Skip to main content

Advertisement

Log in

Pharmacological Enhancement of Stroke Recovery

  • Neurorehabilitation and Recovery (J Krakauer and T Kitago, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to discuss the recent literature relating to drugs for stroke recovery and to identify some of the challenges in conducting translational research for stroke recovery.

Recent Findings

Advances in our understanding of neural repair mechanisms in pre-clinical stroke models have provided insights into potential targets for drugs that enhance the repair/recovery process. Few drugs that act on serotonergic and dopaminergic systems have been tested in humans with mixed results. The FOCUS trial, a phase III study of early administration of fluoxetine for stroke recovery, failed to replicate the promising results of the FLAME trial, but outcome measures differed between the two trials. Another drug that has recently been shown to have potential to promote motor recovery after stroke is maraviroc, an inhibitor of C-C chemokine receptor 5 that is involved in learning and memory.

Summary

Various drugs, including modulators of neurotransmitters, axonal growth inhibitor blockers, and growth factors, have been examined in preclinical and clinical studies for their ability to promote neural repair, particularly in the motor system. Neuroplasticity, broadly defined as the capacity of the brain to undergo biochemical, structural, or functional changes, is heightened early after stroke when behavioral improvements are observed. Further studies are needed to determine which of these neuroplastic processes are causal to recovery and therefore appropriate targets for drugs to promote recovery. There has also been little focus on trying to distinguish processes that promote true behavioral recovery versus those that improve task success through use of compensatory strategies. Incorporation of sensitive and detailed outcome measures that assess movement quality as well as task success in both preclinical and clinical studies are needed to further elucidate appropriate drug targets and improve the translation of preclinical findings into successful clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stinear CM, Byblow WD, Ackerley SJ, Smith MC, Borges VM, Barber PA. Proportional motor recovery after stroke: implications for trial design. Stroke. 2017;48(3):795–8. https://doi.org/10.1161/STROKEAHA.116.016020.

    Article  PubMed  Google Scholar 

  2. Kitago T, Liang J, Huang VS, Hayes S, Simon P, Tenteromano L, et al. Improvement after constraint-induced movement therapy: recovery of normal motor control or task-specific compensation? Neurorehabil Neural Repair. 2013;27(2):99–109. https://doi.org/10.1177/1545968312452631.

    Article  PubMed  Google Scholar 

  3. Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, et al. Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: consensus-based Core recommendations from the stroke recovery and rehabilitation roundtable translational working group. Neurorehabil Neural Repair. 2017;31(8):699–707. https://doi.org/10.1177/1545968317724285.

    Article  PubMed  Google Scholar 

  4. Alia C, Spalletti C, Lai S, Panarese A, Lamola G, Bertolucci F, et al. Neuroplastic changes following brain ischemia and their contribution to stroke recovery: novel approaches in neurorehabilitation. Front Cell Neurosci. 2017;11:76. https://doi.org/10.3389/fncel.2017.00076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ploughman M, Windle V, MacLellan CL, White N, Dore JJ, Corbett D. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke. 2009;40(4):1490–5. https://doi.org/10.1161/STROKEAHA.108.531806.

    Article  CAS  PubMed  Google Scholar 

  6. Sanchez-Mendoza EH, Hermann DM. Correlates of post-stroke brain plasticity, relationship to pathophysiological settings and implications for human proof-of-concept studies. Front Cell Neurosci. 2016;10:196. https://doi.org/10.3389/fncel.2016.00196.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Font MA, Arboix A, Krupinski J. Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Curr Cardiol Rev. 2010;6(3):238–44. https://doi.org/10.2174/157340310791658802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li S, Nie EH, Yin Y, Benowitz LI, Tung S, Vinters HV, et al. GDF10 is a signal for axonal sprouting and functional recovery after stroke. Nat Neurosci. 2015;18(12):1737–45. https://doi.org/10.1038/nn.4146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci. 2009;29(6):1719–34. https://doi.org/10.1523/JNEUROSCI.4249-08.2009.

    Article  CAS  PubMed  Google Scholar 

  10. Overman JJ, Clarkson AN, Wanner IB, Overman WT, Eckstein I, Maguire JL, et al. A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A. 2012;109(33):E2230–9. https://doi.org/10.1073/pnas.1204386109.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol. 2013;26(6):609–16. https://doi.org/10.1097/WCO.0000000000000025.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zeiler SR, Hubbard R, Gibson EM, Zheng T, Ng K, O'Brien R, et al. Paradoxical motor recovery from a first stroke after induction of a second stroke: reopening a Postischemic sensitive period. Neurorehabil Neural Repair. 2016;30(8):794–800. https://doi.org/10.1177/1545968315624783.

    Article  PubMed  Google Scholar 

  13. Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24(5):1245–54. https://doi.org/10.1523/JNEUROSCI.3834-03.2004.

    Article  CAS  PubMed  Google Scholar 

  14. Jones TA, Adkins DL. Motor system reorganization after stroke: stimulating and training toward perfection. Physiology. 2015;30(5):358–70. https://doi.org/10.1152/physiol.00014.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 2011;134(Pt 5):1264–76. https://doi.org/10.1093/brain/awr033.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72. https://doi.org/10.1038/nrn2735.

    Article  CAS  PubMed  Google Scholar 

  17. Green AR, Hainsworth AH, Jackson DM. GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology. 2000;39(9):1483–94.

    Article  CAS  PubMed  Google Scholar 

  18. Kozlowski DA, Jones TA, Schallert T. Pruning of dendrites and restoration of function after brain damage: role of the NMDA receptor. Restor Neurol Neurosci. 1994;7(2):119–26. https://doi.org/10.3233/RNN-1994-7207.

    Article  CAS  PubMed  Google Scholar 

  19. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301(5634):805–9. https://doi.org/10.1126/science.1083328.

    Article  CAS  PubMed  Google Scholar 

  20. Bjorkholm C, Monteggia LM. BDNF - a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72–9. https://doi.org/10.1016/j.neuropharm.2015.10.034.

    Article  CAS  PubMed  Google Scholar 

  21. Gerdelat-Mas A, Loubinoux I, Tombari D, Rascol O, Chollet F, Simonetta-Moreau M. Chronic administration of selective serotonin reuptake inhibitor (SSRI) paroxetine modulates human motor cortex excitability in healthy subjects. Neuroimage. 2005;27(2):314–22. https://doi.org/10.1016/j.neuroimage.2005.05.009.

    Article  CAS  PubMed  Google Scholar 

  22. Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R, O'Leary OF, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008;320(5874):385–8. https://doi.org/10.1126/science.1150516.

    Article  CAS  PubMed  Google Scholar 

  23. Windle V, Corbett D. Fluoxetine and recovery of motor function after focal ischemia in rats. Brain Res. 2005;1044(1):25–32. https://doi.org/10.1016/j.brainres.2005.02.060.

    Article  CAS  PubMed  Google Scholar 

  24. Jolkkonen J, Puurunen K, Rantakomi S, Sirvio J, Haapalinna A, Sivenius J. Effects-of fluoxetine on sensorimotor and spatial learning deficits following focal cerebral ischemia in rats. Restor Neurol Neurosci. 2000;17(4):211–6.

    CAS  PubMed  Google Scholar 

  25. Li WL, Cai HH, Wang B, Chen L, Zhou QG, Luo CX, et al. Chronic fluoxetine treatment improves ischemia-induced spatial cognitive deficits through increasing hippocampal neurogenesis after stroke. J Neurosci Res. 2009;87(1):112–22. https://doi.org/10.1002/jnr.21829.

    Article  CAS  PubMed  Google Scholar 

  26. Ng KL, Gibson EM, Hubbard R, Yang J, Caffo B, O'Brien RJ, et al. Fluoxetine maintains a state of heightened responsiveness to motor training early after stroke in a mouse model. Stroke. 2015;46(10):2951–60. https://doi.org/10.1161/STROKEAHA.115.010471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dam M, Tonin P, De Boni A, Pizzolato G, Casson S, Ermani M, et al. Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy. Stroke. 1996;27(7):1211–4.

    Article  CAS  PubMed  Google Scholar 

  28. Pariente J, Loubinoux I, Carel C, Albucher JF, Leger A, Manelfe C, et al. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol. 2001;50(6):718–29.

    Article  CAS  PubMed  Google Scholar 

  29. Zittel S, Weiller C, Liepert J. Citalopram improves dexterity in chronic stroke patients. Neurorehabil Neural Repair. 2008;22(3):311–4. https://doi.org/10.1177/1545968307312173.

    Article  PubMed  Google Scholar 

  30. Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 2011;10(2):123–30. https://doi.org/10.1016/S1474-4422(10)70314-8.

    Article  CAS  PubMed  Google Scholar 

  31. Collaboration FT. Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial. Lancet. 2019;393(10168):265–74. https://doi.org/10.1016/S0140-6736(18)32823-X.

    Article  Google Scholar 

  32. Graham C, Lewis S, Forbes J, Mead G, Hackett ML, Hankey GJ, et al. The FOCUS, AFFINITY and EFFECTS trials studying the effect(s) of fluoxetine in patients with a recent stroke: statistical and health economic analysis plan for the trials and for the individual patient data meta-analysis. Trials. 2017;18(1):627. https://doi.org/10.1186/s13063-017-2385-6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. • Savadi Oskouie D, Sharifipour E, Sadeghi Bazargani H, Hashemilar M, Nikanfar M, Ghazanfari Amlashi S, et al. Efficacy of citalopram on acute ischemic stroke outcome: a randomized clinical trial. Neurorehabil Neural Repair. 2017;31(7):638–47. https://doi.org/10.1177/1545968317704902 This was a randomized placebo-controlled trial investigating the efficacy of citalopram to reduce stroke severity at 3 months. Citalopram was safe and led to a greater proportion of patients having a 50% reduction in NIHSS compared with placebo.

    Article  PubMed  Google Scholar 

  34. Calabresi P, Picconi B, Tozzi A, Di Filippo M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 2007;30(5):211–9. https://doi.org/10.1016/j.tins.2007.03.001.

    Article  CAS  PubMed  Google Scholar 

  35. Schultz W. Getting formal with dopamine and reward. Neuron. 2002;36(2):241–63.

    Article  CAS  PubMed  Google Scholar 

  36. Costa RM, Lin SC, Sotnikova TD, Cyr M, Gainetdinov RR, Caron MG, et al. Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron. 2006;52(2):359–69. https://doi.org/10.1016/j.neuron.2006.07.030.

    Article  CAS  PubMed  Google Scholar 

  37. Molina-Luna K, Pekanovic A, Rohrich S, Hertler B, Schubring-Giese M, Rioult-Pedotti MS, et al. Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS One. 2009;4(9):e7082. https://doi.org/10.1371/journal.pone.0007082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci. 2011;31(7):2481–7. https://doi.org/10.1523/JNEUROSCI.5411-10.2011.

    Article  CAS  PubMed  Google Scholar 

  39. Floel A, Hummel F, Breitenstein C, Knecht S, Cohen LG. Dopaminergic effects on encoding of a motor memory in chronic stroke. Neurology. 2005;65(3):472–4. https://doi.org/10.1212/01.wnl.0000172340.56307.5e.

    Article  CAS  PubMed  Google Scholar 

  40. Scheidtmann K, Fries W, Muller F, Koenig E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet. 2001;358(9284):787–90. https://doi.org/10.1016/S0140-6736(01)05966-9.

    Article  CAS  PubMed  Google Scholar 

  41. Cramer SC, Dobkin BH, Noser EA, Rodriguez RW, Enney LA. Randomized, placebo-controlled, double-blind study of ropinirole in chronic stroke. Stroke. 2009;40(9):3034–8. https://doi.org/10.1161/STROKEAHA.109.552075.

    Article  CAS  PubMed  Google Scholar 

  42. Lokk J, Salman Roghani R, Delbari A. Effect of methylphenidate and/or levodopa coupled with physiotherapy on functional and motor recovery after stroke--a randomized, double-blind, placebo-controlled trial. Acta Neurol Scand. 2011;123(4):266–73. https://doi.org/10.1111/j.1600-0404.2010.01395.x.

    Article  CAS  PubMed  Google Scholar 

  43. • Kim BR, Kim HY, Chun YI, Yun YM, Kim H, Choi DH, et al. Association between genetic variation in the dopamine system and motor recovery after stroke. Restor Neurol Neurosci. 2016;34(6):925–34. https://doi.org/10.3233/RNN-160667 This study suggested that genetic variation of dopamine-related genes may affect motor recovery after stroke and that COMT polymorphism could be useful for predicting motor recovery.

    Article  CAS  PubMed  Google Scholar 

  44. Carrera E, Tononi G. Diaschisis: past, present, future. Brain. 2014;137(Pt 9):2408–22. https://doi.org/10.1093/brain/awu101.

    Article  PubMed  Google Scholar 

  45. Brickley SG, Mody I. Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron. 2012;73(1):23–34. https://doi.org/10.1016/j.neuron.2011.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature. 2010;468(7321):305–9. https://doi.org/10.1038/nature09511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clarkson AN, Overman JJ, Zhong S, Mueller R, Lynch G, Carmichael ST. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke. J Neurosci. 2011;31(10):3766–75. https://doi.org/10.1523/JNEUROSCI.5780-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meisner F, Scheller C, Kneitz S, Sopper S, Neuen-Jacob E, Riederer P, et al. Memantine upregulates BDNF and prevents dopamine deficits in SIV-infected macaques: a novel pharmacological action of memantine. Neuropsychopharmacology. 2008;33(9):2228–36. https://doi.org/10.1038/sj.npp.1301615.

    Article  CAS  PubMed  Google Scholar 

  49. Ranju V, Sathiya S, Kalaivani P, Priya RJ, Saravana Babu C. Memantine exerts functional recovery by improving BDNF and GDNF expression in 3-nitropropionic acid intoxicated mice. Neurosci Lett. 2015;586:1–7. https://doi.org/10.1016/j.neulet.2014.11.036.

    Article  CAS  PubMed  Google Scholar 

  50. Lopez-Valdes HE, Clarkson AN, Ao Y, Charles AC, Carmichael ST, Sofroniew MV, et al. Memantine enhances recovery from stroke. Stroke. 2014;45(7):2093–100. https://doi.org/10.1161/STROKEAHA.113.004476.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Beltran EJ, Papadopoulos CM, Tsai SY, Kartje GL, Wolf WA. Long-term motor improvement after stroke is enhanced by short-term treatment with the alpha-2 antagonist, atipamezole. Brain Res. 2010;1346:174–82. https://doi.org/10.1016/j.brainres.2010.05.063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zittel S, Weiller C, Liepert J. Reboxetine improves motor function in chronic stroke. A pilot study. J Neurol. 2007;254(2):197–201. https://doi.org/10.1007/s00415-006-0326-5.

    Article  CAS  PubMed  Google Scholar 

  53. Nadeau SE, Behrman AL, Davis SE, Reid K, Wu SS, Stidham BS, et al. Donepezil as an adjuvant to constraint-induced therapy for upper-limb dysfunction after stroke: an exploratory randomized clinical trial. J Rehabil Res Dev. 2004;41(4):525–34.

    Article  PubMed  Google Scholar 

  54. Barrett KM, Brott TG, Brown RD Jr, Carter RE, Geske JR, Graff-Radford NR, et al. Enhancing recovery after acute ischemic stroke with donepezil as an adjuvant therapy to standard medical care: results of a phase IIA clinical trial. J Stroke Cerebrovasc Dis. 2011;20(3):177–82. https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.12.009.

    Article  PubMed  Google Scholar 

  55. Buchli AD, Schwab ME. Inhibition of Nogo: a key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system. Ann Med. 2005;37(8):556–67. https://doi.org/10.1080/07853890500407520.

    Article  CAS  PubMed  Google Scholar 

  56. Cash D, Easton AC, Mesquita M, Beech J, Williams S, Lloyd A, et al. GSK249320, a monoclonal antibody against the axon outgrowth inhibition molecule myelin-associated glycoprotein, improves outcome of rodents with experimental stroke. J Neurol Exp Neurosci. 2016;2(2):28–33.

    PubMed  PubMed Central  Google Scholar 

  57. Barbay S, Plautz EJ, Zoubina E, Frost SB, Cramer SC, Nudo RJ. Effects of postinfarct myelin-associated glycoprotein antibody treatment on motor recovery and motor map plasticity in squirrel monkeys. Stroke. 2015;46(6):1620–5. https://doi.org/10.1161/STROKEAHA.114.008088.

    Article  CAS  PubMed  Google Scholar 

  58. •• Cramer SC, Enney LA, Russell CK, Simeoni M, Thompson TR. Proof-of-Concept Randomized Trial of the Monoclonal Antibody GSK249320 Versus Placebo in Stroke Patients. Stroke. 2017;48(3):692–8. https://doi.org/10.1161/STROKEAHA.116.014517 This was a phase IIb randomized placebo-controlled clinical trial investigating the efficacy of administering GSK249320, a humanized monoclonal antibody, to block the inhibitory myelin-associated glycoprotein to promote stroke recovery. The discussion of this negative study outlines some of the challenges of translating therapies from preclinical studies to humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mattson MP, Scheff SW. Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapy. J Neurotrauma. 1994;11(1):3–33. https://doi.org/10.1089/neu.1994.11.3.

    Article  CAS  PubMed  Google Scholar 

  60. Rabchevsky AG, Fugaccia I, Fletcher-Turner A, Blades DA, Mattson MP, Scheff SW. Basic fibroblast growth factor (bFGF) enhances tissue sparing and functional recovery following moderate spinal cord injury. J Neurotrauma. 1999;16(9):817–30. https://doi.org/10.1089/neu.1999.16.817.

    Article  CAS  PubMed  Google Scholar 

  61. Longhi L, Watson DJ, Saatman KE, Thompson HJ, Zhang C, Fujimoto S, et al. Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma. 2004;21(12):1723–36. https://doi.org/10.1089/neu.2004.21.1723.

    Article  PubMed  Google Scholar 

  62. Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, et al. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res. 2005;1058(1–2):120–8. https://doi.org/10.1016/j.brainres.2005.07.076.

    Article  CAS  PubMed  Google Scholar 

  63. Kawada H, Takizawa S, Takanashi T, Morita Y, Fujita J, Fukuda K, et al. Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation. 2006;113(5):701–10. https://doi.org/10.1161/CIRCULATIONAHA.105.563668.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao LR, Berra HH, Duan WM, Singhal S, Mehta J, Apkarian AV, et al. Beneficial effects of hematopoietic growth factor therapy in chronic ischemic stroke in rats. Stroke. 2007;38(10):2804–11. https://doi.org/10.1161/STROKEAHA.107.486217.

    Article  CAS  PubMed  Google Scholar 

  65. Liu XL, Zhang W, Tang SJ. Intracranial transplantation of human adipose-derived stem cells promotes the expression of neurotrophic factors and nerve repair in rats of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol. 2014;7(1):174–83.

    PubMed  Google Scholar 

  66. Liu Y, Popescu M, Longo S, Gao M, Wang D, McGillis S, et al. Fibrinogen reduction and motor function improvement by hematopoietic growth factor treatment in chronic stroke in aged mice: a treatment frequency study. Cell Transplant. 2016;25(4):729–34. https://doi.org/10.3727/096368916X690791.

    Article  PubMed  Google Scholar 

  67. Cui L, Wang D, McGillis S, Kyle M, Zhao LR. Repairing the brain by SCF+G-CSF treatment at 6 months postexperimental stroke: mechanistic determination of the causal link between neurovascular regeneration and motor functional recovery. ASN Neuro. 2016;8(4):175909141665501. https://doi.org/10.1177/1759091416655010.

    Article  Google Scholar 

  68. Zhou M, Greenhill S, Huang S, Silva TK, Sano Y, Wu S, et al. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. eLife. 2016;5. https://doi.org/10.7554/eLife.20985.

  69. Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell. 2019;176(5):1143–57 e13. https://doi.org/10.1016/j.cell.2019.01.044.

    Article  CAS  PubMed  Google Scholar 

  70. Prentice H, Modi JP, Wu JY. Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxidative Med Cell Longev. 2015;2015:964518. https://doi.org/10.1155/2015/964518.

    Article  CAS  Google Scholar 

  71. Jia M, Njapo SA, Rastogi V, Hedna VS. Taming glutamate excitotoxicity: strategic pathway modulation for neuroprotection. CNS Drugs. 2015;29(2):153–62. https://doi.org/10.1007/s40263-015-0225-3.

    Article  CAS  PubMed  Google Scholar 

  72. Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009;30(4):379–87. https://doi.org/10.1038/aps.2009.24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77. https://doi.org/10.1002/ana.20741.

    Article  CAS  PubMed  Google Scholar 

  74. Xu SY, Pan SY. The failure of animal models of neuroprotection in acute ischemic stroke to translate to clinical efficacy. Med Sci Monit Basic Res. 2013;19:37–45.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hillis AE, Beh YY, Sebastian R, Breining B, Tippett DC, Wright A, et al. Predicting recovery in acute poststroke aphasia. Ann Neurol. 2018;83(3):612–22. https://doi.org/10.1002/ana.25184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Byblow WD, Stinear CM, Barber PA, Petoe MA, Ackerley SJ. Proportional recovery after stroke depends on corticomotor integrity. Ann Neurol. 2015;78(6):848–59. https://doi.org/10.1002/ana.24472.

    Article  PubMed  Google Scholar 

  77. Puig J, Blasco G, Schlaug G, Stinear CM, Daunis IEP, Biarnes C, et al. Diffusion tensor imaging as a prognostic biomarker for motor recovery and rehabilitation after stroke. Neuroradiology. 2017;59(4):343–51. https://doi.org/10.1007/s00234-017-1816-0.

    Article  PubMed  Google Scholar 

  78. •• Lyden P, Pryor KE, Coffey CS, Cudkowicz M, Conwit R, Jadhav A, et al. Final results of the RHAPSODY trial: a multi-center, phase 2 trial using a continual reassessment method to determine the safety and tolerability of 3K3A-APC, a recombinant variant of human activated protein C, in combination with tissue plasminogen activator, mechanical thrombectomy or both in moderate to severe acute ischemic stroke. Ann Neurol. 2018;85:125–36. https://doi.org/10.1002/ana.25383 This was the final result of phase 2 clnical trial of first neuroprotectant for acute ischemic stroke designed to assess the safety and tolerability of 3K3A-APC in combination with tPA, thrombectomy or both. This study showed a trend towards lowering the heamorrhage rate.

    Article  CAS  Google Scholar 

  79. Amar AP, Sagare AP, Zhao Z, Wang Y, Nelson AR, Griffin JH, et al. Can adjunctive therapies augment the efficacy of endovascular thrombolysis? A potential role for activated protein C. Neuropharmacology. 2018;134(Pt B):293–301. https://doi.org/10.1016/j.neuropharm.2017.09.021.

    Article  CAS  PubMed  Google Scholar 

  80. Griffin JH, Fernandez JA, Lyden PD, Zlokovic BV. Activated protein C promotes neuroprotection: mechanisms and translation to the clinic. Thromb Res. 2016;141(Suppl 2):S62–4. https://doi.org/10.1016/S0049-3848(16)30368-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Albensi BC, Igoechi C, Janigro D, Ilkanich E. Why do many NMDA antagonists fail, while others are safe and effective at blocking excitotoxicity associated with dementia and acute injury? Am J Alzheimers Dis Other Dement. 2004;19(5):269–74. https://doi.org/10.1177/153331750401900502.

    Article  Google Scholar 

  82. Yuan H, Myers SJ, Wells G, Nicholson KL, Swanger SA, Lyuboslavsky P, et al. Context-dependent GluN2B-selective inhibitors of NMDA receptor function are neuroprotective with minimal side effects. Neuron. 2015;85(6):1305–18. https://doi.org/10.1016/j.neuron.2015.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen HS, Wang YF, Rayudu PV, Edgecomb P, Neill JC, Segal MM, et al. Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience. 1998;86(4):1121–32.

    Article  CAS  PubMed  Google Scholar 

  84. Chen HS, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J Physiol. 1997;499(Pt 1):27–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Trotman M, Vermehren P, Gibson CL, Fern R. The dichotomy of memantine treatment for ischemic stroke: dose-dependent protective and detrimental effects. J Cereb Blood Flow Metab. 2015;35(2):230–9. https://doi.org/10.1038/jcbfm.2014.188.

    Article  CAS  PubMed  Google Scholar 

  86. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science. 2002;298(5594):846–50. https://doi.org/10.1126/science.1072873.

    Article  CAS  PubMed  Google Scholar 

  87. Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med. 2010;16(12):1439–43. https://doi.org/10.1038/nm.2245.

    Article  CAS  PubMed  Google Scholar 

  88. Bach A, Clausen BH, Moller M, Vestergaard B, Chi CN, Round A, et al. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proc Natl Acad Sci U S A. 2012;109(9):3317–22. https://doi.org/10.1073/pnas.1113761109.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hill MD, Martin RH, Mikulis D, Wong JH, Silver FL, Terbrugge KG, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2012;11(11):942–50. https://doi.org/10.1016/S1474-4422(12)70225-9.

    Article  CAS  PubMed  Google Scholar 

  90. •• Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21. https://doi.org/10.1056/NEJMoa1706442 The DAWN trial showed the efficacy of thrombectemy up to 24h after suspected onset of symptoms in select patients with occlusion of proximal vessels in the anterior circulation. This study provided a strong evidance in favor of expanding the therapeutic window.

    Article  PubMed  Google Scholar 

  91. •• Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18. https://doi.org/10.1056/NEJMoa1713973 The DEFUSE-3 trial showed the efficacy of thrombectemy up to 16h after suspected onset of symptoms in select patients with occlusion of proximal vessels in the anterior circulation. This study also provided a strong evidance in favor of expanding the therapeutic window.

    Article  PubMed  Google Scholar 

  92. Sun HS, Doucette TA, Liu Y, Fang Y, Teves L, Aarts M, et al. Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke. 2008;39(9):2544–53. https://doi.org/10.1161/STROKEAHA.107.506048.

    Article  CAS  PubMed  Google Scholar 

  93. Zhou HH, Tang Y, Zhang XY, Luo CX, Gao LY, Wu HY, et al. Delayed Administration of tat-HA-NR2B9c promotes recovery after stroke in rats. Stroke. 2015;46(5):1352–8. https://doi.org/10.1161/STROKEAHA.115.008886.

    Article  CAS  PubMed  Google Scholar 

  94. Guo X, Bu X, Jiang J, Cheng P, Yan Z. Enhanced neuroprotective effects of co-administration of G-CSF with simvastatin on intracerebral hemorrhage in rats. Turk Neurosurg. 2012;22(6):732–9. https://doi.org/10.5137/1019-5149.JTN.6177-12.1.

    Article  PubMed  Google Scholar 

  95. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83. https://doi.org/10.1056/NEJMoa0911341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wolf SL, Thompson PA, Winstein CJ, Miller JP, Blanton SR, Nichols-Larsen DS, et al. The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke. 2010;41(10):2309–15. https://doi.org/10.1161/STROKEAHA.110.588723.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yang Y, Zhao Q, Zhang Y, Wu Q, Jiang X, Cheng G. Effect of mirror therapy on recovery of stroke survivors: a systematic review and network meta-analysis. Neuroscience. 2018;390:318–36. https://doi.org/10.1016/j.neuroscience.2018.06.044.

    Article  CAS  PubMed  Google Scholar 

  98. McCabe J, Monkiewicz M, Holcomb J, Pundik S, Daly JJ. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(6):981–90. https://doi.org/10.1016/j.apmr.2014.10.022.

    Article  PubMed  Google Scholar 

  99. Ward NS, Brander F, Kelly K. Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the queen square programme. J Neurol Neurosurg Psychiatry. 2019;90:498–506. https://doi.org/10.1136/jnnp-2018-319954.

    Article  PubMed  Google Scholar 

  100. Lorenzo Bozzelli P, Alaiyed S, Kim E, Villapol S, Conant K. Proteolytic remodeling of perineuronal nets: effects on synaptic plasticity and neuronal population dynamics. Neural Plast. 2018;2018:5735789. https://doi.org/10.1155/2018/5735789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Romberg C, Yang S, Melani R, Andrews MR, Horner AE, Spillantini MG, et al. Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex. J Neurosci. 2013;33(16):7057–65. https://doi.org/10.1523/JNEUROSCI.6267-11.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lindau NT, Banninger BJ, Gullo M, Good NA, Bachmann LC, Starkey ML, et al. Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti-Nogo-A therapy. Brain. 2014;137(Pt 3):739–56. https://doi.org/10.1093/brain/awt336.

    Article  PubMed  Google Scholar 

  103. Kumar P, Moon LD. Therapeutics targeting Nogo-A hold promise for stroke restoration. CNS Neurol Disord Drug Targets. 2013;12(2):200–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Feeney DM, Gonzalez A, Law WA. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science. 1982;217(4562):855–7.

    Article  CAS  PubMed  Google Scholar 

  105. Masihuzzaman AM, Uddin MJ, Majumder S, Barman KK, Ullah MA. Effect of low dose levodopa on motor outcome of different types of stroke. Mymensingh Med J. 2011;20(4):689–93.

    CAS  PubMed  Google Scholar 

  106. Walker-Batson D, Smith P, Curtis S, Unwin H, Greenlee R. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke. 1995;26(12):2254–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was made possible by grants from Goldsmith Fellowship to Amit Kumar for transition to independence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Kitago.

Ethics declarations

Conflict of Interest

Amit Kumar and Tomoko Kitago each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurorehabilitation and Recovery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kitago, T. Pharmacological Enhancement of Stroke Recovery. Curr Neurol Neurosci Rep 19, 43 (2019). https://doi.org/10.1007/s11910-019-0959-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-0959-2

Keywords

Navigation