Skip to main content

Advertisement

Log in

Aneurysmal Subarachnoid Hemorrhage: Review of the Pathophysiology and Management Strategies

  • Stroke (H. Diener, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Aneurysmal subarachnoid hemorrhage remains a devastating disease process despite medical advances made over the past 3 decades. Much of the focus was on prevention and treatment of vasospasm to reduce delayed cerebral ischemia and improve outcome. In recent years, there has been a shift of focus onto early brain injury as the precursor to delayed cerebral ischemia. This review will focus on the most recent data surrounding the pathophysiology of aneurysmal subarachnoid hemorrhage and current management strategies.

Recent Findings

There is a paucity of successful trials in the management of subarachnoid hemorrhage likely related to the targeting of vasospasm. Pathophysiological changes occurring at the time of aneurysmal rupture lead to early brain injury including cerebral edema, inflammation, and spreading depolarization. These events result in microvascular collapse, vasospasm, and ultimately delayed cerebral ischemia.

Summary

Management of aneurysmal subarachnoid hemorrhage has remained the same over the past few decades. No recent trials have resulted in new treatments. However, our understanding of the pathophysiology is rapidly expanding and will advise future therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AMPA:

Α-Amino-3-Hydroxy-S-Methyl-4-Isoxazoleproprionic acid

aSAH:

Aneurysmal subarachnoid hemorrhage

CBF:

Cerebral blood flow

CPP:

Cerebral perfusion pressure

CSF:

Cerebrospinal fluid

CT:

Computed tomography

DCI:

Delayed cerebral ischemia

EBI:

Early brain injury

IL-6:

Interleukin 6

ISAT:

International subarachnoid aneurysm trial

ICP:

Intracranial pressure

MMP-9:

Matrix metalloproteinase 9

NMDA:

N-methyl-D-aspartate

SDs:

Spreading depolarizations

TCD:

Transcranial Doppler

WFNS:

World Federation of Neurologic Surgeons

aSAH:

Aneurysmal subarachnoid hemorrhage

DCI:

Delayed cerebral ischemia

EBI:

Early brain injury

ICP:

Intracranial pressure

CPP:

Cerebral perfusion pressure

CT:

Computed tomography

WFNS:

World Federation of Neurologic Surgeons

ISAT:

International subarachnoid aneurysm trial

CSF:

Cerebrospinal fluid

CBF:

Cerebral blood flow

IL-6:

Interleukin 6

MMP-9:

Matrix metalloproteinase 9

SDs:

Spreading depolarizations

NMDA:

N-methyl-D-aspartate

AMPA:

Α-amino-3-hydroxy-S-methyl-4-isoxazoleproprionic acid

TCD:

Transcranial Doppler

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Labovitz DL, Halim AX, Brent B, Boden-Albala B, Hauser WA, Sacco RL. Subarachnoid hemorrhage incidence among Whites, Blacks and Caribbean Hispanics: the Northern Manhattan Study. Neuroepidemiology. 2006;26(3):147–50. https://doi.org/10.1159/000091655.

    Article  CAS  PubMed  Google Scholar 

  2. Etminan N, Chang HS, Hackenberg K, de Rooij NK, Vergouwen MDI, Rinkel GJE, et al. Worldwide incidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: a systematic review and meta-analysis. JAMA Neurol. 2019;76(5):588–97. https://doi.org/10.1001/jamaneurol.2019.0006.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke. 2012;43(6):1711–37. https://doi.org/10.1161/STR.0b013e3182587839.

    Article  PubMed  Google Scholar 

  4. Chan V, O’Kelly C. Response by Chan and O’Kelly to letter regarding article, “Declining admission and mortality rates for subarachnoid hemorrhage in Canada between 2004 and 2015”. Stroke. 2019;50(5):e133. https://doi.org/10.1161/STROKEAHA.119.025114.

    Article  PubMed  Google Scholar 

  5. Tjahjadi M, Heinen C, Konig R, Rickels E, Wirtz CR, Woischneck D, et al. Health-related quality of life after spontaneous subarachnoid hemorrhage measured in a recent patient population. World Neurosurg. 2013;79(2):296–307. https://doi.org/10.1016/j.wneu.2012.10.009.

    Article  PubMed  Google Scholar 

  6. Taufique Z, May T, Meyers E, Falo C, Mayer SA, Agarwal S, et al. Predictors of poor quality of life 1 year after subarachnoid hemorrhage. Neurosurgery. 2016;78(2):256–64. https://doi.org/10.1227/NEU.0000000000001042.

    Article  PubMed  Google Scholar 

  7. Al-Khindi T, Macdonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2010;41(8):e519–36. https://doi.org/10.1161/STROKEAHA.110.581975.

    Article  PubMed  Google Scholar 

  8. . Eagles ME, Tso MK, Macdonald RL. Cognitive impairment, functional outcome, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2019. https://doi.org/10.1016/j.wneu.2018.12.152This paper highlights the focus on cognitive impairment in outcome which has been lacking in most studies.

  9. Rouanet C, Silva GS. Aneurysmal subarachnoid hemorrhage: current concepts and updates. Arq Neuropsiquiatr. 2019;77(11):806–14. https://doi.org/10.1590/0004-282X20190112This paper is an excellent review of the most recent updates on aneurysmal subarachnoid hemorrhage.

    Article  PubMed  Google Scholar 

  10. Muehlschlegel S. Subarachnoid hemorrhage. Continuum (Minneap Minn). 2018;24(6):1623–57. https://doi.org/10.1212/CON.0000000000000679.

    Article  Google Scholar 

  11. de Oliveira Manoel AL, Mansur A, Murphy A, Turkel-Parrella D, Macdonald M, Macdonald RL, et al. Aneurysmal subarachnoid haemorrhage from a neuroimaging perspective. Crit Care. 2014;18(6):557. https://doi.org/10.1186/s13054-014-0557-2.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Edlow JA, Figaji A, Samuels O. Emergency neurological life support: subarachnoid hemorrhage. Neurocrit Care. 2015;23(Suppl 2):S103–9. https://doi.org/10.1007/s12028-015-0183-0.

    Article  CAS  PubMed  Google Scholar 

  13. Diringer MN, Bleck TP, Claude Hemphill J 3rd, Menon D, Shutter L, Vespa P, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care. 2011;15(2):211–40. https://doi.org/10.1007/s12028-011-9605-9.

    Article  PubMed  Google Scholar 

  14. McKinney AM, Palmer CS, Truwit CL, Karagulle A, Teksam M. Detection of aneurysms by 64-section multidetector CT angiography in patients acutely suspected of having an intracranial aneurysm and comparison with digital subtraction and 3D rotational angiography. AJNR Am J Neuroradiol. 2008;29(3):594–602. https://doi.org/10.3174/ajnr.A0848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Howard BM, Hu R, Barrow JW, Barrow DL. Comprehensive review of imaging of intracranial aneurysms and angiographically negative subarachnoid hemorrhage. Neurosurg Focus. 2019;47(6):E20. https://doi.org/10.3171/2019.9.FOCUS19653.

    Article  PubMed  Google Scholar 

  16. Report of World Federation of Neurological Surgeons Committee on a Universal Subarachnoid Hemorrhage Grading Scale. J Neurosurg. 1988;68(6):985–6. https://doi.org/10.3171/jns.1988.68.6.0985.

    Article  Google Scholar 

  17. Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968;28(1):14–20. https://doi.org/10.3171/jns.1968.28.1.0014.

    Article  CAS  PubMed  Google Scholar 

  18. Frontera JA, Claassen J, Schmidt JM, Wartenberg KE, Temes R, Connolly ES Jr, et al. Prediction of symptomatic vasospasm after subarachnoid hemorrhage: the modified fisher scale. Neurosurgery. 2006;59(1):21–7; discussion -7. https://doi.org/10.1227/01.NEU.0000218821.34014.1B.

    Article  PubMed  Google Scholar 

  19. Mirski MA, Chang CW, Cowan R. Impact of a neuroscience intensive care unit on neurosurgical patient outcomes and cost of care: evidence-based support for an intensivist-directed specialty ICU model of care. J Neurosurg Anesthesiol. 2001;13(2):83–92. https://doi.org/10.1097/00008506-200104000-00004.

    Article  CAS  PubMed  Google Scholar 

  20. Rush B, Romano K, Ashkanani M, McDermid RC, Celi LA. Impact of hospital case-volume on subarachnoid hemorrhage outcomes: a nationwide analysis adjusting for hemorrhage severity. J Crit Care. 2017;37:240–3. https://doi.org/10.1016/j.jcrc.2016.09.009.

    Article  PubMed  Google Scholar 

  21. Dhandapani S, Singh A, Singla N, Praneeth K, Aggarwal A, Sodhi HB, et al. Has outcome of subarachnoid hemorrhage changed with improvements in neurosurgical services? Stroke. 2018;49(12):2890–5. https://doi.org/10.1161/STROKEAHA.118.022865.

    Article  PubMed  Google Scholar 

  22. Varelas PN, Schultz L, Conti M, Spanaki M, Genarrelli T, Hacein-Bey L. The impact of a neuro-intensivist on patients with stroke admitted to a neurosciences intensive care unit. Neurocrit Care. 2008;9(3):293–9. https://doi.org/10.1007/s12028-008-9050-6.

    Article  PubMed  Google Scholar 

  23. Taran S, Trivedi V, Singh JM, English SW, McCredie VA. The use of standardized management protocols for critically ill patients with non-traumatic subarachnoid hemorrhage: a systematic review. Neurocrit Care. 2020;32(3):858–74. https://doi.org/10.1007/s12028-019-00867-5.

    Article  PubMed  Google Scholar 

  24. Ohkuma H, Tsurutani H, Suzuki S. Incidence and significance of early aneurysmal rebleeding before neurosurgical or neurological management. Stroke. 2001;32(5):1176–80. https://doi.org/10.1161/01.str.32.5.1176.

    Article  CAS  PubMed  Google Scholar 

  25. Tanno Y, Homma M, Oinuma M, Kodama N, Ymamoto T. Rebleeding from ruptured intracranial aneurysms in North Eastern Province of Japan. A cooperative study. J Neurol Sci. 2007;258(1-2):11–6. https://doi.org/10.1016/j.jns.2007.01.074.

    Article  PubMed  Google Scholar 

  26. Naidech AM, Janjua N, Kreiter KT, Ostapkovich ND, Fitzsimmons BF, Parra A, et al. Predictors and impact of aneurysm rebleeding after subarachnoid hemorrhage. Arch Neurol. 2005;62(3):410–6. https://doi.org/10.1001/archneur.62.3.410.

    Article  PubMed  Google Scholar 

  27. Hijdra A, Vermeulen M, van Gijn J, van Crevel H. Rerupture of intracranial aneurysms: a clinicoanatomic study. J Neurosurg. 1987;67(1):29–33. https://doi.org/10.3171/jns.1987.67.1.0029.

    Article  CAS  PubMed  Google Scholar 

  28. Hijdra A, Braakman R, van Gijn J, Vermeulen M, van Crevel H. Aneurysmal subarachnoid hemorrhage. Complications and outcome in a hospital population. Stroke. 1987;18(6):1061–7. https://doi.org/10.1161/01.str.18.6.1061.

    Article  CAS  PubMed  Google Scholar 

  29. Naidech AM, Kreiter KT, Janjua N, Ostapkovich N, Parra A, Commichau C, et al. Phenytoin exposure is associated with functional and cognitive disability after subarachnoid hemorrhage. Stroke. 2005;36(3):583–7. https://doi.org/10.1161/01.STR.0000141936.36596.1e.

    Article  CAS  PubMed  Google Scholar 

  30. Phillips TJ, Dowling RJ, Yan B, Laidlaw JD, Mitchell PJ. Does treatment of ruptured intracranial aneurysms within 24 hours improve clinical outcome? Stroke. 2011;42(7):1936–45. https://doi.org/10.1161/STROKEAHA.110.602888.

    Article  PubMed  Google Scholar 

  31. Dorhout Mees SM, Molyneux AJ, Kerr RS, Algra A, Rinkel GJ. Timing of aneurysm treatment after subarachnoid hemorrhage: relationship with delayed cerebral ischemia and poor outcome. Stroke. 2012;43(8):2126–9. https://doi.org/10.1161/STROKEAHA.111.639690.

    Article  PubMed  Google Scholar 

  32. Laidlaw JD, Siu KH. Ultra-early surgery for aneurysmal subarachnoid hemorrhage: outcomes for a consecutive series of 391 patients not selected by grade or age. J Neurosurg. 2002;97(2):250–8; discussion 47-9. https://doi.org/10.3171/jns.2002.97.2.0250.

    Article  PubMed  Google Scholar 

  33. Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, Yarnold JA, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 2005;366(9488):809–17. https://doi.org/10.1016/S0140-6736(05)67214-5.

    Article  PubMed  Google Scholar 

  34. Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, International Subarachnoid Aneurysm Trial Collaborative G, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomized trial. J Stroke Cerebrovasc Dis. 2002;11(6):304–14. https://doi.org/10.1053/jscd.2002.130390.

    Article  PubMed  Google Scholar 

  35. Chua MH, Griessenauer CJ, Stapleton CJ, He L, Thomas AJ, Ogilvy CS. Documentation of improved outcomes for intracranial aneurysm management over a 15-year interval. Stroke. 2016;47(3):708–12. https://doi.org/10.1161/STROKEAHA.115.011959.

    Article  PubMed  Google Scholar 

  36. Lindgren A, Vergouwen MD, van der Schaaf I, Algra A, Wermer M, Clarke MJ, et al. Endovascular coiling versus neurosurgical clipping for people with aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2018;8:CD003085. https://doi.org/10.1002/14651858.CD003085.pub3.

    Article  PubMed  Google Scholar 

  37. Molyneux AJ, Birks J, Clarke A, Sneade M, Kerr RS. The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the UK cohort of the International Subarachnoid Aneurysm Trial (ISAT). Lancet. 2015;385(9969):691–7. https://doi.org/10.1016/S0140-6736(14)60975-2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Molyneux AJ, Birks J, Kerr RS. ISAT: end of the debate on coiling versus clipping? - Authors’ reply. Lancet. 2015;385(9984):2252. https://doi.org/10.1016/S0140-6736(15)61061-3.

    Article  PubMed  Google Scholar 

  39. Hillman J, Fridriksson S, Nilsson O, Yu Z, Saveland H, Jakobsson KE. Immediate administration of tranexamic acid and reduced incidence of early rebleeding after aneurysmal subarachnoid hemorrhage: a prospective randomized study. J Neurosurg. 2002;97(4):771–8. https://doi.org/10.3171/jns.2002.97.4.0771.

    Article  CAS  PubMed  Google Scholar 

  40. Post R, Germans MR, Boogaarts HD, Ferreira Dias Xavier B, Van den Berg R, Coert BA, et al. Short-term tranexamic acid treatment reduces in-hospital mortality in aneurysmal sub-arachnoid hemorrhage: a multicenter comparison study. PLoS One. 2019;14(2):e0211868. https://doi.org/10.1371/journal.pone.0211868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Oliveira Manoel AL, Turkel-Parrella D, Duggal A, Murphy A, McCredie V, Marotta TR. Managing aneurysmal subarachnoid hemorrhage: it takes a team. Cleve Clin J Med. 2015;82(3):177–92. https://doi.org/10.3949/ccjm.82a.14021.

    Article  PubMed  Google Scholar 

  42. Lim YC, Shim YS, Oh SY, Kim MJ, Park KY, Chung J. External ventricular drainage before endovascular treatment in patients with aneurysmal subarachnoid hemorrhage in acute period: its relation to hemorrhagic complications. Neurointervention. 2019;14(1):35–42. https://doi.org/10.5469/neuroint.2018.01067.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sundaram MB, Chow F. Seizures associated with spontaneous subarachnoid hemorrhage. Can J Neurol Sci. 1986;13(3):229–31. https://doi.org/10.1017/s0317167100036325.

    Article  CAS  PubMed  Google Scholar 

  44. Lanzino G, D’Urso PI, Suarez J. Participants in the International Multi-Disciplinary Consensus Conference on the Critical Care Management of Subarachnoid H. Seizures and anticonvulsants after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2011;15(2):247–56. https://doi.org/10.1007/s12028-011-9584-x.

    Article  CAS  PubMed  Google Scholar 

  45. Claassen J, Bateman BT, Willey JZ, Inati S, Hirsch LJ, Mayer SA, et al. Generalized convulsive status epilepticus after nontraumatic subarachnoid hemorrhage: the nationwide inpatient sample. Neurosurgery. 2007;61(1):60–4; discussion 4-5. https://doi.org/10.1227/01.neu.0000279724.05898.e7.

    Article  PubMed  Google Scholar 

  46. Claassen J, Peery S, Kreiter KT, Hirsch LJ, Du EY, Connolly ES, et al. Predictors and clinical impact of epilepsy after subarachnoid hemorrhage. Neurology. 2003;60(2):208–14. https://doi.org/10.1212/01.wnl.0000038906.71394.de.

    Article  CAS  PubMed  Google Scholar 

  47. Rosengart AJ, Huo JD, Tolentino J, Novakovic RL, Frank JI, Goldenberg FD, et al. Outcome in patients with subarachnoid hemorrhage treated with antiepileptic drugs. J Neurosurg. 2007;107(2):253–60. https://doi.org/10.3171/JNS-07/08/0253.

    Article  PubMed  Google Scholar 

  48. Claassen J, Perotte A, Albers D, Kleinberg S, Schmidt JM, Tu B, et al. Nonconvulsive seizures after subarachnoid hemorrhage: multimodal detection and outcomes. Ann Neurol. 2013;74(1):53–64. https://doi.org/10.1002/ana.23859.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Claassen J, Albers D, Schmidt JM, De Marchis GM, Pugin D, Falo CM, et al. Nonconvulsive seizures in subarachnoid hemorrhage link inflammation and outcome. Ann Neurol. 2014;75(5):771–81. https://doi.org/10.1002/ana.24166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Claassen J, Taccone FS, Horn P, Holtkamp M, Stocchetti N, Oddo M, et al. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med. 2013;39(8):1337–51. https://doi.org/10.1007/s00134-013-2938-4.

    Article  CAS  PubMed  Google Scholar 

  51. Claassen J, Mayer SA, Hirsch LJ. Continuous EEG monitoring in patients with subarachnoid hemorrhage. J Clin Neurophysiol. 2005;22(2):92–8. https://doi.org/10.1097/01.wnp.0000145006.02048.3a.

    Article  PubMed  Google Scholar 

  52. Claassen J, Hirsch LJ, Frontera JA, Fernandez A, Schmidt M, Kapinos G, et al. Prognostic significance of continuous EEG monitoring in patients with poor-grade subarachnoid hemorrhage. Neurocrit Care. 2006;4(2):103–12. https://doi.org/10.1385/NCC:4:2:103.

    Article  PubMed  Google Scholar 

  53. Wartenberg KE, Schmidt JM, Claassen J, Temes RE, Frontera JA, Ostapkovich N, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med. 2006;34(3):617–23; quiz 24. https://doi.org/10.1097/01.ccm.0000201903.46435.35.

    Article  PubMed  Google Scholar 

  54. van der Bilt IA, Hasan D, Vandertop WP, Wilde AA, Algra A, Visser FC, et al. Impact of cardiac complications on outcome after aneurysmal subarachnoid hemorrhage: a meta-analysis. Neurology. 2009;72(7):635–42. https://doi.org/10.1212/01.wnl.0000342471.07290.07.

    Article  PubMed  Google Scholar 

  55. Bruder N, Rabinstein A. Participants in the International Multi-Disciplinary Consensus Conference on the Critical Care Management of Subarachnoid H. Cardiovascular and pulmonary complications of aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2011;15(2):257–69. https://doi.org/10.1007/s12028-011-9598-4.

    Article  PubMed  Google Scholar 

  56. van den Bergh WM, Algra A, Rinkel GJ. Electrocardiographic abnormalities and serum magnesium in patients with subarachnoid hemorrhage. Stroke. 2004;35(3):644–8. https://doi.org/10.1161/01.STR.0000117092.38460.4F.

    Article  PubMed  Google Scholar 

  57. Lee VH, Oh JK, Mulvagh SL, Wijdicks EF. Mechanisms in neurogenic stress cardiomyopathy after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2006;5(3):243–9. https://doi.org/10.1385/NCC:5:3:243.

    Article  PubMed  Google Scholar 

  58. Zahid T, Eskander N, Emamy M, Ryad R, Jahan N. Cardiac troponin elevation and outcome in subarachnoid hemorrhage. Cureus. 2020;12(8):e9792. https://doi.org/10.7759/cureus.9792.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee VH, Connolly HM, Fulgham JR, Manno EM, Brown RD Jr, Wijdicks EF. Tako-tsubo cardiomyopathy in aneurysmal subarachnoid hemorrhage: an underappreciated ventricular dysfunction. J Neurosurg. 2006;105(2):264–70. https://doi.org/10.3171/jns.2006.105.2.264.

    Article  PubMed  Google Scholar 

  60. Murthy SB, Shah S, Rao CP, Bershad EM, Suarez JI. Neurogenic stunned myocardium following acute subarachnoid hemorrhage: pathophysiology and practical considerations. J Intensive Care Med. 2015;30(6):318–25. https://doi.org/10.1177/0885066613511054.

    Article  PubMed  Google Scholar 

  61. Lannes M, Teitelbaum J, del Pilar CM, Cardoso M, Angle M. Milrinone and homeostasis to treat cerebral vasospasm associated with subarachnoid hemorrhage: the Montreal Neurological Hospital protocol. Neurocrit Care. 2012;16(3):354–62. https://doi.org/10.1007/s12028-012-9701-5.

    Article  PubMed  Google Scholar 

  62. Rass V, Helbok R. Early brain injury after poor-grade subarachnoid hemorrhage. Curr Neurol Neurosci Rep. 2019;19(10):78. https://doi.org/10.1007/s11910-019-0990-3Early brain injury is an emerging topic and this is an excellent review of the pathophysiology.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26(11):1341–53. https://doi.org/10.1038/sj.jcbfm.9600283.

    Article  CAS  PubMed  Google Scholar 

  64. Helbok R, Schiefecker AJ, Beer R, Dietmann A, Antunes AP, Sohm F, et al. Early brain injury after aneurysmal subarachnoid hemorrhage: a multimodal neuromonitoring study. Crit Care. 2015;19:75. https://doi.org/10.1186/s13054-015-0809-9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002;33(5):1225–32. https://doi.org/10.1161/01.str.0000015624.29071.1f.

    Article  PubMed  Google Scholar 

  66. Coulibaly AP, Provencio JJ. Aneurysmal subarachnoid hemorrhage: an overview of inflammation-induced cellular changes. Neurotherapeutics. 2020;17(2):436–45. https://doi.org/10.1007/s13311-019-00829-xNeuroinflammation is an increasingly recognized mechanism of poor outcome. This paper focuses on inflammatory pathways activated following subarachnoid hemorrhage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol. 2020;35(7):623–36. https://doi.org/10.14670/HH-18-208.

    Article  CAS  PubMed  Google Scholar 

  68. Hillman J, Aneman O, Persson M, Andersson C, Dabrosin C, Mellergard P. Variations in the response of interleukins in neurosurgical intensive care patients monitored using intracerebral microdialysis. J Neurosurg. 2007;106(5):820–5. https://doi.org/10.3171/jns.2007.106.5.820This is an excellent review of the inflammatory pathways involved in the pathophysiology of early brain injury following subarachnoid hemorrrhage.

    Article  CAS  PubMed  Google Scholar 

  69. Hayman EG, Wessell A, Gerzanich V, Sheth KN, Simard JM. Mechanisms of global cerebral edema formation in aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2017;26(2):301–10. https://doi.org/10.1007/s12028-016-0354-7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Caplan LR. Primer on cerebrovascular diseases. Second edition. ed. London: Elsevier, Academic Press; 2017.

    Google Scholar 

  71. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17(4):439–47. https://doi.org/10.1038/nm.2333.

    Article  CAS  PubMed  Google Scholar 

  72. Dreier JP, Lemale CL, Kola V, Friedman A, Schoknecht K. Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology. 2018;134(Pt B):189–207. https://doi.org/10.1016/j.neuropharm.2017.09.027Spreading depolarization is increasingly recognized to play a large role in brain injury following aneurysmal subarachnoid hemorrhage and this paper discusses that role.

    Article  CAS  PubMed  Google Scholar 

  73. Eriksen N, Rostrup E, Fabricius M, Scheel M, Major S, Winkler MKL, et al. Early focal brain injury after subarachnoid hemorrhage correlates with spreading depolarizations. Neurology. 2019;92(4):e326–e41. https://doi.org/10.1212/WNL.0000000000006814This paper describes the relationship of spreading depolarization and focal brain injury. One of the few studies that shows the role of spreading depolarization following subarachnoid hemorrhage.

    Article  PubMed  Google Scholar 

  74. Shuttleworth CW, Andrew RD, Akbari Y, Ayata C, Balu R, Brennan KC, et al. Which spreading depolarizations are deleterious to brain tissue? Neurocrit Care. 2020;32(1):317–22. https://doi.org/10.1007/s12028-019-00776-7This patient is unique in that it charactorizes the spreading depolarizations and notes that not all are deleterious.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mayer SA, Helbok R. Spreading depolarization: a mysterious and deadly mediator of acute brain injury. Neurology. 2019;92(4):161–2. https://doi.org/10.1212/WNL.0000000000006803.

    Article  PubMed  Google Scholar 

  76. Dreier JP, Major S, Pannek HW, Woitzik J, Scheel M, Wiesenthal D, et al. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain. 2012;135(Pt 1):259–75. https://doi.org/10.1093/brain/awr303.

    Article  PubMed  Google Scholar 

  77. Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain. 2006;129(Pt 12):3224–37. https://doi.org/10.1093/brain/awl297.

    Article  PubMed  Google Scholar 

  78. Rass V, Solari D, Ianosi B, Gaasch M, Kofler M, Schiefecker AJ, et al. Protocolized brain oxygen optimization in subarachnoid hemorrhage. Neurocrit Care. 2019;31(2):263–72. https://doi.org/10.1007/s12028-019-00753-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. de Oliveira Manoel AL, Macdonald RL. Neuroinflammation as a target for intervention in subarachnoid hemorrhage. Front Neurol. 2018;9:292. https://doi.org/10.3389/fneur.2018.00292This paper focuses on interventional targets for neuroinflammation and is essential to the future trial planning in aneurysmal subarachnoid hemorrahge.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Behrouz R, Sadat-Hosseiny Z. Pharmacological agents in aneurysmal subarachnoid hemorrhage: successes and failures. Clin Neuropharmacol. 2015;38(3):104–8. https://doi.org/10.1097/WNF.0000000000000085.

    Article  CAS  PubMed  Google Scholar 

  81. Chaudhry SR, Lehecka M, Niemela M, Muhammad S. Sterile inflammation, potential target in aneurysmal subarachnoid hemorrhage. World Neurosurg. 2019;123:159–60. https://doi.org/10.1016/j.wneu.2018.12.061.

    Article  PubMed  Google Scholar 

  82. Klass A, Sanchez-Porras R, Santos E. Systematic review of the pharmacological agents that have been tested against spreading depolarizations. J Cereb Blood Flow Metab. 2018;38(7):1149–79. https://doi.org/10.1177/0271678X18771440This is an excellent review of therapeutic targets for spreading depolarization and is critical in future trial planning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Helbok R, Hartings JA, Schiefecker A, Balanca B, Jewel S, Foreman B, et al. What should a clinician do when spreading depolarizations are observed in a patient? Neurocrit Care. 2020;32(1):306–10. https://doi.org/10.1007/s12028-019-00777-6We have very few therapeutic interventions for spreading depolarizations and this paper focuses on what we can do when we see them clinically.

    Article  PubMed  Google Scholar 

  84. Santos E, Olivares-Rivera A, Major S, Sanchez-Porras R, Uhlmann L, Kunzmann K, et al. Lasting s-ketamine block of spreading depolarizations in subarachnoid hemorrhage: a retrospective cohort study. Crit Care. 2019;23(1):427. https://doi.org/10.1186/s13054-019-2711-3This paper represents very recent data on the use of ketamine in treating spreading depolarizations following aneurysmal subarachnoid hemorrhage.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Geraghty JR, Testai FD. Delayed cerebral ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology. Curr Atheroscler Rep. 2017;19(12):50. https://doi.org/10.1007/s11883-017-0690-x.

    Article  CAS  PubMed  Google Scholar 

  86. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011;10(7):618–25. https://doi.org/10.1016/S1474-4422(11)70108-9.

    Article  CAS  PubMed  Google Scholar 

  87. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, et al. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke. 2012;43(6):1463–9. https://doi.org/10.1161/STROKEAHA.111.648980.

    Article  CAS  PubMed  Google Scholar 

  88. Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39(11):3015–21. https://doi.org/10.1161/STROKEAHA.108.519942.

    Article  CAS  PubMed  Google Scholar 

  89. Pickard JD, Murray GD, Illingworth R, Shaw MD, Teasdale GM, Foy PM, et al. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ. 1989;298(6674):636–42. https://doi.org/10.1136/bmj.298.6674.636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Allen GS, Ahn HS, Preziosi TJ, Battye R, Boone SC, Boone SC, et al. Cerebral arterial spasm--a controlled trial of nimodipine in patients with subarachnoid hemorrhage. N Engl J Med. 1983;308(11):619–24. https://doi.org/10.1056/NEJM198303173081103.

    Article  CAS  PubMed  Google Scholar 

  91. Gomis P, Graftieaux JP, Sercombe R, Hettler D, Scherpereel B, Rousseaux P. Randomized, double-blind, placebo-controlled, pilot trial of high-dose methylprednisolone in aneurysmal subarachnoid hemorrhage. J Neurosurg. 2010;112(3):681–8. https://doi.org/10.3171/2009.4.JNS081377.

    Article  CAS  PubMed  Google Scholar 

  92. Kirkpatrick PJ, Turner CL, Smith C, Hutchinson PJ, Murray GD, Collaborators S. Simvastatin in aneurysmal subarachnoid haemorrhage (STASH): a multicentre randomised phase 3 trial. Lancet Neurol. 2014;13(7):666–75. https://doi.org/10.1016/S1474-4422(14)70084-5.

    Article  CAS  PubMed  Google Scholar 

  93. van den Bergh WM, Algra A, van Kooten F, Dirven CM, van Gijn J, Vermeulen M, et al. Magnesium sulfate in aneurysmal subarachnoid hemorrhage: a randomized controlled trial. Stroke. 2005;36(5):1011–5. https://doi.org/10.1161/01.STR.0000160801.96998.57.

    Article  CAS  PubMed  Google Scholar 

  94. van den Bergh WM, Algra A, Dorhout Mees SM, van Kooten F, Dirven CM, Group MS, et al. Randomized controlled trial of acetylsalicylic acid in aneurysmal subarachnoid hemorrhage: the MASH Study. Stroke. 2006;37(9):2326–30. https://doi.org/10.1161/01.STR.0000236841.16055.0f.

    Article  CAS  PubMed  Google Scholar 

  95. Wong GK, Poon WS, Chan MT, Boet R, Gin T, Ng SC, et al. Intravenous magnesium sulphate for aneurysmal subarachnoid hemorrhage (IMASH): a randomized, double-blinded, placebo-controlled, multicenter phase III trial. Stroke. 2010;41(5):921–6. https://doi.org/10.1161/STROKEAHA.109.571125.

    Article  CAS  PubMed  Google Scholar 

  96. Lysakowski C, Walder B, Costanza MC, Tramer MR. Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review. Stroke. 2001;32(10):2292–8. https://doi.org/10.1161/hs1001.097108.

    Article  CAS  PubMed  Google Scholar 

  97. Sloan MA, Alexandrov AV, Tegeler CH, Spencer MP, Caplan LR, Feldmann E, et al. Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2004;62(9):1468–81. https://doi.org/10.1212/wnl.62.9.1468.

    Article  CAS  PubMed  Google Scholar 

  98. Suarez JI, Qureshi AI, Yahia AB, Parekh PD, Tamargo RJ, Williams MA, et al. Symptomatic vasospasm diagnosis after subarachnoid hemorrhage: evaluation of transcranial Doppler ultrasound and cerebral angiography as related to compromised vascular distribution. Crit Care Med. 2002;30(6):1348–55. https://doi.org/10.1097/00003246-200206000-00035.

    Article  PubMed  Google Scholar 

  99. Chaudhary SR, Ko N, Dillon WP, Yu MB, Liu S, Criqui GI, et al. Prospective evaluation of multidetector-row CT angiography for the diagnosis of vasospasm following subarachnoid hemorrhage: a comparison with digital subtraction angiography. Cerebrovasc Dis. 2008;25(1-2):144–50. https://doi.org/10.1159/000112325.

    Article  PubMed  Google Scholar 

  100. Yoon DY, Choi CS, Kim KH, Cho BM. Multidetector-row CT angiography of cerebral vasospasm after aneurysmal subarachnoid hemorrhage: comparison of volume-rendered images and digital subtraction angiography. AJNR Am J Neuroradiol. 2006;27(2):370–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mir DI, Gupta A, Dunning A, Puchi L, Robinson CL, Epstein HA, et al. CT perfusion for detection of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2014;35(5):866–71. https://doi.org/10.3174/ajnr.A3787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cremers CH, van der Schaaf IC, Wensink E, Greving JP, Rinkel GJ, Velthuis BK, et al. CT perfusion and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Cereb Blood Flow Metab. 2014;34(2):200–7. https://doi.org/10.1038/jcbfm.2013.208.

    Article  PubMed  Google Scholar 

  103. Cremers CH, Vos PC, van der Schaaf IC, Velthuis BK, Vergouwen MD, Rinkel GJ, et al. CT perfusion during delayed cerebral ischemia after subarachnoid hemorrhage: distinction between reversible ischemia and ischemia progressing to infarction. Neuroradiology. 2015;57(9):897–902. https://doi.org/10.1007/s00234-015-1543-3.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rajajee V, Pandey AS, Williamson CA. Subarachnoid hemorrhage and therapy formerly known as “Triple-H”-new directions. World Neurosurg. 2019;127:500–1. https://doi.org/10.1016/j.wneu.2019.04.212.

    Article  PubMed  Google Scholar 

  105. Muench E, Horn P, Bauhuf C, Roth H, Philipps M, Hermann P, et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med. 2007;35(8):1844–51; quiz 52. https://doi.org/10.1097/01.CCM.0000275392.08410.DD.

    Article  PubMed  Google Scholar 

  106. Haegens NM, Gathier CS, Horn J, Coert BA, Verbaan D, van den Bergh WM. Induced hypertension in preventing cerebral infarction in delayed cerebral ischemia after subarachnoid hemorrhage. Stroke. 2018;49(11):2630–6. https://doi.org/10.1161/STROKEAHA.118.022310.

    Article  PubMed  Google Scholar 

  107. Raabe A, Beck J, Keller M, Vatter H, Zimmermann M, Seifert V. Relative importance of hypertension compared with hypervolemia for increasing cerebral oxygenation in patients with cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg. 2005;103(6):974–81. https://doi.org/10.3171/jns.2005.103.6.0974.

    Article  PubMed  Google Scholar 

  108. Lennihan L, Mayer SA, Fink ME, Beckford A, Paik MC, Zhang H, et al. Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage : a randomized controlled trial. Stroke. 2000;31(2):383–91. https://doi.org/10.1161/01.str.31.2.383.

    Article  CAS  PubMed  Google Scholar 

  109. Egge A, Waterloo K, Sjoholm H, Solberg T, Ingebrigtsen T, Romner B. Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study. Neurosurgery. 2001;49(3):593–605; discussion -6. https://doi.org/10.1097/00006123-200109000-00012.

    Article  CAS  PubMed  Google Scholar 

  110. Ekelund A, Reinstrup P, Ryding E, Andersson AM, Molund T, Kristiansson KA, et al. Effects of iso- and hypervolemic hemodilution on regional cerebral blood flow and oxygen delivery for patients with vasospasm after aneurysmal subarachnoid hemorrhage. Acta Neurochir. 2002;144(7):703–12; discussion 12-3. https://doi.org/10.1007/s00701-002-0959-9.

    Article  CAS  PubMed  Google Scholar 

  111. Venkatraman A, Khawaja AM, Gupta S, Hardas S, Deveikis JP, Harrigan MR, et al. Intra-arterial vasodilators for vasospasm following aneurysmal subarachnoid hemorrhage: a meta-analysis. J Neurointerv Surg. 2018;10(4):380–7. https://doi.org/10.1136/neurintsurg-2017-013128.

    Article  PubMed  Google Scholar 

  112. Cinotti R, Putegnat JB, Lakhal K, Desal H, Chenet A, Buffenoir K, et al. Evolution of neurological recovery during the first year after subarachnoid haemorrhage in a French university centre. Anaesth Crit Care Pain Med. 2019;38(3):251–7. https://doi.org/10.1016/j.accpm.2018.10.002This paper is extremely important for those treating subarachnoid hemorrhage patients and highlights the fact that prognosis is difficult. Patients may have greater potential for recovery than anticipated.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcey L. Osgood.

Ethics declarations

Conflict of Interest

Marcey L. Osgood declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osgood, M.L. Aneurysmal Subarachnoid Hemorrhage: Review of the Pathophysiology and Management Strategies. Curr Neurol Neurosci Rep 21, 50 (2021). https://doi.org/10.1007/s11910-021-01136-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-021-01136-9

Keywords

Navigation