Skip to main content

Advertisement

Log in

Dietary Insights in Neurological Diseases

  • Neurology of Systemic Diseases (J.Biller, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Dietary interventions may play a role in the pathophysiology of common neurological disorders such as Alzheimer’s disease, Parkinson’s disease, stroke, migraines, multiple sclerosis, and epilepsy. This article describes the most common and impactful dietary regimens for commonly encountered neurological disorders.

Recent Findings

Plant-based, low-fat, high-fiber diets, rich in antioxidants and other lifestyle interventions may reduce the burden and disability of common neurological disorders. The ketogenic diet, the diet of choice for the treatment of refractory epilepsy, is such an example.

Summary

Diverse neurological disorders demonstrate several common pathophysiological mechanisms including increased oxidative stress, neuroinflammation, and disrupted metabolism. Dietary interventions can potentially influence these pathophysiological processes and thus favorably alter clinical outcomes. Adequate dietary choices should be considered as part of a continuum of healthy lifestyle choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Crowley J, Ball L, Hiddink GJ. Nutrition in medical education: a systematic review. Lancet Planet Health. 2019;3(9):e379–89. https://doi.org/10.1016/S2542-5196(19)30171-8.. (Excellent article that highlights the importance of implementing nutrition in medical schools curricula.)

    Article  PubMed  Google Scholar 

  2. •• Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics—2021 Update: A Report From the American Heart Association. Circulation. 2021;143(8):e254–743. https://doi.org/10.1161/CIR.0000000000000950.. (This article illustrates the most significant risk factors for cardiovascular and cerebrovascular diseases.)

    Article  Google Scholar 

  3. Jardim TV, Mozaffarian D, Abrahams-Gessel S, Sy S, Lee Y, Liu J, Huang Y, Rehm C, Wilde P, Micha R, Gaziano TA. Cardiometabolic disease costs associated with suboptimal diet in the United States: a cost analysis based on a microsimulation model. PLoS Med. 2019;16(12):e1002981. https://doi.org/10.1371/journal.pmed.1002981.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alzheimer’s Association. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021;17(3):327–406.

    Article  Google Scholar 

  5. •• Schwartz HEM, Bay CP, McFeeley BM, Krivanek TJ, Daffner KR, Gale SA. The Brain Health Champion study: health coaching changes behaviors in patients with cognitive impairment. Alzheimers Dement (N Y). 2019;12(5):771–9. https://doi.org/10.1016/j.trci.2019.09.008.. (Pilot study determining the importance of health coaching approach to reduce cognitive impairment.)

    Article  Google Scholar 

  6. Buettner D, Skemp S. Blue zones: lessons from the world’s longest lived. Am J Lifestyle Med. 2016;10(5):318–21. https://doi.org/10.1177/1559827616637066.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scarmeas N, Luchsinger JA, Mayeux R, Stern Y. Mediterranean diet and Alzheimer disease mortality. Neurology. 2007;69(11):1084–93.

    Article  Google Scholar 

  8. Berti V, Walters M, Sterling J, Quinn CG, Logue M, Andrews R, Matthews DC, Osorio RS, Pupi A, Vallabhajosula S, Isaacson RS, de Leon MJ, Mosconi L. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology. 2018;90(20):e1789–98. https://doi.org/10.1212/WNL.0000000000005527.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL, Bennett DA, Aggarwal NT. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11(9):1015–22. https://doi.org/10.1016/j.jalz.2015.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  10. •• Van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM, van de Rest O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease—a review. Adv Nutr. 2019;10(6):1040–65. https://doi.org/10.1093/advances/nmz054.. (Excellent review comparing recent evidence for Mediterranean, DASH, and MIND diets associated with less cognitive impairment.)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smith PJ, Blumenthal JA, Babyak MA, Craighead L, Welsh-Bohmer KA, Browndyke JN, Strauman TA, Sherwood A. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension. 2010;55(6):1331–8. https://doi.org/10.1161/HYPERTENSIONAHA.109.146795.

    Article  CAS  PubMed  Google Scholar 

  12. Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015;11(9):1007–14. https://doi.org/10.1016/j.jalz.2014.11.009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barnard ND, Bunner AE, Agarwal U. Saturated and trans fats and dementia: a systematic review. Neurobiol Aging. 2014;35(Suppl 2):S65-73. https://doi.org/10.1016/j.neurobiolaging.2014.02.030.

    Article  CAS  PubMed  Google Scholar 

  14. Barnard ND, Bush AI, Ceccarelli A, Cooper J, de Jager CA, Erickson KI, Fraser G, Kesler S, Levin SM, Lucey B, Morris MC, Squitti R. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging. 2014;35(Suppl 2):S74–8. https://doi.org/10.1016/j.neurobiolaging.2014.03.033.

    Article  PubMed  Google Scholar 

  15. Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://doi.org/10.1159/000110296.

    Article  CAS  PubMed  Google Scholar 

  16. Reed B, Villeneuve S, Mack W, DeCarli C, Chui HC, Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 2014;71(2):195–200. https://doi.org/10.1001/jamaneurol.2013.5390.PMID:24378418;PMCID:PMC4083819.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Okereke OI, Rosner BA, Kim DH, Kang JH, Cook NR, Manson JE, Buring JE, Willett WC, Grodstein F. Dietary fat types and 4-year cognitive change in community-dwelling older women. Ann Neurol. 2012;72(1):124–34. https://doi.org/10.1002/ana.23593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hall K, Murrell J, Ogunniyi A, Deeg M, Baiyewu O, Gao S, Gureje O, Dickens J, Evans R, Smith-Gamble V, Unverzagt FW, Shen J, Hendrie H. Cholesterol, APOE genotype, and Alzheimer disease: an epidemiologic study of Nigerian Yoruba. Neurology. 2006;66(2):223–7. https://doi.org/10.1212/01.wnl.0000194507.39504.17.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Lebwohl B, Mehta R, Cao Y, Green PHR, Grodstein F, Jovani M, Lochhead P, Okereke OI, Sampson L, Willett WC, Sun Q, Chan AT. Long-term intake of gluten and cognitive function among US women. JAMA Netw Open. 2021;4(5):e2113020. https://doi.org/10.1001/jamanetworkopen.2021.13020.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sherzai D, Sherzai A. Preventing Alzheimer’s: our most urgent health care priority. Am J Lifestyle Med. 2019;13(5):451–61. https://doi.org/10.1177/1559827619843465.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14(11):653–66. https://doi.org/10.1038/s41582-018-0070-3.

    Article  PubMed  Google Scholar 

  22. Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, Bäckman L, Hänninen T, Jula A, Laatikainen T, Lindström J, Mangialasche F, Paajanen T, Pajala S, Peltonen M, Rauramaa R, Stigsdotter-Neely A, Strandberg T, Tuomilehto J, Soininen H, Kivipelto M. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63. https://doi.org/10.1016/S0140-6736(15)60461-5.

    Article  PubMed  Google Scholar 

  23. •• Kivipelto M, Mangialasche F, Snyder HM, Allegri R, Andrieu S, Arai H, Baker L, Belleville S, Brodaty H, Brucki SM, Calandri I, Caramelli P, Chen C, Chertkow H, Chew E, Choi SH, Chowdhary N, Crivelli L, Torre R, Du Y, Dua T, Espeland M, Feldman HH, Hartmanis M, Hartmann T, Heffernan M, Henry CJ, Hong CH, Håkansson K, Iwatsubo T, Jeong JH, Jimenez-Maggiora G, Koo EH, Launer LJ, Lehtisalo J, Lopera F, Martínez-Lage P, Martins R, Middleton L, Molinuevo JL, Montero-Odasso M, Moon SY, Morales-Pérez K, Nitrini R, Nygaard HB, Park YK, Peltonen M, Qiu C, Quiroz YT, Raman R, Rao N, Ravindranath V, Rosenberg A, Sakurai T, Salinas RM, Scheltens P, Sevlever G, Soininen H, Sosa AL, Suemoto CK, Tainta-Cuezva M, Velilla L, Wang Y, Whitmer R, Xu X, Bain LJ, Solomon A, Ngandu T, Carrillo MC. World-Wide FINGERS Network: a global approach to risk reduction and prevention of dementia. Alzheimers Dement. 2020;16(7):1078–94. https://doi.org/10.1002/alz.12123.. (Worldwide multidomain strategy to reduce and prevent dementia.)

    Article  PubMed  Google Scholar 

  24. • Erro R, Brigo F, Tamburin S, Zamboni M, Antonini A, Tinazzi M. Nutritional habits, risk, and progression of Parkinson disease. J Neurol. 2018;265(1):12–23. https://doi.org/10.1007/s00415-017-8639-0.. (Interesting review of nutritional factors that impact Parkinson’s disease.)

    Article  CAS  PubMed  Google Scholar 

  25. Gazerani P. Probiotics for Parkinson’s Disease. Int J Mol Sci. 2019;20(17):4121. https://doi.org/10.3390/ijms20174121.

    Article  CAS  PubMed Central  Google Scholar 

  26. Vanitallie TB, Nonas C, Di Rocco A, Boyar K, Hyams K, Heymsfield SB. Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology. 2005;64(4):728–30. https://doi.org/10.1212/01.WNL.0000152046.11390.45.

    Article  CAS  PubMed  Google Scholar 

  27. Zappia M, Crescibene L, Arabia G, Nicoletti G, Bagalà A, Bastone L, Caracciolo M, Bonavita S, Di Costanzo A, Scornaienchi M, Gambardella A, Quattrone A. Body weight influences pharmacokinetics of levodopa in Parkinson’s disease. Clin Neuropharmacol. 2002;25(2):79–82. https://doi.org/10.1097/00002826-200203000-00004.

    Article  CAS  PubMed  Google Scholar 

  28. Pincus JH, Barry KM. Plasma levels of amino acids correlate with motor fluctuations in parkinsonism. Arch Neurol. 1987;44(10):1006–9. https://doi.org/10.1001/archneur.1987.00520220012007.

    Article  CAS  PubMed  Google Scholar 

  29. Hughes KC, Gao X, Kim IY, Wang M, Weisskopf MG, Schwarzschild MA, Ascherio A. Intake of dairy foods and risk of Parkinson disease. Neurology. 2017;89(1):46–52. https://doi.org/10.1212/WNL.0000000000004057.

    Article  PubMed  PubMed Central  Google Scholar 

  30. •• Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics—2021 Update: A Report From the American Heart Association. Circulation. 2021;143(8):e254–743. https://doi.org/10.1161/CIR.0000000000000950.. (This article describes the most current epidemiology in stroke.)

    Article  Google Scholar 

  31. • Ayuso MI, Gonzalo-Gobernado R, Montaner J. Neuroprotective diets for stroke. Neurochem Int. 2017;107:4–10. https://doi.org/10.1016/j.neuint.2017.01.013.. (Excellent review for dietary interventions in stroke.)

    Article  CAS  PubMed  Google Scholar 

  32. Buil-Cosiales P, Toledo E, Salas-Salvadó J, Zazpe I, Farràs M, Basterra-Gortari FJ, Diez-Espino J, Estruch R, Corella D, Ros E, Marti A, Gómez-Gracia E, Ortega-Calvo M, Arós F, Moñino M, Serra-Majem L, Pintó X, Lamuela-Raventós RM, Babio N, Gonzalez JI, Fitó M, Martínez-González MA, PREDIMED investigators. Association between dietary fibre intake and fruit, vegetable or whole-grain consumption and the risk of CVD: results from the PREvención con DIeta MEDiterránea (PREDIMED) trial. Br J Nutr. 2016;116(3):534–46. https://doi.org/10.1017/S0007114516002099.

    Article  CAS  PubMed  Google Scholar 

  33. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-González MA, PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90. https://doi.org/10.1056/NEJMoa1200303.

    Article  CAS  Google Scholar 

  34. • Spence JD. Diet for stroke prevention. Stroke Vasc Neurol. 2018;3(2):44–50. https://doi.org/10.1136/svn-2017-000130.. (Excellent review article on stroke prevention)

    Article  PubMed  PubMed Central  Google Scholar 

  35. • Spence JD. Nutrition and risk of stroke. Nutrients. 2019;11(3):647. https://doi.org/10.3390/nu11030647.. (Excellent review article on stroke prevention)

    Article  CAS  PubMed Central  Google Scholar 

  36. Elagizi A, Lavie CJ, O’Keefe E, Marshall K, O’Keefe JH, Milani RV. An update on omega-3 polyunsaturated fatty acids and cardiovascular health. Nutrients. 2021;13(1):204. https://doi.org/10.3390/nu13010204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng Q, Fan S, Wu Y, Zhou D, Zhao R, Liu M, Song Y. Adherence to the dietary approaches to stop hypertension diet and risk of stroke: a meta-analysis of prospective studies. Medicine (Baltimore). 2018;97(38):e12450. https://doi.org/10.1097/MD.0000000000012450.

    Article  Google Scholar 

  38. D’Elia L, Barba G, Cappuccio FP, Strazzullo P. Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies. J Am Coll Cardiol. 2011;57(10):1210–9. https://doi.org/10.1016/j.jacc.2010.09.070.

    Article  CAS  PubMed  Google Scholar 

  39. Cherian L, Wang Y, Fakuda K, Leurgans S, Aggarwal N, Morris M. Mediterranean-Dash Intervention for Neurodegenerative Delay (MIND) diet slows cognitive decline after stroke. J Prev Alzheimers Dis. 2019;6(4):267–73. https://doi.org/10.14283/jpad.2019.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. •• Baden MY, Shan Z, Wang F, Li Y, Manson JE, Rimm EB, Willett WC, Hu FB, Rexrode KM. Quality of plant-based diet and risk of total, ischemic, and hemorrhagic stroke. Neurology. 2021;96(15):e1940–53. https://doi.org/10.1212/WNL.0000000000011713.. (Very recent study showing that healthful plant-based diet lowers total stroke risk.)

    Article  CAS  PubMed  Google Scholar 

  41. Alexander S, Ostfeld RJ, Allen K, Williams KA. A plant-based diet and hypertension. J Geriatr Cardiol. 2017;14(5):327–30. https://doi.org/10.11909/j.issn.1671-5411.2017.05.014.

    Article  PubMed  PubMed Central  Google Scholar 

  42. • Meschia JF, Bushnell C, Boden-Albala B, Braun LT, Bravata DM, Chaturvedi S, Creager MA, Eckel RH, Elkind MS, Fornage M, Goldstein LB, Greenberg SM, Horvath SE, Iadecola C, Jauch EC, Moore WS, Wilson JA, American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Functional Genomics and Translational Biology; Council on Hypertension. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(12):3754–832. https://doi.org/10.1161/STR.0000000000000046.. (Important guidelines regarding primary stroke prevention.)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Threapleton DE, Greenwood DC, Evans CE, Cleghorn CL, Nykjaer C, Woodhead C, Cade JE, Gale CP, Burley VJ. Dietary fiber intake and risk of first stroke: a systematic review and meta-analysis. Stroke. 2013;44(5):1360–8. https://doi.org/10.1161/STROKEAHA.111.000151.

    Article  CAS  PubMed  Google Scholar 

  44. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393(10170):434–45. https://doi.org/10.1016/S0140-6736(18)31809-9.

    Article  CAS  PubMed  Google Scholar 

  45. Van de Laar RJ, Stehouwer CD, van Bussel BC, te Velde SJ, Prins MH, Twisk JW, Ferreira I. Lower lifetime dietary fiber intake is associated with carotid artery stiffness: the Amsterdam Growth and Health Longitudinal Study. Am J Clin Nutr. 2012;96(1):14–23. https://doi.org/10.3945/ajcn.111.024703.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao B, Hu L, Dong Y, Xu J, Wei Y, Yu D, Xu J, Zhang W. The effect of magnesium intake on stroke incidence: a systematic review and meta-analysis with trial sequential analysis. Front Neurol. 2019;7(10):852. https://doi.org/10.3389/fneur.2019.00852.

    Article  Google Scholar 

  47. Rautiainen S, Larsson S, Virtamo J, Wolk A. Total antioxidant capacity of diet and risk of stroke: a population-based prospective cohort of women. Stroke. 2012;43(2):335–40. https://doi.org/10.1161/STROKEAHA.111.635557.

    Article  CAS  PubMed  Google Scholar 

  48. Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, Willey C, Senoo H, Umezono Y, Sanada C, Barikmo I, Berhe N, Willett WC, Phillips KM, Jacobs DR Jr, Blomhoff R. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;22(9):3. https://doi.org/10.1186/1475-2891-9-3.

    Article  Google Scholar 

  49. Hackam DG, Spence JD. Combining multiple approaches for the secondary prevention of vascular events after stroke: a quantitative modeling study. Stroke. 2007;38(6):1881–5. https://doi.org/10.1161/STROKEAHA.106.475525.

    Article  PubMed  Google Scholar 

  50. Ashina M, Katsarava Z, Do TP, Buse DC, Pozo-Rosich P, Özge A, Krymchantowski AV, Lebedeva ER, Ravishankar K, Yu S, Sacco S, Ashina S, Younis S, Steiner TJ, Lipton RB. Migraine: epidemiology and systems of care. Lancet. 2021;397(10283):1485–95. https://doi.org/10.1016/S0140-6736(20)32160-7.

    Article  PubMed  Google Scholar 

  51. • Robblee J, Starling AJ. SEEDS for success: lifestyle management in migraine. Cleve Clin J Med. 2019;86(11):741–9. https://doi.org/10.3949/ccjm.86a.19009.. (Review article with effective lifestyle proposal for managing migraine.)

    Article  PubMed  Google Scholar 

  52. • RazeghiJahromi S, Ghorbani Z, Martelletti P, Lampl C, Togha M, School of Advanced Studies of the European Headache Federation (EHF-SAS). Association of diet and headache. J Headache Pain. 2019;20(1):106. https://doi.org/10.1186/s10194-019-1057-1.. (Excellent review of diet and migraine.)

    Article  Google Scholar 

  53. Gazerani P. Migraine and Diet. Nutrients. 2020;12(6):1658. https://doi.org/10.3390/nu12061658.

    Article  CAS  PubMed Central  Google Scholar 

  54. Karsan N, Bose P, Goadsby PJ. The migraine premonitory phase. Continuum (Minneap Minn). 2018;24(4,Headache):996–1008. https://doi.org/10.1212/CON.0000000000000624.

    Article  Google Scholar 

  55. Arzani M, Jahromi SR, Ghorbani Z, Vahabizad F, Martelletti P, Ghaemi A, Sacco S, Togha M, School of Advanced Studies of the European Headache Federation (EHF-SAS). Gut–brain axis and migraine headache: a comprehensive review. J Headache Pain. 2020;21(1):15. https://doi.org/10.1186/s10194-020-1078-9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bigal ME, Rapoport AM. Obesity and chronic daily headache. Curr Pain Headache Rep. 2012;16(1):101–9. https://doi.org/10.1007/s11916-011-0232-0.

    Article  PubMed  Google Scholar 

  57. Gazerani P, Fuglsang R, Pedersen JG, Sørensen J, Kjeldsen JL, Yassin H, Nedergaard BS. A randomized, double-blinded, placebo-controlled, parallel trial of vitamin D3 supplementation in adult patients with migraine. Curr Med Res Opin. 2019;35(4):715–23. https://doi.org/10.1080/03007995.2018.1519503.

    Article  CAS  PubMed  Google Scholar 

  58. Gross EC, Klement RJ, Schoenen J, D’Agostino DP, Fischer D. Potential protective mechanisms of ketone bodies in migraine prevention. Nutrients. 2019;11(4):811. https://doi.org/10.3390/nu11040811.

    Article  CAS  PubMed Central  Google Scholar 

  59. Ye F, Li XJ, Jiang WL, Sun HB, Liu J. Efficacy of and patient compliance with a ketogenic diet in adults with intractable epilepsy: a meta-analysis. J Clin Neurol. 2015;11(1):26–31. https://doi.org/10.3988/jcn.2015.11.1.26.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zis P, Julian T, Hadjivassiliou M. Headache associated with coeliac disease: a systematic review and meta-analysis. Nutrients. 2018;10(10):1445. https://doi.org/10.3390/nu10101445.

    Article  PubMed Central  Google Scholar 

  61. Bunner AE, Agarwal U, Gonzales JF, Valente F, Barnard ND. Nutrition intervention for migraine: a randomized crossover trial. J Headache Pain. 2014;15(1):69. https://doi.org/10.1186/1129-2377-15-69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Amer M, Woodward M, Appel LJ. Effects of dietary sodium and the DASH diet on the occurrence of headaches: results from randomised multicentre DASH-Sodium clinical trial. BMJ Open. 2014;4(12):e006671. https://doi.org/10.1136/bmjopen-2014-006671.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Stanton AA. A Comment on severe headache or migraine history is inversely correlated with dietary sodium intake: NHANES 1999–2004. Headache. 2016;56(7):1214–5. https://doi.org/10.1111/head.12861.

    Article  PubMed  Google Scholar 

  64. Meng SH, Wang MX, Kang LX, Fu JM, Zhou HB, Li X, Li X, Li XT, Zhao YS. Dietary intake of calcium and magnesium in relation to severe headache or migraine. Front Nutr. 2021;5(8):653765. https://doi.org/10.3389/fnut.2021.653765.

    Article  CAS  Google Scholar 

  65. Slavin M. Intake of riboflavin (vitamin B2) and the occurrence of migraine: a cross-sectional analysis of the National Health and Nutrition Examination Survey (NHANES) 2001 to 2004 Database. Presented at: 2019 American Headache Society Annual Meeting; July 11–14, 2019; Philadelphia, PA. Abstract 682399.

  66. Slavin M, Bourguignon J, Jackson K, Orciga MA. Impact of food components on in vitro calcitonin gene-related peptide secretion—a potential mechanism for dietary influence on migraine. Nutrients. 2016;8(7):406. https://doi.org/10.3390/nu8070406.

    Article  CAS  PubMed Central  Google Scholar 

  67. Hartung DM. Health economics of disease-modifying therapy for multiple sclerosis in the United States. Ther Adv Neurol Disord. 2021;17(14):1756286420987031. https://doi.org/10.1177/1756286420987031.

    Article  Google Scholar 

  68. Gianfrancesco MA, Barcellos LF. Obesity and multiple sclerosis susceptibility: a review. J Neurol Neuromedicine. 2016;1(7):1–5. https://doi.org/10.29245/2572.942x/2016/7.1064.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Farez MF, Fiol MP, Gaitán MI, Quintana FJ, Correale J. Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86(1):26–31. https://doi.org/10.1136/jnnp-2014-307928.

    Article  PubMed  Google Scholar 

  70. Fitzgerald KC, Munger KL, Hartung HP, Freedman MS, Montalbán X, Edan G, Wicklein EM, Radue EW, Kappos L, Pohl C, Ascherio A, BENEFIT Study Group. Sodium intake and multiple sclerosis activity and progression in BENEFIT. Ann Neurol. 2017;82(1):20–9. https://doi.org/10.1002/ana.24965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Afsar B, Kuwabara M, Ortiz A, Yerlikaya A, Siriopol D, Covic A, Rodriguez-Iturbe B, Johnson RJ, Kanbay M. Salt intake and immunity. Hypertension. 2018;72(1):19–23. https://doi.org/10.1161/HYPERTENSIONAHA.118.11128.

    Article  CAS  PubMed  Google Scholar 

  72. •• Katz SI. The role of diet in multiple sclerosis: mechanistic connections and current evidence. Curr Nutr Rep. 2018;7(3):150–60. https://doi.org/10.1007/s13668-018-0236-z.. (Excellent review on dietary patterns in MS.)

    Article  CAS  Google Scholar 

  73. Ruiz-Núñez B. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J Nutr Biochem. 2016;36:1–20. https://doi.org/10.1016/j.jnutbio.2015.12.007.

    Article  CAS  PubMed  Google Scholar 

  74. Tettey P, Simpson S, Taylor B, Ponsonby AL, Lucas RM, Dwyer T, et al. An adverse lipid profile and increased levels of adiposity significantly predict clinical course after a first demyelinating event. J Neurol Neurosurg Psychiatry. 2017;88(5):395–401. https://doi.org/10.1136/jnnp-2016-315037.

    Article  PubMed  Google Scholar 

  75. Azary S, Schreiner T, Graves J, Waldman A, Belman A, Guttman BW, Aaen G, Tillema JM, Mar S, Hart J, Ness J, Harris Y, Krupp L, Gorman M, Benson L, Rodriguez M, Chitnis T, Rose J, Barcellos LF, Lotze T, Carmichael SL, Roalstad S, Casper CT, Waubant E. Contribution of dietary intake to relapse rate in early paediatric multiple sclerosis. J Neurol Neurosurg Psychiatry. 2018;89(1):28–33. https://doi.org/10.1136/jnnp-2017-315936.

    Article  PubMed  Google Scholar 

  76. Swank RL. Multiple sclerosis; a correlation of its incidence with dietary fat. Am J Med Sci. 1950;220(4):421–30.

    Article  CAS  Google Scholar 

  77. Swank RL, Lerstad O, Strom A, Backer J. Multiple sclerosis in rural Norway its geographic and occupational incidence in relation to nutrition. N Engl J Med. 1952;246(19):722–8. https://doi.org/10.1056/NEJM195205082461901.

    Article  CAS  PubMed  Google Scholar 

  78. Yadav V, Marracci G, Kim E, Spain R, Cameron M, Overs S, Riddehough A, Li DK, McDougall J, Lovera J, Murchison C, Bourdette D. Low-fat, plant-based diet in multiple sclerosis: a randomized controlled trial. Mult Scler Relat Disord. 2016;9:80–90. https://doi.org/10.1016/j.msard.2016.07.001.

    Article  PubMed  Google Scholar 

  79. Munger KL, Chitnis T, Frazier AL, Giovannucci E, Spiegelman D, Ascherio A. Dietary intake of vitamin D during adolescence and risk of multiple sclerosis. J Neurol. 2011;258(3):479–85. https://doi.org/10.1007/s00415-010-5783-1.

    Article  CAS  PubMed  Google Scholar 

  80. Fitzgerald KC, Vizthum D, Henry-Barron B, Schweitzer A, Cassard SD, Kossoff E, Hartman AL, Kapogiannis D, Sullivan P, Baer DJ, Mattson MP, Appel LJ, Mowry EM. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult Scler Relat Disord. 2018;23:33–9. https://doi.org/10.1016/j.msard.2018.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Black LJ, Baker K, Ponsonby AL, van der Mei I, Lucas RM, Pereira G, Ausimmune Investigator Group. A higher Mediterranean diet score, including unprocessed red meat, is associated with reduced risk of central nervous system demyelination in a case-control study of Australian adults. J Nutr. 2019;149(8):1385–92. https://doi.org/10.1093/jn/nxz089.

    Article  PubMed  Google Scholar 

  82. Brenton JN, Banwell B, Bergqvist AGC, Lehner-Gulotta D, Gampper L, Leytham E, Coleman R, Goldman MD. Pilot study of a ketogenic diet in relapsing–remitting MS. Neurol Neuroimmunol Neuroinflamm. 2019;6(4):e565. https://doi.org/10.1212/NXI.0000000000000565.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Choi IY, Piccio L, Childress P, Bollman B, Ghosh A, Brandhorst S, Suarez J, Michalsen A, Cross AH, Morgan TE, Wei M, Paul F, Bock M, Longo VD. A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep. 2016;15(10):2136–46. https://doi.org/10.1016/j.celrep.2016.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bahr LS, Bock M, Liebscher D, Bellmann-Strobl J, Franz L, Prüß A, Schumann D, Piper SK, Kessler CS, Steckhan N, Michalsen A, Paul F, Mähler A. Ketogenic diet and fasting diet as Nutritional Approaches in Multiple Sclerosis (NAMS): protocol of a randomized controlled study. Trials. 2020;21(1):3. https://doi.org/10.1186/s13063-019-3928-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. •• Fitzgerald KC, Tyry T, Salter A, Cofield SS, Cutter G, Fox R, Marrie RA. Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology. 2018;90(1):e1–11. https://doi.org/10.1212/WNL.0000000000004768.. (Study determining that healthy diet and composite healthy lifestyle are associated with decreased MS burden.)

    Article  PubMed  Google Scholar 

  86. Sumowski JF, McDonnell GV, Bourdette D. Diet in multiple sclerosis: science takes a seat at the table. Neurology. 2018;90(1):14–5. https://doi.org/10.1212/WNL.0000000000004775.

    Article  PubMed  Google Scholar 

  87. Wahls T, Scott MO, Alshare Z, Rubenstein L, Darling W, Carr L, Smith K, Chenard CA, LaRocca N, Snetselaar L. Dietary approaches to treat MS-related fatigue: comparing the modified Paleolithic (Wahls Elimination) and low saturated fat (Swank) diets on perceived fatigue in persons with relapsing–remitting multiple sclerosis: study protocol for a randomized controlled trial. Trials. 2018;19(1):309. https://doi.org/10.1186/s13063-018-2680-x.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wahls TL, Chenard CA, Snetselaar LG. Review of two popular eating plans within the multiple sclerosis community: low saturated fat and modified Paleolithic. Nutrients. 2019;11(2):352. https://doi.org/10.3390/nu11020352.

    Article  CAS  PubMed Central  Google Scholar 

  89. Riccio P, Rossano R. Nutrition facts in multiple sclerosis. ASN Neuro. 2015;7(1):1759091414568185. https://doi.org/10.1177/1759091414568185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thomsen HL, Jessen EB, Passali M, Frederiksen JL. The role of gluten in multiple sclerosis: a systematic review. Mult Scler Relat Disord. 2019;27:156–63. https://doi.org/10.1016/j.msard.2018.10.019.

    Article  PubMed  Google Scholar 

  91. Lambrechts DAJE, de Kinderen RJA, Vles JSH, de Louw AJA, Aldenkamp AP, Majoie HJM. A randomized controlled trial of the ketogenic diet in refractory childhood epilepsy. Acta Neurol Scand. 2017;137(1):152–4.

    Article  Google Scholar 

  92. Raju KNV, Gulati S, Kabra M, Agarwala A, Sharma S, Pandey RM, et al. Efficacy of 4:1 (classic) versus 2.5:1 ketogenic ratio diets in refractory epilepsy in young children: a randomized open labeled study. Epilepsy Res [Internet]. 2011;96(1–2):96–100 ([cited 2020 Nov 11]).

    Article  CAS  Google Scholar 

  93. Kossoff EH, Zupec-Kania BA, Auvin S, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, et al. Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open [Internet]. 2018;3(2):175–92 ([cited 2019 Nov 11]).

    Article  Google Scholar 

  94. Kossoff EH, McGrogan JR, Bluml RM, Pillas DJ, Rubenstein JE, Vining EP. A modified Atkins diet is effective for the treatment of intractable pediatric epilepsy. Epilepsia. 2006;47(2):421–4.

    Article  Google Scholar 

  95. Kim JA, Yoon J-R, Lee EJ, Lee JS, Kim JT, Kim HD, et al. Efficacy of the classic ketogenic and the modified Atkins diets in refractory childhood epilepsy. Epilepsia [Internet]. 2016;57(1):51–8 ([cited 2021 Mar 13]).

    Article  Google Scholar 

  96. Kossoff EH, Cervenka MC, Henry BJ, Haney CA, Turner Z. A decade of the modified Atkins diet (2003–2013): results, insights, and future directions. Epilepsy Behav. 2013;29(3):437–42.

    Article  Google Scholar 

  97. Pfeifer HH, Thiele EA. Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy. Neurology. 2005;65(11):1810–2.

    Article  CAS  Google Scholar 

  98. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, et al. A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia. 2009;50(5):1109–17.

    Article  Google Scholar 

  99. Nei M, Ngo L, Sirven JI, Sperling MR. Ketogenic diet in adolescents and adults with epilepsy. Seizure. 2014;23(6):439–42.

    Article  Google Scholar 

  100. Kossoff EH, Rowley H, Sinha SR, Vining EPG. A prospective study of the modified Atkins diet for intractable epilepsy in adults. Epilepsia. 2008;49(2):316–9.

    Article  CAS  Google Scholar 

  101. Liu Y, Wang H-S. Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets. Biomedical Journal. 2013;36(1):9.

    Article  Google Scholar 

  102. Appavu B, Vanatta L, Condie J, Kerrigan JF, Jarrar R. Ketogenic diet treatment for pediatric super-refractory status epilepticus. Seizure. 2016;41:62–5.

    Article  Google Scholar 

  103. Nabbout R, Mazzuca M, Hubert P, Peudennier S, Allaire C, Flurin V, et al. Efficacy of ketogenic diet in severe refractory status epilepticus initiating fever induced refractory epileptic encephalopathy in school age children (FIRES). Epilepsia. 2010;51(10):2033–7.

    Article  Google Scholar 

  104. Mahmoud SH, Ho-Huang E, Buhler J. Systematic review of ketogenic diet use in adult patients with status epilepticus. Epilepsia Open. 2019;5(1):10–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge G. Ortiz García.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Neurology of Systemic Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Salazar, S.A., Herren, C., McCartney, J. et al. Dietary Insights in Neurological Diseases. Curr Neurol Neurosci Rep 21, 55 (2021). https://doi.org/10.1007/s11910-021-01143-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-021-01143-w

Keywords

Navigation