 

  47. Griggs JJ, Mangu PB, Anderson H, Balaban EP, Dignam JJ, Hryniuk WM, et al. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2012;30(13):1553–61. doi:10.1200/jco.2011.39.9436.

    Article  PubMed  Google Scholar 

  48. Colleoni M, Li S, Gelber RD, Price KN, Coates AS, Castiglione-Gertsch M, et al. Relation between chemotherapy dose, oestrogen receptor expression, and body-mass index. Lancet. 2005;366(9491):1108–10. doi:10.1016/s0140-6736(05)67110-3.

    Article  CAS  PubMed  Google Scholar 

  49. Wright JD, Tian C, Mutch DG, Herzog TJ, Nagao S, Fujiwara K, et al. Carboplatin dosing in obese women with ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2008;109(3):353–8.

    Article  CAS  PubMed  Google Scholar 

  50. Lyman GH. Chemotherapy dose intensity and quality cancer care. Oncology (Williston Park). 2006;20(14 Suppl 9):16–25.

    Google Scholar 

  51. Schwartz J, Toste B, Dizon DS. Chemotherapy toxicity in gynecologic cancer patients with a body surface area (BSA) > 2 m2. Gynecol Oncol. 2009;114(1):53–6.

    Article  CAS  PubMed  Google Scholar 

  52. Hanna RK, Poniewierski MS, Laskey RA, Lopez MA, Shafer A, Van Le L, et al. Predictors of reduced relative dose intensity and its relationship to mortality in women receiving multi-agent chemotherapy for epithelial ovarian cancer. Gynecol Oncol. 2013;129(1):74–80. doi:10.1016/j.ygyno.2012.12.017.

    Article  CAS  PubMed  Google Scholar 

  53. Au-Yeung G, Webb PM, Defazio A, Fereday S, Bressel M, Mileshkin L. Impact of obesity on chemotherapy dosing for women with advanced stage serous ovarian cancer in the Australian Ovarian Cancer Study (AOCS). Gynecol Oncol. 2014;133(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  54. Bandera EV, Lee VS, Rodriguez-Rodriguez L, Powell CB, Kushi LH. Impact of chemotherapy dosing on ovarian cancer survival according to body mass index. JAMA Oncol. 2015;1(6):737–45. doi:10.1001/jamaoncol.2015.1796.

    Article  PubMed  Google Scholar 

  55. Calvert AH, Newell DR, Gumbrell LA, O’Reilly S, Burnell M, Boxall FE, et al. Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol. 1989;7(11):1748–56.

    CAS  PubMed  Google Scholar 

  56. Pai MP. Estimating the glomerular filtration rate in obese adult patients for drug dosing. Adv Chronic Kidney Dis. 2010;17(5):e53–62. doi:10.1053/j.ackd.2010.05.010.

    Article  PubMed  Google Scholar 

  57. Baxmann AC, Ahmed MS, Marques NC, Menon VB, Pereira AB, Kirsztajn GM, et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol. 2008;3(2):348–54. doi:10.2215/cjn.02870707.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Chu MP, McCaw L, Stretch C, Butts C, Hanson J, Kuzma M, et al. Development of a new equation to estimate creatinine clearance in cancer patients. Cancer Chemother Pharmacol. 2015;76(1):117–24. doi:10.1007/s00280-015-2777-9. This publication shows the benefit of using body composition (specifically muscle surface area) to estimate creatinine clearance.

  59. Prado CM, Baracos VE, McCargar LJ, Mourtzakis M, Mulder KE, Reiman T, et al. Body composition as an independent determinant of 5-fluorouracil-based chemotherapy toxicity. Clin Cancer Res. 2007;13(11):3264–8. doi:10.1158/1078-0432.ccr-06-3067.

    Article  CAS  PubMed  Google Scholar 

  60. Prado CM, Maia YL, Ormsbee M, Sawyer MB, Baracos VE. Assessment of nutritional status in cancer—the relationship between body composition and pharmacokinetics. Anti Cancer Agents Med Chem. 2013;13(8):1197–203.

    Article  CAS  Google Scholar 

  61. Antoun S, Baracos VE, Birdsell L, Escudier B, Sawyer MB. Low body mass index and sarcopenia associated with dose-limiting toxicity of sorafenib in patients with renal cell carcinoma. Ann Oncol. 2010;21(8):1594–8. doi:10.1093/annonc/mdp605.

    Article  CAS  PubMed  Google Scholar 

  62. Tan BH, Brammer K, Randhawa N, Welch NT, Parsons SL, James EJ, et al. Sarcopenia is associated with toxicity in patients undergoing neo-adjuvant chemotherapy for oesophago-gastric cancer. Eur J Surg Oncol. 2015;41(3):333–8. doi:10.1016/j.ejso.2014.11.040.

    Article  CAS  PubMed  Google Scholar 

  63. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

    Article  PubMed  Google Scholar 

  64. Kodama J, Miyagi Y, Seki N, Tokumo K, Yoshinouchi M, Kobashi Y, et al. Serum C-reactive protein as a prognostic factor in patients with epithelial ovarian cancer. Eur J Obstet Gynecol Reprod Biol. 1999;82(1):107–10.

    Article  CAS  PubMed  Google Scholar 

  65. Scambia G, Testa U, Benedetti Panici P, Foti E, Martucci R, Gadducci A, et al. Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. Br J Cancer. 1995;71(2):354–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Zhou Y, Irwin ML, Risch HA. Pre- and post-diagnosis body mass index, weight change, and ovarian cancer mortality. Gynecol Oncol. 2011;120(2):209–13.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Kjaerbye-Thygesen A, Frederiksen K, Hogdall EV, Glud E, Christensen L, Hogdall CK, et al. Smoking and overweight: negative prognostic factors in stage III epithelial ovarian cancer. Cancer Epidemiol Biomark. 2006;15(4):798–803.

    Article  Google Scholar 

  68. Moysich KB, Baker JA, Menezes RJ, Jayaprakash V, Rodabaugh KJ, Odunsi K, et al. Usual adult body mass index is not predictive of ovarian cancer survival. Cancer Epidemiol Biomark. 2007;16(3):626–8.

    Article  Google Scholar 

  69. Tyler CP, Whiteman MK, Zapata LB, Hillis SD, Curtis KM, McDonald J, et al. The effect of body mass index and weight change on epithelial ovarian cancer survival in younger women: a long-term follow-up study. J Women’s Health. 2012;21(8):865–71.

    Article  Google Scholar 

  70. Kotsopoulos J, Moody JR, Fan I, Rosen B, Risch HA, McLaughlin JR, et al. Height, weight, BMI and ovarian cancer survival. Gynecol Oncol. 2012;127(1):83–7. doi:10.1016/j.ygyno.2012.05.038.

    Article  PubMed  Google Scholar 

  71. Zhou Y, Chlebowski R, LaMonte MJ, Bea JW, Qi L, Wallace R, et al. Body mass index, physical activity, and mortality in women diagnosed with ovarian cancer: results from the women’s health initiative. Gynecol Oncol. 2014;133(1):4–10.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Bjorge T, Lukanova A, Tretli S, Manjer J, Ulmer H, Stocks T, et al. Metabolic risk factors and ovarian cancer in the metabolic syndrome and cancer project. Int J Epidemiol. 2011;40(6):1667.

    Article  PubMed  Google Scholar 

  73. Previs R, Kilgore J, Craven R, Broadwater G, Bean S, Wobker S, et al. Obesity is associated with worse overall survival in women with low-grade papillary serous epithelial ovarian cancer. Gynecol Oncol. 2013;130(1):e113.

    Article  Google Scholar 

  74. Skirnisdottir I, Sorbe B. Body mass index as a prognostic factor in epithelial ovarian cancer and correlation with clinico-pathological factors. Acta Obstet Gynecol Scand. 2010;89(1):101–7.

    Article  PubMed  Google Scholar 

  75. Nagle CM, Dixon SC, Jensen A, Kjaer SK, Modugno F, DeFazio A, et al. Obesity and survival among women with ovarian cancer: results from the Ovarian Cancer Association Consortium. Br J Cancer. 2015;113(5):817–26.

    Article  CAS  PubMed  Google Scholar 

  76. Tran AM, Rimel BJ, Walsh C, Cass I, Karlan BY, Li AJ. Impact of obesity on secondary cytoreductive surgery and overall survival in women with recurrent ovarian cancer. Gynecol Oncol. 2014;133:168.

    Article  Google Scholar 

  77. Pavelka JC, Brown RS, Karlan BY, Cass I, Leuchter RS, Lagasse LD, et al. Effect of obesity on survival in epithelial ovarian cancer. Cancer. 2006;107(7):1520–4.

  78. Freeman EW, Sammel MD, Lin H, Gracia CR. Obesity and reproductive hormone levels in the transition to menopause. Menopause. 2010;17(4):718–26. doi:10.1097/gme.0b013e3181cec85d.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Lee L, Cheung WY, Atkinson E, Krzyzanowska MK. Impact of comorbidity on chemotherapy use and outcomes in solid tumors: a systematic review. J Clin Oncol. 2011;29(1):106–17. doi:10.1200/JCO.2010.31.3049.

    Article  PubMed  Google Scholar 

  80. Kathiresan AS, Brookfield KF, Schuman SI, Lucci 3rd JA. Malnutrition as a predictor of poor postoperative outcomes in gynecologic cancer patients. Arch Gynecol Obstet. 2011;284(2):445–51.

    Article  CAS  PubMed  Google Scholar 

  81. Backes FJ, Nagel CI, Bussewitz E, Donner J, Hade E, Salani R. The impact of body weight on ovarian cancer outcomes. Int J Gynecol Cancer. 2011;21(9):1601–5.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Bae HS, Hong JH, Ki KD, Song JY, Shin JW, Lee JM, et al. The effect of body mass index on survival in advanced epithelial ovarian cancer. J Korean Med Sci. 2014;29(6):793–7.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Kim SI, Kim HS, Kim TH, Suh DH, Kim K, No JH, et al. Impact of underweight after treatment on prognosis of advanced-stage ovarian cancer. J Immunol Res. 2014;2014:349546.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Hess LM, Barakat R, Tian C, Ozols RF, Alberts DS. Weight change during chemotherapy as a potential prognostic factor for stage III epithelial ovarian carcinoma: a Gynecologic Oncology Group Study. Gynecol Oncol. 2007;107(2):260–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Munstedt K, Wagner M, Kullmer U, Hackethal A, Franke FE. Influence of body mass index on prognosis in gynecological malignancies. Cancer Causes Control. 2008;19(9):909–16.

    Article  PubMed  Google Scholar 

  86. Prado CM, Gonzalez MC, Heymsfield SB. Body composition phenotypes and obesity paradox. Curr Opin Clin Nutr Metab Care. 2015. doi:10.1097/mco.0000000000000216. This review discusses why body composition variability may be a potential cause of the obesity paradox.

    PubMed  Google Scholar 

  87. Gonzalez MC, Pastore CA, Orlandi SP, Heymsfield SB. Obesity paradox in cancer: new insights provided by body composition. Am J Clin Nutr. 2014;99(5):999–1005. doi:10.3945/ajcn.113.071399.

    Article  CAS  PubMed  Google Scholar 

  88. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr. 2004;23(6):1430–53. doi:10.1016/j.clnu.2004.09.012.

    Article  PubMed  Google Scholar 

  89. Sheean PM, Hoskins K, Stolley M. Body composition changes in females treated for breast cancer: a review of the evidence. Breast Cancer Res Treat. 2012;135(3):663–80. doi:10.1007/s10549-012-2200-8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Andrykowski MA, Beacham AO, Jacobsen PB. Prospective, longitudinal study of leisure-time exercise in women with early-stage breast cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(3):430–8. doi:10.1158/1055-9965.epi-06-0735.

    Article  PubMed  Google Scholar 

  91. Beesley VL, Price MA, Butow PN, Green AC, Olsen CM, Webb PM. Physical activity in women with ovarian cancer and its association with decreased distress and improved quality of life. Psychooncology. 2011;20(11):1161–9. doi:10.1002/pon.1834.

    Article  PubMed  Google Scholar 

  92. Prado CM, Wells JC, Smith SR, Stephan BC, Siervo M. Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr. 2012;31(5):583–601.

    Article  CAS  PubMed  Google Scholar 

  93. Prado CM, Siervo M, Mire E, Heymsfield SB, Stephan BC, Broyles S, et al. A population-based approach to define body-composition phenotypes. Am J Clin Nutr. 2014;99(6):1369–77.

    Article  CAS  PubMed  Google Scholar 

  94. Demark-Wahnefried W, Peterson BL, Winer EP, Marks L, Aziz N, Marcom PK, et al. Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol. 2001;19(9):2381–9.

    CAS  PubMed  Google Scholar 

  95. Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr. 2014;38(8):940–53. doi:10.1177/0148607114550189. This review explores the value of various imaging techniques to assess body composition, and how these tools can enhance nutritional assessment.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33(5):997–1006. doi:10.1139/h08-075.

    Article  PubMed  Google Scholar 

  97. Murphy AJ, Ellis KJ, Kurpad AV, Preston T, Slater C. Total body potassium revisited. Eur J Clin Nutr. 2014;68(2):153–4. doi:10.1038/ejcn.2013.262.

    Article  CAS  PubMed  Google Scholar 

  98. Prado CM, Cushen SJ, Orsso CE, Ryan AM. Sarcopenia and cachexia in the era of obesity: clinical and nutritional impact. Proc Nutr Soc. In press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla M. Prado.

Ethics declarations

Conflict of Interest

Michael B. Sawyer has received compensation from Johnson & Johnson for service as a consultant, for providing expert testimony, for the development educational presentations including service on speakers’ bureaus, and for the reimbursement of travel/accommodations expenses.

Sarah A. Purcell, Sarah A. Elliott, Candyce H. Kroenke, and Carla M. Prado declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Integrative Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purcell, S.A., Elliott, S.A., Kroenke, C.H. et al. Impact of Body Weight and Body Composition on Ovarian Cancer Prognosis. Curr Oncol Rep 18, 8 (2016). https://doi.org/10.1007/s11912-015-0488-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-015-0488-3

Keywords

Navigation