Skip to main content

Advertisement

Log in

Vagus Nerve Stimulation in Ischemic Stroke

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Vagus nerve stimulation (VNS) has emerged as a potential therapeutic approach for neurological and psychiatric disorders. In recent years, there has been increasing interest in VNS for treating ischemic stroke. This review discusses the evidence supporting VNS as a treatment option for ischemic stroke and elucidates its underlying mechanisms.

Recent Findings

Preclinical studies investigating VNS in stroke models have shown reduced infarct volumes and improved neurological deficits. Additionally, VNS has been found to reduce reperfusion injury. VNS may promote neuroprotection by reducing inflammation, enhancing cerebral blood flow, and modulating the release of neurotransmitters. Additionally, VNS may stimulate neuroplasticity, thereby facilitating post-stroke recovery.

Summary

The Food and Drug Administration has approved invasive VNS (iVNS) combined with rehabilitation for ischemic stroke patients with moderate to severe upper limb deficits. However, iVNS is not feasible in acute stroke due to its time-sensitive nature. Non-invasive VNS (nVNS) may be an alternative approach for treating ischemic stroke. While the evidence from preclinical studies and clinical trials of nVNS is promising, the mechanisms through which VNS exerts its beneficial effects on ischemic stroke are still being elucidated. Therefore, further research is needed to better understand the efficacy and underlying mechanisms of nVNS in ischemic stroke. Moreover, large-scale randomized clinical trials are necessary to determine the optimal nVNS protocols, assess its long-term effects on stroke recovery and outcomes, and identify the potential benefits of combining nVNS with other rehabilitation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ABVN:

Auricular branch of the vagus nerve

AIS:

Acute ischemic stroke

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

CSD:

Cortical spreading depolarization

FDA:

Food and Drug Administration

GDF11:

Growth differentiation factor 11

ICH:

Intracerebral hemorrhage

LC:

Locus coeruleus

LC3:

Light chain 3

L-PGDS:

Lipocalin-type prostaglandin D synthase

IL:

Interleukin

MCAo:

Middle cerebral artery occlusion

mRS:

Modified Rankin scale

NIHSS:

National Institute of Health stroke scale

NTS:

Nucleus tractus solitarius

nVNS:

Non-invasive vagus nerve stimulation

PPAR-γ:

Peroxisome proliferator-activated receptor-gamma

rIL-17A:

Recombinant IL-17A

TBI:

Traumatic brain injury

taVNS:

Transcutaneous auricular vagus nerve stimulation

tcVNS:

Transcutaneous cervical vagus nerve stimulation

VEGF:

Vascular endothelial growth factor

VNS:

Vagus nerve stimulation

α7nAChR:

α7 Nicotinic acetylcholine receptor subunit

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Collaborators GS. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820. https://doi.org/10.1016/s1474-4422(21)00252-0.

    Article  CAS  Google Scholar 

  2. Chapman SN, Mehndiratta P, Johansen MC, McMurry TL, Johnston KC, Southerland AM. Current perspectives on the use of intravenous recombinant tissue plasminogen activator (tPA) for treatment of acute ischemic stroke. Vasc Health Risk Manag. 2014;10:75–87. https://doi.org/10.2147/vhrm.S39213.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kameda-Smith MM, Pai AM, Jung Y, Duda T, van Adel B. Advances in mechanical thrombectomy for acute ischemic stroke due to large vessel occlusion. Crit Rev Biomed Eng. 2021;49(5):13–70. https://doi.org/10.1615/CritRevBiomedEng.2022042563.

    Article  PubMed  Google Scholar 

  4. Boode B, Welzen V, Franke C, van Oostenbrugge R. Estimating the number of stroke patients eligible for thrombolytic treatment if delay could be avoided. Cerebrovasc Dis. 2007;23(4):294–8. https://doi.org/10.1159/000098330.

    Article  PubMed  Google Scholar 

  5. MacKenzie IER, Moeini-Naghani I, Sigounas D. Trends in endovascular mechanical thrombectomy in treatment of acute ischemic stroke in the United States. World Neurosurg. 2020;138:e839–46. https://doi.org/10.1016/j.wneu.2020.03.105.

    Article  PubMed  Google Scholar 

  6. Lanska DJJL. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology. 2002;58(3):452–9. https://doi.org/10.1212/wnl.58.3.452.

    Article  PubMed  Google Scholar 

  7. • O’Reardon JP, Cristancho P, Peshek AD. Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond. Psychiatry (Edgmont). 2006;3(5):54–63. This review explores VNS’s efficacy and safety, providing insights for clinicians considering it as a treatment option for severe depression.

  8. • Afra P, Adamolekun B, Aydemir S, Watson GDR. Evolution of the vagus nerve stimulation (VNS) therapy system technology for drug-resistant epilepsy. Front Med Technol. 2021;3:696543. https://doi.org/10.3389/fmedt.2021.696543. This review discusses the system’s evolution, device approval milestones, and compares open-loop and closed-loop generator models. It also includes battery life projections and examines stimulation mode interactions to differentiate between generator models.

  9. Liu CY, Russin J, Adelson DP, Jenkins A, Hilmi O, Brown B, et al. Vagus nerve stimulation paired with rehabilitation for stroke: implantation experience from the VNS-REHAB trial. J Clin Neurosci. 2022;105:122–8. https://doi.org/10.1016/j.jocn.2022.09.013.

    Article  PubMed  Google Scholar 

  10. Vargas-Caballero M, Warming H, Walker R, Holmes C, Cruickshank G, Patel B. Vagus nerve stimulation as a potential therapy in early Alzheimer’s disease: a review. Front Hum Neurosci. 2022;16:866434. https://doi.org/10.3389/fnhum.2022.866434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Sigurdsson HP, Raw R, Hunter H, Baker MR, Taylor JP, Rochester L, et al. Noninvasive vagus nerve stimulation in Parkinson’s disease: current status and future prospects. Expert Rev Med Devices. 2021;18(10):971–84. https://doi.org/10.1080/17434440.2021.1969913. This review explores the potential of nVNS as a novel therapy for improving gait, cognitive control, and managing non-motor symptoms in PD. While early findings suggest promise in addressing gait issues in early PD, further research is needed to establish nVNS as an effective therapeutic approach in PD and related conditions.

  12. Neren D, Johnson MD, Legon W, Bachour SP, Ling G, Divani AA. Vagus nerve stimulation and other neuromodulation methods for treatment of traumatic brain injury. Neurocrit Care. 2016;24(2):308–19. https://doi.org/10.1007/s12028-015-0203-0.

    Article  CAS  PubMed  Google Scholar 

  13. • Divani AA, Salazar P, Ikram HA, Taylor E, Wilson CM, Yang Y, et al. Non-invasive vagus nerve stimulation improves brain lesion volume and neurobehavioral outcomes in a rat model of traumatic brain injury. J Neurotrauma. 2023;40(13–14):1481–94. https://doi.org/10.1089/neu.2022.0153. A study assessed nVNS in a rat model of TBI. Rats were divided into control, low-dose nVNS, and high-dose nVNS groups. High-dose nVNS significantly reduced brain lesion volume, improved neurobehavioral performance, and reduced cortical volume loss compared to the control and low-dose groups. This suggests the potential of nVNS as an acute treatment for TBI with broad clinical implications.

  14. • Yakunina N, Nam EC. Direct and transcutaneous vagus nerve stimulation for treatment of tinnitus: a scoping review. Front Neurosci. 2021;15:680590. https://doi.org/10.3389/fnins.2021.680590. This review discusses the current state of knowledge, safety, and effectiveness of both VNS and tVNS, either alone or with acoustic stimulation, in treating tinnitus in human subjects, highlighting existing limitations in the field.

  15. Wu Y, Song L, Wang X, Li N, Zhan S, Rong P, et al. Transcutaneous vagus nerve stimulation could improve the effective rate on the quality of sleep in the treatment of primary insomnia: a randomized control trial. Brain Sci. 2022;12(10):1296. https://doi.org/10.3390/brainsci12101296.

    Article  PubMed  PubMed Central  Google Scholar 

  16. • Hasan MY, Siran R, Mahadi MK. The effects of vagus nerve stimulation on animal models of stroke-induced injury: a systematic review. Biology (Basel). 2023;12(4):555. https://doi.org/10.3390/biology12040555VNS shows potential in improving neurological scores, reducing infarct volume, and influencing various cellular processes.

  17. Mwamburi M, Liebler EJ, Tenaglia AT. Review of non-invasive vagus nerve stimulation (gammaCore): efficacy, safety, potential impact on comorbidities, and economic burden for episodic and chronic cluster headache. Am J Manag Care. 2017;23(17 Suppl):S317–25.

    PubMed  Google Scholar 

  18. Arsava EM, Topcuoglu MA, Ay I, Ozdemir AO, Gungor IL, Togay Isikay C, et al. Assessment of safety and feasibility of non-invasive vagus nerve stimulation for treatment of acute stroke. Brain Stimul. 2022;15(6):1467–74. https://doi.org/10.1016/j.brs.2022.10.012.

    Article  PubMed  Google Scholar 

  19. van der Meij A, van Walderveen MAA, Kruyt ND, van Zwet EW, Liebler EJ, Ferrari MD, et al. NOn-invasive Vagus nerve stimulation in acute Ischemic Stroke (NOVIS): a study protocol for a randomized clinical trial. Trials. 2020;21(1):878. https://doi.org/10.1186/s13063-020-04794-1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Duris K, Lipkova J, Jurajda M. Cholinergic anti-inflammatory pathway and stroke. Curr Drug Deliv. 2017;14(4):449–57. https://doi.org/10.2174/1567201814666170201150015.

    Article  CAS  PubMed  Google Scholar 

  21. Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosc : Basic Clin. 2000;85(1–3):1–17. https://doi.org/10.1016/s1566-0702(00)00215-0.

    Article  CAS  Google Scholar 

  22. Fonseca MT, Moretti EH, Marques LMM, Machado BF, Brito CF, Guedes JT, et al. A leukotriene-dependent spleen-liver axis drives TNF production in systemic inflammation. Sci Signal. 2021;14(679):eabb0969. https://doi.org/10.1126/scisignal.abb0969.

    Article  CAS  PubMed  Google Scholar 

  23. Jarczyk J, Yard BA, Hoeger S. The cholinergic anti-inflammatory pathway as a conceptual framework to treat inflammation-mediated renal injury. Kidney Blood Press Res. 2019;44(4):435–48. https://doi.org/10.1159/000500920.

    Article  CAS  PubMed  Google Scholar 

  24. Berthoud HR, Powley TL. Interaction between parasympathetic and sympathetic nerves in prevertebral ganglia: morphological evidence for vagal efferent innervation of ganglion cells in the rat. Microsc Res Tech. 1996;35(1):80–6. https://doi.org/10.1002/(sici)1097-0029(19960901)35:1%3c80::Aid-jemt7%3e3.0.Co;2-w.

    Article  CAS  PubMed  Google Scholar 

  25. Berthoud HR, Powley TL. Characterization of vagal innervation to the rat celiac, suprarenal and mesenteric ganglia. J Auton Nerv Syst. 1993;42(2):153–69. https://doi.org/10.1016/0165-1838(93)90046-w.

    Article  CAS  PubMed  Google Scholar 

  26. Janitzky K. Impaired phasic discharge of locus coeruleus neurons based on persistent high tonic discharge-a new hypothesis with potential implications for neurodegenerative diseases. Front Neurol. 2020;11:371. https://doi.org/10.3389/fneur.2020.00371.

    Article  PubMed  PubMed Central  Google Scholar 

  27. •• Dawson J, Pierce D, Dixit A, Kimberley TJ, Robertson M, Tarver B, et al. Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke. 2016;47(1):143–50. https://doi.org/10.1161/strokeaha.115.010477. A clinical pilot study involving participants with moderate to severe upper-limb impairment after ischemic stroke explored the safety and feasibility of VNS paired with rehabilitation. The VNS group experienced minor side effects, and the study found that VNS paired with rehabilitation showed a significant improvement in upper-limb function compared to rehabilitation alone in the per-protocol analysis.

  28. Safi S, Ellrich J, Neuhuber W. Myelinated axons in the auricular branch of the human vagus nerve. Anat Rec (Hoboken, NJ : 2007). 2016;299(9):1184–91. https://doi.org/10.1002/ar.23391.

    Article  Google Scholar 

  29. Redgrave J, Day D, Leung H, Laud PJ, Ali A, Lindert R, et al. Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review. Brain Stimul. 2018;11(6):1225–38. https://doi.org/10.1016/j.brs.2018.08.010.

    Article  CAS  PubMed  Google Scholar 

  30. Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice. Front Neurosci. 2020;14:284. https://doi.org/10.3389/fnins.2020.00284.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hulsey DR, Hays SA, Khodaparast N, Ruiz A, Das P, Rennaker RL 2nd, et al. Reorganization of motor cortex by vagus nerve stimulation requires cholinergic innervation. Brain Stimul. 2016;9(2):174–81. https://doi.org/10.1016/j.brs.2015.12.007.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dorr AE, Debonnel G. Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J Pharmacol Exp Ther. 2006;318(2):890–8. https://doi.org/10.1124/jpet.106.104166.

    Article  CAS  PubMed  Google Scholar 

  33. Engineer ND, Kimberley TJ, Prudente CN, Dawson J, Tarver WB, Hays SA. Targeted vagus nerve stimulation for rehabilitation after stroke. Front Neurosci. 2019;13:280. https://doi.org/10.3389/fnins.2019.00280.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li J, Zhang Q, Li S, Niu L, Ma J, Wen L, et al. α7nAchR mediates transcutaneous auricular vagus nerve stimulation-induced neuroprotection in a rat model of ischemic stroke by enhancing axonal plasticity. Neurosci Lett. 2020;730:135031. https://doi.org/10.1016/j.neulet.2020.135031.

    Article  CAS  PubMed  Google Scholar 

  35. Meyers EC, Solorzano BR, James J, Ganzer PD, Lai ES, Rennaker RL 2nd, et al. Vagus nerve stimulation enhances stable plasticity and generalization of stroke recovery. Stroke. 2018;49(3):710–7. https://doi.org/10.1161/strokeaha.117.019202.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743–54. https://doi.org/10.1038/nrendo.2012.189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117(2):289–96. https://doi.org/10.1172/jci30555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Czura CJ, Rosas-Ballina M, Tracey KJ. CHAPTER 3 - cholinergic regulation of inflammation. In: Ader R, editor. Psychoneuroimmunology. 4th ed. Burlington: Academic Press; 2007. p. 85–96.

    Chapter  Google Scholar 

  39. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62. https://doi.org/10.1038/35013070.

    Article  CAS  PubMed  Google Scholar 

  40. Yang LY, Bhaskar K, Thompson J, Duval K, Torbey M, Yang Y. Non-invasive vagus nerve stimulation reduced neuron-derived IL-1β and neuroinflammation in acute ischemic rat brain. Brain Hemorrhages. 2022;3(2):45–56. https://doi.org/10.1016/j.hest.2021.06.003.

    Article  CAS  Google Scholar 

  41. • Xiang YX, Wang WX, Xue Z, Zhu L, Wang SB, Sun ZH. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism. Neural Regen Res. 2015;10(4):576–82. https://doi.org/10.4103/1673-5374.155430. VNS was tested in a rat model of focal cerebral ischemia. VNS significantly reduced infarct volume, improved neurological function, and decreased levels of inflammatory markers in the ischemic brain. This suggests that the neuroprotective effects of VNS may be linked to the inhibition of inflammation in response to cerebral ischemia.

  42. Ay I, Nasser R, Simon B, Ay H. Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats. Brain Stimul. 2016;9(2):166–73. https://doi.org/10.1016/j.brs.2015.11.008.

    Article  PubMed  Google Scholar 

  43. Zhao XP, Zhao Y, Qin XY, Wan LY, Fan XX. Non-invasive vagus nerve stimulation protects against cerebral ischemia/reperfusion injury and promotes microglial M2 polarization via interleukin-17A inhibition. J Mol Neurosc : MN. 2019;67(2):217–26. https://doi.org/10.1007/s12031-018-1227-7.

    Article  CAS  Google Scholar 

  44. Lu XX, Hong ZQ, Tan Z, Sui MH, Zhuang ZQ, Liu HH, et al. Nicotinic acetylcholine receptor alpha7 subunit mediates vagus nerve stimulation-induced neuroprotection in acute permanent cerebral ischemia by a7nAchR/JAK2 pathway. Med Sci Monit : Int Med J Exp Clin Res. 2017;23:6072–81. https://doi.org/10.12659/msm.907628.

    Article  CAS  Google Scholar 

  45. Lerman I, Hauger R, Sorkin L, Proudfoot J, Davis B, Huang A, et al. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial. Neuromodulation : J Int Neuromodulation Soc. 2016;19(3):283–90. https://doi.org/10.1111/ner.12398.

    Article  Google Scholar 

  46. Zhao JJ, Wang ZH, Zhang YJ, Wang WJ, Cheng AF, Rong PJ, et al. The mechanisms through which auricular vagus nerve stimulation protects against cerebral ischemia/reperfusion injury. Neural Regen Res. 2022;17(3):594–600. https://doi.org/10.4103/1673-5374.320992.

    Article  CAS  PubMed  Google Scholar 

  47. Jiang Y, Li L, Liu B, Zhang Y, Chen Q, Li C. PPARγ upregulation induced by vagus nerve stimulation exerts anti-inflammatory effect in cerebral ischemia/reperfusion rats. Med Sci Monit : Int Med J Exp Clin Res. 2015;21:268–75.

    Article  CAS  Google Scholar 

  48. Ma J, Qiao P, Li Q, Wang Y, Zhang L, Yan LJ, et al. Vagus nerve stimulation as a promising adjunctive treatment for ischemic stroke. Neurochem Int. 2019;131:104539. https://doi.org/10.1016/j.neuint.2019.104539.

    Article  CAS  PubMed  Google Scholar 

  49. Ekici F, Karson A, Dillioglugil MO, Gurol G, Kir HM, Ates N. The effects of vagal nerve stimulation in focal cerebral ischemia and reperfusion model. Turk Neurosurg. 2013;23(4):451–7. https://doi.org/10.5137/1019-5149.Jtn.7114-12.1.

    Article  PubMed  Google Scholar 

  50. Miyamoto O, Pang J, Sumitani K, Negi T, Hayashida Y, Itano T. Mechanisms of the anti-ischemic effect of vagus nerve stimulation in the gerbil hippocampus. NeuroReport. 2003;14(15):1971–4. https://doi.org/10.1097/00001756-200310270-00018.

    Article  PubMed  Google Scholar 

  51. Jiang Y, Li L, Tan X, Liu B, Zhang Y, Li C. miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. J Neurochem. 2015;134(1):173–81. https://doi.org/10.1111/jnc.13097.

    Article  CAS  PubMed  Google Scholar 

  52. Jiang Y, Li L, Liu B, Zhang Y, Chen Q, Li C. Vagus nerve stimulation attenuates cerebral ischemia and reperfusion injury via endogenous cholinergic pathway in rat. PLoS one. 2014;9(7):e102342. https://doi.org/10.1371/journal.pone.0102342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang L, Ma J, Jin X, Jia G, Jiang Y, Li C. L-PGDS mediates vagus nerve stimulation-induced neuroprotection in a rat model of ischemic stroke by suppressing the apoptotic response. Neurochem Res. 2017;42(2):644–55. https://doi.org/10.1007/s11064-016-2121-8.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang LN, Zhang XW, Li CQ, Guo J, Chen YP, Chen SL. Vagal nerve stimulation protects against cerebral ischemia-reperfusion injury in rats by inhibiting autophagy and apoptosis. Neuropsychiatr Dis Treat. 2021;17:905–13. https://doi.org/10.2147/ndt.S300535.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yang Y, Yang LY, Orban L, Cuylear D, Thompson J, Simon B, et al. Non-invasive vagus nerve stimulation reduces blood-brain barrier disruption in a rat model of ischemic stroke. Brain Stimul. 2018;11(4):689–98. https://doi.org/10.1016/j.brs.2018.01.034.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tang H, Li J, Zhou Q, Li S, Xie C, Niu L, et al. Vagus nerve stimulation alleviated cerebral ischemia and reperfusion injury in rats by inhibiting pyroptosis via α7 nicotinic acetylcholine receptor. Cell Death Disc. 2022;8(1):54. https://doi.org/10.1038/s41420-022-00852-6.

    Article  CAS  Google Scholar 

  57. •• Sun Z, Baker W, Hiraki T, Greenberg JH. The effect of right vagus nerve stimulation on focal cerebral ischemia: an experimental study in the rat. Brain Stimul. 2012;5(1):1–10. https://doi.org/10.1016/j.brs.2011.01.009. VNS was tested on rats with transient and permanent cerebral ischemia. It reduced the size of ischemic lesions in both groups, with better neurological scores in the temporary ischemia group. Notably, VNS did not significantly affect cerebral blood flow during ischemia. VNS shows potential for clinical translation as a neuroprotective treatment for stroke.

  58. Lopez NE, Krzyzaniak MJ, Costantini TW, Putnam J, Hageny AM, Eliceiri B, et al. Vagal nerve stimulation decreases blood-brain barrier disruption after traumatic brain injury. J Trauma Acute Care Surg. 2012;72(6):1562–6. https://doi.org/10.1097/TA.0b013e3182569875.

    Article  PubMed  Google Scholar 

  59. Ma J, Zhang L, He G, Tan X, Jin X, Li C. Transcutaneous auricular vagus nerve stimulation regulates expression of growth differentiation factor 11 and activin-like kinase 5 in cerebral ischemia/reperfusion rats. J Neurol Sci. 2016;369:27–35. https://doi.org/10.1016/j.jns.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  60. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science (New York, NY). 2014;344(6184):630–4. https://doi.org/10.1126/science.1251141.

    Article  CAS  Google Scholar 

  61. Li J, Zhang K, Zhang Q, Zhou X, Wen L, Ma J, et al. PPAR-γ mediates Ta-VNS-induced angiogenesis and subsequent functional recovery after experimental stroke in rats. Biomed Res Int. 2020;2020:8163789. https://doi.org/10.1155/2020/8163789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Long L, Zang Q, Jia G, Fan M, Zhang L, Qi Y, et al. Transcutaneous auricular vagus nerve stimulation promotes white matter repair and improves dysphagia symptoms in cerebral ischemia model rats. Front Behav Neurosci. 2022;16:811419. https://doi.org/10.3389/fnbeh.2022.811419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiang Y, Li L, Ma J, Zhang L, Niu F, Feng T, et al. Auricular vagus nerve stimulation promotes functional recovery and enhances the post-ischemic angiogenic response in an ischemia/reperfusion rat model. Neurochem Int. 2016;97:73–82. https://doi.org/10.1016/j.neuint.2016.02.009.

    Article  CAS  PubMed  Google Scholar 

  64. Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev. 2015;95(3):953–93. https://doi.org/10.1152/physrev.00027.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. von Bornstädt D, Houben T, Seidel JL, Zheng Y, Dilekoz E, Qin T, et al. Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origins of spreading injury depolarizations. Neuron. 2015;85(5):1117–31. https://doi.org/10.1016/j.neuron.2015.02.007.

    Article  CAS  Google Scholar 

  66. Shin HK, Dunn AK, Jones PB, Boas DA, Moskowitz MA, Ayata C. Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J Cereb Blood Flow Metab. 2006;26(8):1018–30. https://doi.org/10.1038/sj.jcbfm.9600252.

    Article  PubMed  Google Scholar 

  67. Lindemann J, Rakers C, Matuskova H, Simon BJ, Kinfe T, Petzold GC. Vagus nerve stimulation reduces spreading depolarization burden and cortical infarct volume in a rat model of stroke. PLoS one. 2020;15(7):e0236444. https://doi.org/10.1371/journal.pone.0236444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen SP, Ay I, Lopes de Morais A, Qin T, Zheng Y, Sadeghian H, et al. Vagus nerve stimulation inhibits cortical spreading depression. Pain. 2016;157(4):797–805. https://doi.org/10.1097/j.pain.0000000000000437.

    Article  PubMed  PubMed Central  Google Scholar 

  69. •• Morais A, Liu TT, Qin T, Sadhegian H, Ay I, Yagmur D, et al. Vagus nerve stimulation inhibits cortical spreading depression exclusively through central mechanisms. Pain. 2020;161(7):1661–9. https://doi.org/10.1097/j.pain.0000000000001856. VNS is a promising migraine treatment, but its mechanisms are unclear. In a study with rats, invasive VNS significantly reduced cortical spreading depression (CSD) susceptibility when delivered through an intact vagus nerve, with proximal vagotomy abolishing this effect. Noninvasive VNS suppresses CSD through central afferents involving the nucleus tractus solitarius and subcortical neuromodulatory centers, which provide serotonin and norepinephrine innervation to the cortex. These findings shed light on how VNS may alleviate migraines.

  70. Liu TT, Morais A, Takizawa T, Mulder I, Simon BJ, Chen SP, et al. Efficacy profile of noninvasive vagus nerve stimulation on cortical spreading depression susceptibility and the tissue response in a rat model. J Headache Pain. 2022;23(1):12. https://doi.org/10.1186/s10194-022-01384-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 2018;12:49. https://doi.org/10.3389/fnins.2018.00049.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays. 2011;33(8):574–81. https://doi.org/10.1002/bies.201100024.

    Article  CAS  PubMed  Google Scholar 

  73. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016;39(11):763–81. https://doi.org/10.1016/j.tins.2016.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bruning J, Chapp A, Kaurala GA, Wang R, Techtmann S, Chen QH. Gut microbiota and short chain fatty acids: influence on the autonomic nervous system. Neurosci Bull. 2020;36(1):91–5. https://doi.org/10.1007/s12264-019-00410-8.

    Article  CAS  PubMed  Google Scholar 

  75. Chidambaram SB, Rathipriya AG, Mahalakshmi AM, Sharma S, Hediyal TA, Ray B, et al. The influence of gut dysbiosis in the pathogenesis and management of ischemic stroke. Cells. 2022;11(7):1239. https://doi.org/10.3390/cells11071239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sinagra E, Pellegatta G, Guarnotta V, Maida M, Rossi F, Conoscenti G, et al. Microbiota gut-brain axis in ischemic stroke: a narrative review with a focus about the relationship with inflammatory bowel disease. Life (Basel). 2021;11(7):715. https://doi.org/10.3390/life11070715.

    Article  PubMed  Google Scholar 

  77. Battaglini D, Pimentel-Coelho PM, Robba C, Dos Santos CC, Cruz FF, Pelosi P, et al. Gut microbiota in acute ischemic stroke: from pathophysiology to therapeutic implications. Front Neurol. 2020;11:598. https://doi.org/10.3389/fneur.2020.00598.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huang L, Wang T, Wu Q, Dong X, Shen F, Liu D, et al. Analysis of microbiota in elderly patients with acute cerebral infarction. PeerJ. 2019;7:e6928. https://doi.org/10.7717/peerj.6928.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kilgard MP, Rennaker RL, Alexander J, Dawson J. Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient. NeuroRehabilitation. 2018;42(2):159–65. https://doi.org/10.3233/nre-172273.

    Article  PubMed  Google Scholar 

  80. Kimberley TJ, Pierce D, Prudente CN, Francisco GE, Yozbatiran N, Smith P, et al. Vagus nerve stimulation paired with upper limb rehabilitation after chronic stroke. Stroke. 2018;49(11):2789–92. https://doi.org/10.1161/strokeaha.118.022279.

    Article  PubMed  Google Scholar 

  81. •• Dawson J, Liu CY, Francisco GE, Cramer SC, Wolf SL, Dixit A, et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet (London, England). 2021;397(10284):1545–53. https://doi.org/10.1016/s0140-6736(21)00475-x. In a pivotal trial, VNS paired with rehabilitation was tested as a treatment for long-term arm impairment after ischemic stroke. The VNS group showed a significant increase in the FMA-UE score compared to the control group on the first day after in-clinic therapy. Ninety days after therapy, a clinically meaningful FMA-UE score response was observed in a higher percentage of VNS-treated patients. VNS paired with rehabilitation appears promising for such patients.

  82. Gao Y, Zhu Y, Lu X, Wang N, Zhu S, Gong J, et al. Vagus nerve stimulation paired with rehabilitation for motor function, mental health and activities of daily living after stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2023;94(4):257–66. https://doi.org/10.1136/jnnp-2022-329275.

    Article  PubMed  Google Scholar 

  83. Xue T, Yan Z, Meng J, Wang W, Chen S, Wu X, et al. Efficacy of neurostimulations for upper extremity function recovery after stroke: a systematic review and network meta-analysis. J Clin Med. 2022;11(20):6162. https://doi.org/10.3390/jcm11206162.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ananda R, Roslan MHB, Wong LL, Botross NP, Ngim CF, Mariapun J. Efficacy and safety of vagus nerve stimulation in stroke rehabilitation: a systematic review and meta-analysis. Cerebrovasc Dis. 2023;52(3):239–50. https://doi.org/10.1159/000526470.

    Article  CAS  PubMed  Google Scholar 

  85. Wu D, Ma J, Zhang L, Wang S, Tan B, Jia G. Effect and safety of transcutaneous auricular vagus nerve stimulation on recovery of upper limb motor function in subacute ischemic stroke patients: a randomized pilot study. Neural Plast. 2020;2020:8841752. https://doi.org/10.1155/2020/8841752.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Capone F, Miccinilli S, Pellegrino G, Zollo L, Simonetti D, Bressi F, et al. Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plast. 2017;2017:7876507. https://doi.org/10.1155/2017/7876507.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Redgrave JN, Moore L, Oyekunle T, Ebrahim M, Falidas K, Snowdon N, et al. Transcutaneous auricular vagus nerve stimulation with concurrent upper limb repetitive task practice for poststroke motor recovery: a pilot study. J Stroke Cerebrovasc Dis : Off J Natl Stroke Assoc. 2018;27(7):1998–2005. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.056.

    Article  Google Scholar 

  88. Baig SS, Falidas K, Laud PJ, Snowdon N, Farooq MU, Ali A, et al. Transcutaneous auricular vagus nerve stimulation with upper limb repetitive task practice may improve sensory recovery in chronic stroke. J Stroke Cerebrovasc Dis : Off J Natl Stroke Assoc. 2019;28(12):104348. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104348.

    Article  Google Scholar 

  89. Li L, Wang D, Pan H, Huang L, Sun X, He C, et al. Non-invasive vagus nerve stimulation in cerebral stroke: current status and future perspectives. Front Neurosci. 2022;16:820665. https://doi.org/10.3389/fnins.2022.820665.

    Article  PubMed  PubMed Central  Google Scholar 

  90. •• Murphy AJ, O’Neal AG, Cohen RA, Lamb DG, Porges EC, Bottari SA, et al. The effects of transcutaneous vagus nerve stimulation on functional connectivity within semantic and hippocampal networks in mild cognitive impairment. Neurother : J Am Soc Exp NeuroTher. 2023;20(2):419–30. https://doi.org/10.1007/s13311-022-01318-4. tVNS shows potential as a noninvasive therapeutic intervention for mild cognitive impairment (MCI) and Alzheimer’s disease (AD). In a study with 50 MCI patients, tVNS altered brain network activity related to semantic and salience functions, as well as connectivity between the hippocampus and various brain regions. These findings suggest that tVNS could be beneficial in MCI and AD populations.

  91. Wang C, Cao X, Gao Z, Liu Y, Wen Z. Training and transfer effects of combining inhibitory control training with transcutaneous vagus nerve stimulation in healthy adults. Front Psychol. 2022;13:858938. https://doi.org/10.3389/fpsyg.2022.858938.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Flood JF, Smith GE, Morley JE. Modulation of memory processing by cholecystokinin: dependence on the vagus nerve. Science (New York, NY). 1987;236(4803):832–4. https://doi.org/10.1126/science.3576201.

    Article  CAS  Google Scholar 

  93. Flood JF, Morley JE. Effects of bombesin and gastrin-releasing peptide on memory processing. Brain Res. 1988;460(2):314–22. https://doi.org/10.1016/0006-8993(88)90375-7.

    Article  CAS  PubMed  Google Scholar 

  94. Tomaz C, Aguiar MS, Nogueira PJ. Facilitation of memory by peripheral administration of substance P and naloxone using avoidance and habituation learning tasks. Neurosci Biobehav Rev. 1990;14(4):447–53. https://doi.org/10.1016/s0149-7634(05)80067-3.

    Article  CAS  PubMed  Google Scholar 

  95. Lemaire M, Barnéoud P, Böhme GA, Piot O, Haun F, Roques BP, et al. CCK-A and CCK-B receptors enhance olfactory recognition via distinct neuronal pathways. Learn Mem. 1994;1(3):153–64.

    Article  CAS  PubMed  Google Scholar 

  96. Farrand A, Jacquemet V, Verner R, Owens M, Beaumont E. Vagus nerve stimulation parameters evoke differential neuronal responses in the locus coeruleus. Physiol Rep. 2023;11(5):e15633. https://doi.org/10.14814/phy2.15633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rodenkirch C, Carmel JB, Wang Q. Rapid effects of vagus nerve stimulation on sensory processing through activation of neuromodulatory systems. Front Neurosci. 2022;16:922424. https://doi.org/10.3389/fnins.2022.922424.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sarter M, Parikh V. Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci. 2005;6(1):48–56. https://doi.org/10.1038/nrn1588.

    Article  CAS  PubMed  Google Scholar 

  99. Parikh V, Kozak R, Martinez V, Sarter M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron. 2007;56(1):141–54. https://doi.org/10.1016/j.neuron.2007.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hasselmo ME, Sarter M. Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology. 2011;36(1):52–73. https://doi.org/10.1038/npp.2010.104.

    Article  CAS  PubMed  Google Scholar 

  101. Nichols JA, Nichols AR, Smirnakis SM, Engineer ND, Kilgard MP, Atzori M. Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience. 2011;189:207–14. https://doi.org/10.1016/j.neuroscience.2011.05.024.

    Article  CAS  PubMed  Google Scholar 

  102. Bowles S, Hickman J, Peng X, Williamson WR, Huang R, Washington K, et al. Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron. 2022;110(17):2867-85.e7. https://doi.org/10.1016/j.neuron.2022.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kim JO, Lee SJ, Pyo JS. Effect of acetylcholinesterase inhibitors on post-stroke cognitive impairment and vascular dementia: a meta-analysis. PLoS one. 2020;15(2):e0227820. https://doi.org/10.1371/journal.pone.0227820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. O’Sullivan MJ, Oestreich LKL, Wright P, Clarkson AN. Cholinergic and hippocampal systems facilitate cross-domain cognitive recovery after stroke. Brain. 2022;145(5):1698–710. https://doi.org/10.1093/brain/awac070.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Collins L, Boddington L, Steffan PJ, McCormick D. Vagus nerve stimulation induces widespread cortical and behavioral activation. Curr Biol. 2021;31(10):2088-98.e3. https://doi.org/10.1016/j.cub.2021.02.049.

    Article  CAS  PubMed  Google Scholar 

  106. Kahlow H, Olivecrona M. Complications of vagal nerve stimulation for drug-resistant epilepsy: a single center longitudinal study of 143 patients. Seizure. 2013;22(10):827–33. https://doi.org/10.1016/j.seizure.2013.06.011.

    Article  PubMed  Google Scholar 

  107. Grazzi L, Egeo G, Liebler E, Padovan AM, Barbanti P. Non-invasive vagus nerve stimulation (nVNS) as symptomatic treatment of migraine in young patients: a preliminary safety study. Neurol Sci. 2017;38(Suppl 1):197–9. https://doi.org/10.1007/s10072-017-2942-5.

    Article  PubMed  Google Scholar 

  108. Tornero C, Pastor E, Garzando MDM, Orduña J, Forner MJ, Bocigas I, et al. Non-invasive vagus nerve stimulation for COVID-19: results from a randomized controlled trial (SAVIOR I). Front Neurol. 2022;13:820864. https://doi.org/10.3389/fneur.2022.820864.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Martelletti P, Barbanti P, Grazzi L, Pierangeli G, Rainero I, Geppetti P, et al. Consistent effects of non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine: additional findings from the randomized, sham-controlled, double-blind PRESTO trial. J Headache Pain. 2018;19(1):101. https://doi.org/10.1186/s10194-018-0929-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Divani AA, Majidi S, Barrett AM, Noorbaloochi S, Luft AR. Consequences of stroke in community-dwelling elderly: the health and retirement study, 1998 to 2008. Stroke. 2011;42(7):1821–5. https://doi.org/10.1161/strokeaha.110.607630.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Huggins JE, Guger C, Ziat M, Zander TO, Taylor D, Tangermann M, et al. Workshops of the Sixth International Brain-Computer Interface Meeting: brain-computer interfaces past, present, and future. Brain Comput Interfaces (Abingdon). 2017;4(1–2):3–36. https://doi.org/10.1080/2326263x.2016.1275488.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the project and have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Afshin A. Divani.

Ethics declarations

Conflict of Interest

Sasan Andalib, Cenk Ayata, Ethem Murat Arsava, Mehmet Akif Topcuoglu, Eder Leonardo Cáceres, Vinay Parikh, Masoom J Desai, Sara Girolami, and Mario Di Napoli each declare no potential conflicts of interest.

Afshin A. Divani is supported by the National Institute of Neurological Disorders and Stroke (NINDS) grant # 1R21NS130423-01.

Sheharyar Baig is supported by the Association of British Neurologists Clinical Research Training Fellowship (co-funded by the Stroke Association and Berkeley Foundation). Sheharyar Baig and Arshad Majid are supported by the National Institute for Health Research (NIHR) Biomedical Research Centre, Sheffield, England. The expressed views are those of the authors and not necessarily those of the NINDS, the National Health Service (NHS), the NIHR, or the Department of Health and Social Care (DHSC).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Institutional Review Board

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andalib, S., Divani, A.A., Ayata, C. et al. Vagus Nerve Stimulation in Ischemic Stroke. Curr Neurol Neurosci Rep 23, 947–962 (2023). https://doi.org/10.1007/s11910-023-01323-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01323-w

Keywords

Navigation